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Abstract

In this paper we prove an estimate for the measure of superlevel sets
for weak solutions u of nonhomogeneous quasilinear elliptic systems

n n N n
By (z > a;%,u(m)wjuﬁ(x)) — 3 DifP(aula),  (+)
i=1 j i=1

a=1,2-,N.

The diagonal coefficients a;’;’(m,y) are elliptic for large values of wu,
the off-diagonal coefficients are small when |u| is large, the faster off-
diagonal coefficients decay, the higher integrability of u becomes.
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1 Introduction

Let €2 be a bounged open subset of R, n > 3. For N > 2, let a?jﬁ OxRN - R

be Carathéodory functions, that is, a%ﬁ (x,y) are mesurable with respect to x
and continuous with respect to y. Moreover, they are bounded and elliptic.
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In this paper we deal with regularity for weak solutions u : Q C RN — RN of
nonhomogeneous quasilinear elliptic systems

n

—ZDZ(Z:Z Du ) ZDf (r,u(z)), a=1,2,--- N.

(1.1)
Where D; = 8%1- fori =1,2,---,n and we denote D = (Dy, Do, -, D,,) to be

the gradient operator.
In order to get regularity, we need additional assumptions on the coeffi-
cients. If aZjB (x,y) are diagonal

alf(x,y) =0 for B +#7, (1.2)
then the N equations (1.1) are decoupled and maximum principle applies to
every component u” of u = (u!,u? -+ uV):

supu” < supu’. (1.3)
Q o0

Now we no longer assume that off-diagonal coefficients vanish, we only know

that they are small when |y?| is large: there exist ¢, co,q € (0, +00) such that

C1

< w1, Jfor B#7, (1.4)
(L+ |y7])e

Co

< — .
(1+ [y7])?

We assume ellipticity only for diagonal coefficients a;;'(z,y) and only for large

values of |y7]:

(1.5)

0<O<|y| = v[¢P?< Z (x,9)&;& (1.6)

i,7=1

for some constants 6 € [0,+00) and v € (0,+00). And also diagonal coeffi-
cients are assumed to be bounded: there exists c3 € (0, 4+00) such that

@i} (z, u)| < cs. (1.7)

for almost every x € Q, for every y € RN | for all 4,5 € {1,...,n}, for any
v €{1,...,N}. And we note that both diagonal and off-diagonal coefficients
are bounded.

In this paper, the Sobolev space W12(Q) is defined, as usual, by

W2(Q) = {v e LX(Q): Dwe LX(Q),i=1,2,--,n}.

The closure of C3°(Q) in the norm of W'2(Q) is denoted by W,*(Q).
The main result of this paper is the following theorem.
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Theorem 1.1 Under assumptions (1.4)-(1.7), let u = (u*,u?,-- -, uV) be a
weak solution of the system (1.1), that is, u € WH2(Q, RY) and

/Qj:la%;la%ﬁ(g:,u(:c))Djuﬁ(:)s)Divo‘(:)s)dx:A;(;ﬁa(m,u(z))l)iva(z)dz,

(1.8)
holds true for all v € Wy*(Q, RN). Then

ue L2, RY)

loc

where 2% is the Sobolev exponent % and n > 3.

2 Proof of Theorem 1.1

We start as in the proof of theorem 2.1 in [1]. Let ¢ : [0, +00) be increasing and
C1([0, +00)). Moreover, we assume that there exists a constant ¢ € [1, +00)
such that

0<¢(t) <c¢ Vtel,+oo), (2.1)
0<¢/(t) <é Vtel0,+0), (2.2)
0< ¢ ()t <c Vtelo+oo). (2.3)

Let B, = B(xg,p) and Br = B(x, R) be open balls with the same center
xo and radii 0 < p < R < 1, with Bg C Q, We assume that n : R* — R,
n € Cy(Bg) with 0 <5 < 1in R", n=1on B, |Dy| < % in R*. We note
that 0 < R—p < R <1, s0 Ri_p > 2. We fix v € {1,2,---, N}, we consider
the test function v = (v!,v?% -+ -, v") defined as follows

¢ = 0 Zfa%f%
U_{¢WMM%2 if a=. (2.4)

It is easy to see that
v e Wy*(Br, RY) € Wy™*(Q, RY), (2.5)
and

D" = [¢/(Ju” ) |u] + ¢(Ju D] (Diu”)n* + [6(|u[)u] Di(n?). (2.6)
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We insert such a test function v into (1.8), then we can obtain

n

f oy 3 ) D 0 | 4+ o ) Dy
<|uY ig=1

- ‘/{9>|m|} > af (e, w) D [ (Ju || + o ) (Dins” )i de

i,7=1

[ 3 X @D [ D+ (DD

U L B#y
-/, S 4 (2, w) Dy (|| Di( )
7,] 1
-/, S S a2 (e, w) Dy (| o Dy (i)
2] 1 B#y

