Mathematica Aeterna, Vol. 4, 2014, no. 2, 127-130

Inequalities for the k-th derivative of the incomplete exponential integral function

Banyat Sroysang
Department of Mathematics and Statistics, Faculty of Science and Technology, Thammasat University, Pathumthani 12121 Thailand banyat@mathstat.sci.tu.ac.th

Abstract

In this paper, we present some inequalities for the n-th derivative of the incomplete exponential integral function.

Mathematics Subject Classification: 26D15
Keywords: Derivative, exponential integral function, inequality

1 Introduction

The exponential integral function $[1,3]$ is defined by

$$
E_{n}(x)=\int_{1}^{\infty} t^{-n} e^{-x t} d t
$$

where $x>0$ and $n \in \mathbb{N}_{0}$.
For any $k \in \mathbb{N}$, the k-derivative of the exponential integral function E_{n} is given by

$$
E_{n}^{(k)}(x)=(-1)^{k} \int_{1}^{\infty} t^{k-n} e^{-x t} d t
$$

where $x>0$ and $n \in \mathbb{N}_{0}$.
The incomplete exponential integral function is defined by

$$
{ }_{a}^{b} E_{n}(x)=\int_{a}^{b} t^{-n} e^{-x t} d t
$$

where $x>0,1<a<b$ and $n \in \mathbb{N}_{0}$.

For any $k \in \mathbb{N}$, the k-derivative of the incomplete exponential integral function E_{n} is given by

$$
{ }_{a}^{b} E_{n}^{(k)}(x)=(-1)^{k} \int_{a}^{b} t^{k-n} e^{-x t} d t
$$

where $x>0$ and $n \in \mathbb{N}_{0}$.
In 2012, Sulaiman [3] gave the inequalities involving the n-th derivative of the exponential integral functions as follows.

For any $x, y>0, p>1=\frac{1}{p}+\frac{1}{q}, m+n, p m, q n \in \mathbb{N}_{0}$, and k is an even integer such that $k>m+n$,

$$
\begin{equation*}
E_{m+n}^{(k)}\left(\frac{x}{p}+\frac{y}{q}\right) \leq\left(E_{p m}^{(k)}(x)\right)^{1 / p}\left(E_{q n}^{(k)}(y)\right)^{1 / q} \tag{1}
\end{equation*}
$$

For any $x>0,0<y \leq 1, n \in \mathbb{N}_{0}, p>1,0<r<1$ and $\frac{1}{p}+\frac{1}{q}=1=\frac{1}{r}+\frac{1}{s}$, and k is an even integer such that $k>n$,

$$
\begin{equation*}
E_{n}^{(k)}(x y) \geq\left(E_{n}^{(k)}\left(\frac{r x^{p}}{p}\right)\right)^{1 / r}\left(E_{n}^{(k)}\left(\frac{s y^{q}}{q}\right)\right)^{1 / s} \tag{2}
\end{equation*}
$$

In 2013, Sroysang [2] presented the generalizations for the inequalities (1) and (2).

In this paper, we present two inequalities for the k-derivative of the incomplete exponential integral function similar to the inequalities (1) and (2).

2 Results

Theorem 2.1. Assume that $1<a<b, x>0, y>0, p>1=\frac{1}{p}+\frac{1}{q}$, $\{m+n, p m, q n\} \subseteq \mathbb{N}_{0}$, and k is an even integer such that $k>m+n$. Then

$$
{ }_{a}^{b} E_{m+n}^{(k)}\left(\frac{x}{p}+\frac{y}{q}\right) \leq\left({ }_{a}^{b} E_{p m}^{(k)}(x)\right)^{1 / p}\left({ }_{a}^{b} E_{q n}^{(k)}(y)\right)^{1 / q} .
$$

Proof. By the Hölder inequality,

$$
\begin{aligned}
{ }_{a}^{b} E_{m+n}^{(k)}\left(\frac{x}{p}+\frac{y}{q}\right) & =(-1)^{k} \int_{a}^{b} t^{k-(m+n)} e^{-t\left(\frac{x}{p}+\frac{y}{q}\right)} d t \\
& =\int_{a}^{b} t^{k-(m+n)} e^{-t\left(\frac{x}{p}+\frac{y}{q}\right)} d t \\
& =\int_{a}^{b} t^{k\left(\frac{1}{p}+\frac{1}{q}\right)-(m+n)} e^{-t\left(\frac{x}{p}+\frac{y}{q}\right)} d t \\
& =\int_{a}^{b}\left(t^{\frac{k}{p}-m} e^{-t \frac{x}{p} t}\right)\left(t^{\frac{k}{q}-n} e^{-t \frac{y}{q} t}\right) d t \\
& \leq\left(\int_{a}^{b} t^{k-p m} e^{-x t} d t\right)^{1 / p}\left(\int_{a}^{b} t^{k-q n} e^{-y t} d t\right)^{1 / q} \\
& =\left((-1)^{k} \int_{a}^{b} t^{k-p m} e^{-x t} d t\right)^{1 / p}\left((-1)^{k} \int_{a}^{b} t^{k-q n} e^{-y t} d t\right)^{1 / q} \\
& =\left(\begin{array}{l}
b \\
a
\end{array} E_{p m}^{(k)}(x)\right)^{1 / p}\left({ }_{a}^{b} E_{q n}^{(k)}(y)\right)^{1 / q}
\end{aligned}
$$

