Integrability for Solutions to Some Nonhomogeneous Quasilinear Elliptic Problems

Miaomiao JIA

College of Mathematics and Computer Science, Hebei University, Baoding, 071002, China E-mail: 303286142@qq.com.

Jiapeng YANG

School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai, 200237, China

Abstract

In this paper we prove an estimate for the measure of superlevel sets for weak solutions u of nonhomogeneous quasilinear elliptic systems

$$-\sum_{i=1}^{n} D_{i} \left(\sum_{j=1}^{n} \sum_{\beta=1}^{N} a_{ij}^{\alpha\beta}(x, u(x)) D_{j} u^{\beta}(x) \right) = -\sum_{i=1}^{n} D_{i} f_{i}^{\alpha}(x, u(x)), \quad (*)$$

$$\alpha = 1, 2, \cdots, N.$$

The diagonal coefficients $a_{ij}^{\gamma\gamma}(x,y)$ are elliptic for large values of u, the off-diagonal coefficients are small when |u| is large, the faster off-diagonal coefficients decay, the higher integrability of u becomes.

Mathematics Subject Classification: 35J62, 35D47, 35J10.

Keywords: Local integrability, solution, nonhomogeneous quasilinear elliptic systems.

1 Introduction

Let Ω be a bounged open subset of R^n , $n \geq 3$. For $N \geq 2$, let $a_{ij}^{\alpha\beta}: \Omega \times R^N \to R$ be Carathéodory functions, that is, $a_{ij}^{\alpha\beta}(x,y)$ are mesurable with respect to x and continuous with respect to y. Moreover, they are bounded and elliptic.

In this paper we deal with regularity for weak solutions $u:\Omega\subset R^N\to R^N$ of nonhomogeneous quasilinear elliptic systems

$$-\sum_{i=1}^{n} D_{i} \left(\sum_{j=1}^{n} \sum_{\beta=1}^{N} a_{ij}^{\alpha\beta}(x, u(x)) D_{j} u^{\beta}(x) \right) = -\sum_{i=1}^{n} D_{i} f_{i}^{\alpha}(x, u(x)), \quad \alpha = 1, 2, \dots, N.$$
(1.1)

Where $D_i = \frac{\partial}{\partial x_i}$ for $i = 1, 2, \dots, n$ and we denote $D = (D_1, D_2, \dots, D_n)$ to be the gradient operator.

In order to get regularity, we need additional assumptions on the coefficients. If $a_{ij}^{\gamma\beta}(x,y)$ are diagonal

$$a_{ij}^{\gamma\beta}(x,y) = 0 \quad for \quad \beta \neq \gamma,$$
 (1.2)

then the N equations (1.1) are decoupled and maximum principle applies to every component u^{γ} of $u = (u^1, u^2, \dots, u^N)$:

$$\sup_{\Omega} u^{\gamma} \le \sup_{\partial \Omega} u^{\gamma}. \tag{1.3}$$

Now we no longer assume that off-diagonal coefficients vanish, we only know that they are small when $|y^{\gamma}|$ is large: there exist $c_1, c_2, q \in (0, +\infty)$ such that

$$\left| a_{ij}^{\gamma\beta}(x,y) \right| \le \frac{c_1}{(1+|y^{\gamma}|)^q} \quad for \quad \beta \ne \gamma,$$
 (1.4)

$$|f_i^{\gamma}(x,y)| \le \frac{c_2}{(1+|y^{\gamma}|)^q}.$$
 (1.5)

We assume ellipticity only for diagonal coefficients $a_{ij}^{\gamma\gamma}(x,y)$ and only for large values of $|y^{\gamma}|$:

$$0 < \theta \le |y^{\gamma}| \quad \Rightarrow \quad \nu |\xi|^2 \le \sum_{i,j=1}^n a_{ij}^{\gamma\gamma}(x,y)\xi_j\xi_i \tag{1.6}$$

for some constants $\theta \in [0, +\infty)$ and $\nu \in (0, +\infty)$. And also diagonal coefficients are assumed to be bounded: there exists $c_3 \in (0, +\infty)$ such that

$$|a_{ij}^{\gamma\gamma}(x,u)| \le c_3. \tag{1.7}$$

for almost every $x \in \Omega$, for every $y \in R^N$, for all $i, j \in \{1, ..., n\}$, for any $\gamma \in \{1, ..., N\}$. And we note that both diagonal and off-diagonal coefficients are bounded.