+/ ZfV x, u |u’Y|)|u’Y| +¢(|UV|)](DiuV)n2dx
+/9ny z,u)p([u")u Dy (1) dx

Now we use ellipticity (1.6) on the left-side and (1.4), (1.5), (1.7) on the right-
hand side, we get

V/{egm}w/('uv‘)‘“w‘ + (Ju”NI(Dw)*n*da

< nes /{6>m|}[¢’(|u7|)lu7| + (|| Du [*n*d
2N
e /Q | Dulle' ([ )]u| + ¢(ju” D) D |n*dz

(1 + |uv])e ne,
ney [ 201Dl (D |Dalde + s [ 2n6(l ) ol Dld

2N (14 |u|
n NCl N ,
(1+\Cm|)q/Q|Du|¢(|u Dl [2n]| Dl dz
n
AT o) L6l + (1w D] Dulndar

We add to both sides

”/{e>|m}[¢'<|u7|>|u”| + ¢(lu" ) (Du )P,
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and we get
v |19/ Dl + 6(u )(Dw oo

(v +ncs) /{6>m}[¢'(lu7|)lu7| + (|| Du *n*dx

NG (1 Dul [ (D] + o)) D P
(L+ [ur])s
+ney [ 20| De’|é(|u7])|u|| Drlda
n Nc5
—F— [ (1+|D DIu||2n||Dn|dx.
Tty St 1PuboU Dl 20l Dl
We use the inequality 2AB < eA? + B?/e, then we obtain

2 L1 Dl + (DD P

(v + ncs) /{9 G ¢ (D[ + ¢(ju” D] Dun*da

<+G+An%>/¢zﬂ|WHDm2
n*N?c & ([ . 2 2
(1 3) G D |+ o) 0+ Dl

Let us consider p € (0, +00) and let us assume that |[u?[?®*+) ¢ L'(Bg), and
for t € [0, 4+00) we set ¥(t) = (p + 1)?t*’. We approximate 1 as the same as

n [1]. We consider ¢ (s) = [y 0x(t)dt, when p < 1/2, we take

IN

IN

W'(3) if t€l0,3)
A R0 aa
k(t> - / .

V(k)k+1—t) ifte(kk+1)

0 if tek+1,+00);

and when p > 1/2, we take

V(1) if t €0,k
Gk(t){w’(k)(k+1—t) if te(kk+1)

0 if t€k+1,+00).

Now we can use ¢ = 1y, we remark that ¢y (t) < ()t +Up(t) < (p+1)2(2p+
1)t? and we can obtain

> | el (Dw)nds
(v+mnes)(p+1)%(2p+1) 92”/ | Du |*ndx
P12 )ﬂwHH%+WM““WWM

4N2 )
v |2p 2\,,2
= (1+ ) T V|)2q(p+1) (2p + D (1 + | Dul)nde.

IN

(2.7)
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We need that p < ¢ in order to have ﬁ < 1. So we get

|1ﬂ|2p(Dlﬂ)2 2dx

v

3 4

(v +nes)? + (14 ) (20'N?) ) (20 + Dl|Dul e
_I_

<
<1 i 4nu262> e (R_f p)? /Q [P d 2
+2 (1 n %) (' N?2)(2p + 1)|92].
We set w = |u”[P*1n, then w € W,*(Bg) and
| Dol < 2(p + 1)2|u” | Du” [ + 2nfu? 7Y (%)2. (2.9)

From (2.17) and (2.16), we get
/|Dw|2d9§
4
< V(p+1) ((1/+n03)92p (1+;> (n4N2c§)) (2p + 1)|[ Dul 220
4 4n?c? 4
Sp+1? (1 3) (2p+ 1) + 2 7/ V241
+<V(p+ ) ( +— )(er )+ n) L Q\u\ x

o1 (145 aN*)2p + DI,

(2.10)
Now we use Sobolev embedding and the properties of 7 in order to get

/ ‘u'y‘(p+1)2*dx</ ||u“/‘(l’+1)n‘2*dx
B, ~ JBg
2*
— / W] dx < [M/ \Dwl?dz|  dx
B n—2 JBg
4 4
< oD (4 nep + (14 ) (nN2) ) (20 + 1)1 Dul e
4 42 4
= 12 (1 2 1) + 2 7/ 7|2(p+1)
F(Sor e (1428 ) @) ) s [ e :

%(p +1)° <1 + %) (2n*N?c2)(2p + 1)|Q|] 7 <M N

n—2
(2.11)
If for some p € (0, +0c) with p < ¢ and for some 0 < p < R < 1 with By C €,
we have
[ 2P+ € LY(Bpg), (2.12)

then it results that
7> Pt e LY(B,). (2.13)
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Since u € W12(Q, RY) and By C Q, Sobolev embedding gives us
|72 € L'(Bp), (2.14)

thus (2.12) is fulfilled with p = min{-25,¢}, this improves the integrability
according to (2.13), the procedure can be iterated and following (2], after a
finite numbers of steps, we reach the desired integrability. The ends the proof
of Theorem 1.1.
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