Corollary 2.2. Assume that $1<a<b, x>0, y>0,\{m, n\} \subseteq \mathbb{N}_{0}$, and k is an even integer such that $k>m+n$. Then

$$
\left[{ }_{a}^{b} E_{m+n}^{(k)}\left(\frac{x+y}{2}\right)\right]^{2} \leq\left({ }_{a}^{b} E_{2 m}^{(k)}(x)\right)\left({ }_{a}^{b} E_{2 n}^{(k)}(y)\right)
$$

Theorem 2.3. Assume that $0<x, y<1<a<b$ and $0<r, s<1<p$ and $n \in \mathbb{N}_{0}, \frac{1}{p}+\frac{1}{q}=1=\frac{1}{r}+\frac{1}{s}$ and k is an even integer such that $k>n$. Then

$$
{ }_{a}^{b} E_{n}^{(k)}(x y) \geq\left({ }_{a}^{b} E_{n}^{(k)}\left(\frac{r x^{p}}{p}\right)\right)^{1 / r}\left({ }_{a}^{b} E_{n}^{(k)}\left(\frac{s y^{q}}{q}\right)\right)^{1 / s}
$$

Proof. For any $z>0$,

$$
{ }_{a}^{b} E_{n}^{(k+1)}(z)=(-1)^{k+1} \int_{a}^{b} t^{k+1-n} e^{-z t} d t=-\int_{a}^{b} t^{k+1-n} e^{-z t} d t \leq 0
$$

This implies that ${ }_{a}^{b} E_{m}^{(k)}$ is non-increasing.
Note that

$$
x y \leq \frac{x^{p}}{p}+\frac{y^{q}}{q}
$$

By the reverse Hölder inequality,

$$
\begin{aligned}
{ }_{a}^{b} E_{n}^{(k)}(x y) & \geq_{a}^{b} E_{n}^{(k)}\left(\frac{x^{p}}{p}+\frac{y^{q}}{q}\right) \\
& \left.=(-1)^{k} \int_{a}^{b} t^{k-n} e^{-t\left(\frac{x^{p}}{p}+\frac{y^{q}}{q}\right.}\right) d t \\
& =\int_{a}^{b} t^{k-n} e^{-t\left(\frac{x^{p}}{p}+\frac{y^{q}}{q}\right)} d t \\
& =\int_{a}^{b}\left(t^{\frac{k-n}{r}} e^{-\frac{x^{p}}{p} t}\right)\left(t^{\frac{k-n}{s}} e^{-\frac{y^{q}}{q}} t\right) d t \\
& \geq\left(\int_{a}^{b} t^{k-n} e^{\frac{-r x^{p}}{p} t} d t\right)^{1 / r}\left(\int_{a}^{b} t^{k-n} e^{\frac{-s y^{q}}{q} t} d t\right)^{1 / s} \\
& =\geq\left((-1)^{k} \int_{a}^{b} t^{k-n} e^{\frac{-r x^{p}}{p} t} d t\right)^{1 / r}\left((-1)^{k} \int_{a}^{b} t^{k-n} e^{\frac{-s y^{q}}{q} t} d t\right)^{1 / s} \\
& =\left({ }_{a}^{b} E_{n}^{(k)}\left(\frac{r x^{p}}{p}\right)\right)^{1 / r}\left({ }_{a}^{b} E_{n}^{(k)}\left(\frac{s y^{q}}{q}\right)\right)^{1 / s} .
\end{aligned}
$$

References

[1] M. Aabromowitz and I. A. Stegun, Handbook of Mathematical Functions with formulas, Dover Publications, New York, 1965.
[2] B. Sroysang, On the n-th derivative of the exponential integral functions, Commun. Math. Appl., 2013, 4(2), 141-144.
[3] W. T. Sulaiman, Turan inequalities for the exponential integral functions, Commun. Optim. Theory, 2012, 1, 35-41.