In this paper, the Sobolev space $W^{1,2}(\Omega)$ is defined, as usual, by

$$W^{1,2}(\Omega) = \left\{ v \in L^2(\Omega) : D_i v \in L^2(\Omega), i = 1, 2, \dots, n \right\}.$$

The closure of $C_0^{\infty}(\Omega)$ in the norm of $W^{1,2}(\Omega)$ is denoted by $W_0^{1,2}(\Omega)$. The main result of this paper is the following theorem. **Theorem 1.1** Under assumptions (1.4)-(1.7), let $u = (u^1, u^2, \dots, u^N)$ be a weak solution of the system (1.1), that is, $u \in W^{1,2}(\Omega, \mathbb{R}^N)$ and

$$\int_{\Omega} \sum_{j=1}^{n} \sum_{\alpha,\beta=1}^{N} a_{ij}^{\alpha\beta}(x,u(x)) D_j u^{\beta}(x) D_i v^{\alpha}(x) dx = \int_{\Omega} \sum_{i=1}^{n} \sum_{\alpha=1}^{N} f_i^{\alpha}(x,u(x)) D_i v^{\alpha}(x) dx,$$

$$(1.8)$$

holds true for all $v \in W_0^{1,2}(\Omega, \mathbb{R}^N)$. Then

$$u \in L_{loc}^{2^*(q+1)}(\Omega, \mathbb{R}^N),$$

where 2^* is the Sobolev exponent $\frac{2n}{n-2}$ and $n \geq 3$.

2 Proof of Theorem 1.1

We start as in the proof of theorem 2.1 in [1]. Let $\phi : [0, +\infty)$ be increasing and $C^1([0, +\infty))$. Moreover, we assume that there exists a constant $\tilde{c} \in [1, +\infty)$ such that

$$0 \le \phi(t) \le \tilde{c} \quad \forall t \in [0, +\infty), \tag{2.1}$$

$$0 \le \phi'(t) \le \tilde{c} \quad \forall t \in [0, +\infty), \tag{2.2}$$

$$0 \le \phi'(t)t \le \tilde{c} \quad \forall t \in [0, +\infty). \tag{2.3}$$

Let $B_{\rho} = B(x_0, \rho)$ and $B_R = B(x_0, R)$ be open balls with the same center x_0 and radii $0 < \rho < R \le 1$, with $\overline{B_R} \subset \Omega$, We assume that $\eta : R^n \to R$, $\eta \in C_0^1(B_R)$ with $0 \le \eta \le 1$ in R^n , $\eta = 1$ on B_{ρ} , $|D\eta| \le \frac{2}{R-\rho}$ in R^n . We note that $0 < R - \rho < R \le 1$, so $\frac{2}{R-\rho} > 2$. We fix $\gamma \in \{1, 2, \dots, N\}$, we consider the test function $v = (v^1, v^2, \dots, v^N)$ defined as follows

$$v^{\alpha} = \begin{cases} 0 & \text{if } \alpha \neq \gamma, \\ \phi(|u^{\alpha}|)u^{\alpha}\eta^{2} & \text{if } \alpha = \gamma. \end{cases}$$
 (2.4)

It is easy to see that

$$v \in W_0^{1,2}(B_R, R^N) \subset W_0^{1,2}(\Omega, R^N),$$
 (2.5)

and

$$D_i v^{\gamma} = [\phi'(|u^{\gamma}|)|u^{\gamma}| + \phi(|u^{\gamma}|)] (D_i u^{\gamma}) \eta^2 + [\phi(|u^{\gamma}|)u^{\gamma}] D_i(\eta^2).$$
 (2.6)

We insert such a test function v into (1.8), then we can obtain

$$\int_{\{\theta \leq |u^{\gamma}|\}} \sum_{i,j=1}^{n} a_{ij}^{\gamma\gamma}(x,u) D_{j} u^{\gamma} [\phi'(|u^{\gamma}|)|u^{\gamma}| + \phi(|u^{\gamma}|)] (D_{i}u^{\gamma}) \eta^{2} dx$$

$$= -\int_{\{\theta > |u^{\gamma}|\}} \sum_{i,j=1}^{n} a_{ij}^{\gamma\gamma}(x,u) D_{j} u^{\gamma} [\phi'(|u^{\gamma}|)|u^{\gamma}| + \phi(|u^{\gamma}|)] (D_{i}u^{\gamma}) \eta^{2} dx$$

$$-\int_{\Omega} \sum_{i,j=1}^{n} \sum_{\beta \neq \gamma} a_{ij}^{\gamma\beta}(x,u) D_{j} u^{\beta} [\phi'(|u^{\gamma}|)|u^{\gamma}| + \phi(|u^{\gamma}|)] (D_{i}u^{\gamma}) \eta^{2} dx$$

$$-\int_{\Omega} \sum_{i,j=1}^{n} a_{ij}^{\gamma\gamma}(x,u) D_{j} u^{\gamma} \phi(|u^{\gamma}|) u^{\gamma} D_{i} (\eta^{2}) dx$$

$$-\int_{\Omega} \sum_{i,j=1}^{n} \sum_{\beta \neq \gamma} a_{ij}^{\gamma\beta}(x,u) D_{j} u^{\beta} \phi(|u^{\gamma}|) u^{\gamma} D_{i} (\eta^{2}) dx$$

$$+\int_{\Omega} \sum_{i=1}^{n} f_{i}^{\gamma}(x,u) [\phi'(|u^{\gamma}|)|u^{\gamma}| + \phi(|u^{\gamma}|)] (D_{i}u^{\gamma}) \eta^{2} dx$$

$$+\int_{\Omega} \sum_{i=1}^{n} f_{i}^{\gamma}(x,u) \phi(|u^{\gamma}|) u^{\gamma} D_{i} (\eta^{2}) dx.$$

Now we use ellipticity (1.6) on the left-side and (1.4), (1.5), (1.7) on the right-hand side, we get

$$\nu \int_{\{\theta \le |u^{\gamma}|\}} [\phi'(|u^{\gamma}|)|u^{\gamma}| + \phi(|u^{\gamma}|)] (Du^{\gamma})^{2} \eta^{2} dx$$

$$\le nc_{3} \int_{\{\theta > |u^{\gamma}|\}} [\phi'(|u^{\gamma}|)|u^{\gamma}| + \phi(|u^{\gamma}|)] |Du^{\gamma}|^{2} \eta^{2} dx$$

$$+ \frac{n^{2}Nc_{1}}{(1 + |u^{\gamma}|)^{q}} \int_{\Omega} |Du| [\phi'(|u^{\gamma}|)|u^{\gamma}| + \phi(|u^{\gamma}|)] |Du^{\gamma}| \eta^{2} dx$$

$$+ nc_{3} \int_{\Omega} 2\eta |Du^{\gamma}| \phi'(|u^{\gamma}|) |u^{\gamma}| |D\eta| dx + \frac{nc_{2}}{(1 + |u^{\gamma}|)^{q}} \int_{\Omega} 2\eta \phi(|u^{\gamma}|) |u^{\gamma}| |D\eta| dx$$

$$+ \frac{n^{2}Nc_{1}}{(1 + |u^{\gamma}|)^{q}} \int_{\Omega} |Du| \phi(|u^{\gamma}|) |u^{\gamma}| |2\eta| |D\eta| dx$$

$$+ \frac{nc_{2}}{(1 + |u^{\gamma}|)^{q}} \int_{\Omega} [\phi'(|u^{\gamma}|) |u^{\gamma}| + \phi(|u^{\gamma}|)] |Du^{\gamma}| \eta^{2} dx.$$

We add to both sides

$$\nu \int_{\{\theta > |u^{\gamma}|\}} [\phi'(|u^{\gamma}|)|u^{\gamma}| + \phi(|u^{\gamma}|)] (Du^{\gamma})^2 \eta^2 dx,$$

and we get

$$\begin{split} & \nu \int_{\Omega} [\phi'(|u^{\gamma}|)|u^{\gamma}| + \phi(|u^{\gamma}|)] (Du^{\gamma})^{2} \eta^{2} dx \\ \leq & (\nu + nc_{3}) \int_{\{\theta > |u^{\gamma}|\}} [\phi'(|u^{\gamma}|)|u^{\gamma}| + \phi(|u^{\gamma}|)] |Du^{\gamma}|^{2} \eta^{2} dx \\ & + \frac{n^{2}Nc_{4}}{(1 + |u^{\gamma}|)^{q}} \int_{\Omega} (1 + |Du|) [\phi'(|u^{\gamma}|)|u^{\gamma}| + \phi(|u^{\gamma}|)] |Du^{\gamma}| \eta^{2} dx \\ & + nc_{3} \int_{\Omega} 2\eta |Du^{\gamma}|\phi(|u^{\gamma}|)|u^{\gamma}| |D\eta| dx \\ & + \frac{n^{2}Nc_{5}}{(1 + |u^{\gamma}|)^{q}} \int_{\Omega} (1 + |Du|) \phi(|u^{\gamma}|) |u^{\gamma}| |2\eta| |D\eta| dx. \end{split}$$

We use the inequality $2AB \le \varepsilon A^2 + B^2/\varepsilon$, then we obtain

$$\frac{\nu}{2} \int_{\Omega} [\phi'(|u^{\gamma}|)|u^{\gamma}| + \phi(|u^{\gamma}|)] (Du^{\gamma})^{2} \eta^{2} dx
\leq (\nu + nc_{3}) \int_{\{\theta > |u^{\gamma}|\}} [\phi'(|u^{\gamma}|)|u^{\gamma}| + \phi(|u^{\gamma}|)] |Du^{\gamma}|^{2} \eta^{2} dx
+ \left(1 + \frac{4n^{2}c_{3}^{2}}{\nu}\right) \int_{\Omega} \phi(|u^{\gamma}|) |u^{\gamma}|^{2} |D\eta|^{2}
+ \int_{\Omega} \left(1 + \frac{4}{\nu}\right) \frac{n^{4}N^{2}c_{6}^{2}}{(1 + |u^{\gamma}|)^{2q}} [\phi'(|u^{\gamma}|)|u^{\gamma}| + \phi(|u^{\gamma}|)] (1 + |Du|)^{2} \eta^{2}.$$

Let us consider $p \in (0, +\infty)$ and let us assume that $|u^{\gamma}|^{2(p+1)} \in L^1(B_R)$, and for $t \in [0, +\infty)$ we set $\psi(t) = (p+1)^2 t^{2p}$. We approximate ψ as the same as in [1]. We consider $\psi_k(s) = \int_0^s \theta_k(t) dt$, when p < 1/2, we take

$$\theta_k(t) = \begin{cases} \psi'(\frac{1}{k}) & \text{if } t \in [0, \frac{1}{k}) \\ \psi'(t) & \text{if } t \in [\frac{1}{k}, k] \\ \psi'(k)(k+1-t) & \text{if } t \in (k, k+1) \\ 0 & \text{if } t \in [k+1, +\infty); \end{cases}$$

and when $p \geq 1/2$, we take

$$\theta_k(t) = \begin{cases} \psi'(t) & \text{if } t \in [0, k] \\ \psi'(k)(k+1-t) & \text{if } t \in (k, k+1) \\ 0 & \text{if } t \in [k+1, +\infty). \end{cases}$$

Now we can use $\phi = \psi_k$, we remark that $\psi_k(t) \leq \psi'_k(t)t + \psi_k(t) \leq (p+1)^2(2p+1)t^{2p}$ and we can obtain

$$\frac{\nu}{2} \int_{\Omega} \psi_{k}(|u^{\gamma}|) (Du^{\gamma})^{2} \eta^{2} dx
\leq (\nu + nc_{3})(p+1)^{2} (2p+1) \theta^{2p} \int_{\Omega} |Du^{\gamma}|^{2} \eta^{2} dx
+ \left(1 + \frac{4n^{2}c_{3}^{2}}{\nu}\right) \int_{\Omega} (p+1)^{2} (2p+1) |u^{\gamma}|^{2(p+1)} |D\eta|^{2} dx
+ 2 \int_{\Omega} \left(1 + \frac{4}{\nu}\right) \frac{n^{4} N^{2} c_{6}^{2}}{(1 + |u^{\gamma}|)^{2q}} (p+1)^{2} (2p+1) |u^{\gamma}|^{2p} (1 + |Du|^{2}) \eta^{2} dx.$$
(2.7)

We need that $p \leq q$ in order to have $\frac{|u^{\gamma}|^{2q}}{(1+|u^{\gamma}|)^{2q}} \leq 1$. So we get

$$\frac{\nu}{2} \int_{\Omega} |u^{\gamma}|^{2p} (Du^{\gamma})^{2} \eta^{2} dx$$

$$\leq \left((\nu + nc_{3}) \theta^{2p} + \left(1 + \frac{4}{\nu} \right) (2n^{4}N^{2}c_{6}^{2}) \right) (2p+1) ||Du||_{L^{2}(\Omega)}^{2}$$

$$+ \left(1 + \frac{4n^{2}c_{3}^{2}}{\nu} \right) (2p+1) \frac{4}{(R-\rho)^{2}} \int_{\Omega} |u^{\gamma}|^{2(p+1)} dx$$

$$+ 2\left(1 + \frac{4}{\nu} \right) (n^{4}N^{2}c_{6}^{2}) (2p+1) |\Omega|. \tag{2.8}$$

We set $\omega = |u^{\gamma}|^{p+1}\eta$, then $\omega \in W_0^{1,2}(B_R)$ and

$$|D\omega|^2 \le 2(p+1)^2 |u^{\gamma}|^{2p} |Du^{\gamma}|^2 \eta^2 + 2n|u^{\gamma}|^{2(p+1)} \left(\frac{2}{R-\rho}\right)^2. \tag{2.9}$$

From (2.17) and (2.16), we get

$$\int_{\Omega} |D\omega|^{2} dx$$

$$\leq \frac{4}{\nu} (p+1)^{2} \left((\nu + nc_{3}) \theta^{2p} + \left(1 + \frac{4}{\nu} \right) (n^{4}N^{2}c_{6}^{2}) \right) (2p+1) ||Du||_{L^{2}(\Omega)}^{2} + \left(\frac{4}{\nu} (p+1)^{2} \left(1 + \frac{4n^{2}c_{3}^{2}}{\nu} \right) (2p+1) + 2n \right) \frac{4}{(R-\rho)^{2}} \int_{\Omega} |u^{\gamma}|^{2(p+1)} dx + \frac{4}{\nu} (p+1)^{2} \left(1 + \frac{4}{\nu} \right) (2n^{4}N^{2}c_{6}^{2}) (2p+1) |\Omega|.$$
(2.10)

Now we use Sobolev embedding and the properties of η in order to get

$$\int_{B_{\rho}} |u^{\gamma}|^{(p+1)2^{*}} dx \leq \int_{B_{R}} ||u^{\gamma}|^{(p+1)} \eta|^{2^{*}} dx
= \int_{B_{R}} |\omega|^{2^{*}} dx \leq \left[\frac{2(n-1)}{n-2} \int_{B_{R}} |D\omega|^{2} dx \right]^{\frac{2^{*}}{2}} dx
\leq \left[\frac{4}{\nu} (p+1)^{2} \left((\nu + nc_{3})\theta^{2p} + \left(1 + \frac{4}{\nu} \right) (n^{4}N^{2}c_{6}^{2}) \right) (2p+1) ||Du||_{L^{2}(\Omega)}^{2}
+ \left(\frac{4}{\nu} (p+1)^{2} \left(1 + \frac{4n^{2}c_{3}^{2}}{\nu} \right) (2p+1) + 2n \right) \frac{4}{(R-\rho)^{2}} \int_{\Omega} |u^{\gamma}|^{2(p+1)}
+ \frac{4}{\nu} (p+1)^{2} \left(1 + \frac{4}{\nu} \right) (2n^{4}N^{2}c_{6}^{2}) (2p+1) |\Omega| \right]^{\frac{2^{*}}{2}} \times \left(\frac{2(n-1)}{n-2} \right)^{\frac{2^{*}}{2}}.$$
(2.11)

If for some $p \in (0, +\infty)$ with $p \leq q$ and for some $0 < \rho < R \leq 1$ with $\overline{B_R} \subset \Omega$, we have

$$|u^{\gamma}|^{2(p+1)} \in L^1(B_R), \tag{2.12}$$

then it results that

$$|u^{\gamma}|^{2^*(p+1)} \in L^1(B_{\rho}). \tag{2.13}$$

Since $u \in W^{1,2}(\Omega, \mathbb{R}^N)$ and $\overline{B_R} \subset \Omega$, Sobolev embedding gives us

$$|u^{\gamma}|^{\frac{2n}{n-2}} \in L^1(B_R),$$
 (2.14)

thus (2.12) is fulfilled with $p = min\{\frac{2}{n-2}, q\}$, this improves the integrability according to (2.13), the procedure can be iterated and following [2], after a finite numbers of steps, we reach the desired integrability. The ends the proof of Theorem 1.1.

ACKNOWLEDGEMENTS. I would like to express my gratitude to all those who have helped me during the writing of this thesis. I gratefully acknowledge the help of my supervisor Professor Hongya Gao. I do appreciate her patience, encouragement, and professional instructions during my thesis writing.

References

- [1] F.Leonetti, P.V.Petricca, Summability for solutions to some quasilinear elliptic systems, Ann. Mat. Pura. Appl, 2014(193), 1671-1682.
- [2] F.Leonetti, P.V.Petricca, Local integrability for solutions to some quasilinear elliptic systems, Rendiconti lincei Matematica e Applicazioni, 2012(23),115-136.
- [3] F.Leonetti, P.V.Petricca, Integrability for solutions to some quasilinear elliptic systems, Comment Math. Univ. Carolinae, 2010(51), 481-487.
- [4] F.Leonetti, P.V.Petricca, S.L.Li, Regularity for solutions to some quasilinear elliptic systems, Complex Var. Elliptic Equ., 2011(56), 1099-1113.
- [5] H.Y.Gao, Y.Cui, S.Lismg, Regularity for solutions to nonhomogeneous quasilinear elliptic systems, Journal of Basic and Applied Research International, 2016(15), 53-57.

Received: June, 2016