Mathematica Aeterna, Vol. 3, 2013, no. 4, 245-248

Inequalities for the incomplete gamma function

Banyat Sroysang

Department of Mathematics and Statistics, Faculty of Science and Technology, Thammasat University, Pathumthani 12121 Thailand banyat@mathstat.sci.tu.ac.th

Abstract

In this paper, we prersent some inequalities involving the incomplete gamma function.

Mathematics Subject Classification: 26D15
Keywords: Incomplete gamma function, inequality

1 Introduction

The gamma function is defined by

$$
\Gamma(a)=\int_{0}^{\infty} t^{a-1} e^{-t} d t
$$

where $a>0$.
The incomplete gamma function is defined by

$$
\Gamma(a, x)=\int_{x}^{\infty} t^{a-1} e^{-t} d t
$$

where $a, x>0$. We let $\Gamma(a, 0)=\Gamma(a)$.
In 2006, Ismail and Laforgia [1] gave the inequalities as follows.

$$
\begin{equation*}
\Gamma(a, x) \Gamma(a, y) \leq \Gamma(a, x+y) \Gamma(a, 0) \tag{1}
\end{equation*}
$$

where $0<a<1$ and $x, y>0$. If $a>1$, then the inequality (1) is reversed.
In 2010, Sulaiman [2] gave the inequalities as follows.

$$
\begin{equation*}
\Gamma(a, x) \Gamma(a, y) \geq \Gamma(a, x y) \Gamma(a, 1) \tag{2}
\end{equation*}
$$

where $a>0$ and $x, y>1$. If $0<y<1$, then the inequality (2) is reversed.
In this paper, we present the generalizations for the these inequalities.

2 Results

Theorem 2.1. Let $0<a<1$ and $x>0$ and let $0 \leq c<y$. Then

$$
\begin{equation*}
\Gamma(a, x) \Gamma(a, y) \leq \Gamma(a, x+y-c) \Gamma(a, c) \tag{3}
\end{equation*}
$$

Proof. Let $g(t)=t^{a-1} e^{-t}, F(t)=\frac{\Gamma(a, t)}{\Gamma(a, c)}$ and $G(t)=F(t+y-c)-F(t) F(y)$ for all $t>0$. Then, for any $t>0$,

$$
\begin{aligned}
G^{\prime}(t) & =F^{\prime}(t+y-c)-F^{\prime}(t) F(y) \\
& =\frac{g(t) F(y)}{\Gamma(a, c)}\left(1-\frac{g(t+y-c)}{F(y) g(t)}\right) \\
& =\frac{g(t) F(y)}{\Gamma(a, c)}\left(1-\frac{e^{c-y}}{F(y)}\left(1+\frac{y-c}{t}\right)^{a-1}\right) .
\end{aligned}
$$

We note that $\left(1+\frac{y-c}{t}\right)^{a-1}$ is increasing in $t>0$ since $a<1$ and $y>c$.
Let $H(t)=1-\frac{e^{c-y}}{F(y)}\left(1+\frac{y-c}{t}\right)^{a-1}$ for all $t>0$. Then H is decreasing.
We note that $G(c)=F(y)-F(c) F(y)=0$ and $\lim _{t \rightarrow \infty} G(t)=0$.
By Roll's theorem, there is a point $p \in(c, \infty)$ such that $G^{\prime}(p)=0$. Then $H(p)=0$. Then $H(t)>0$ for all $t \in(c, p)$ and $H(t)<0$ for all $t \in(p, \infty)$. Then $G^{\prime}(t)>0$ for all $t \in(c, p)$ and $G^{\prime}(t)<0$ for all $t \in(p, \infty)$. This implies that $G(x) \geq 0$. Then $F(x+y-c) \geq F(x) F(y)$. Hence, we obtain the inequality (3).

We note on Theorem 2.1 that if $c=0$ then we obtain the inequality (1).
Theorem 2.2. Let $a>1$ and $x>0$ and let $0 \leq c<y$. Then

$$
\begin{equation*}
\Gamma(a, x) \Gamma(a, y) \geq \Gamma(a, x+y-c) \Gamma(a, c) \tag{4}
\end{equation*}
$$

Proof. Let $g(t)=t^{a-1} e^{-t}, F(t)=\frac{\Gamma(a, t)}{\Gamma(a, c)}$ and $G(t)=F(t) F(y)-F(t+y-c)$ for all $t>0$. Then, for any $t>0$,

$$
\begin{aligned}
G^{\prime}(t) & =F^{\prime}(t) F(y)-F^{\prime}(t+y-c) \\
& =\frac{g(t) F(y)}{\Gamma(a, c)}\left(\frac{g(t+y-c)}{F(y) g(t)}-1\right) \\
& =\frac{g(t) F(y)}{\Gamma(a, c)}\left(\frac{e^{c-y}}{F(y)}\left(1+\frac{y-c}{t}\right)^{a-1}-1\right) .
\end{aligned}
$$

We note that $\left(1+\frac{y-c}{t}\right)^{a-1}$ is decreasing in $t>0$ since $a>1$ and $y>c$.
Let $H(t)=\frac{e^{c-y}}{F(y)}\left(1+\frac{y-c}{t}\right)^{a-1}-1$ for all $t>0$. Then H is decreasing.
We note that $G(c)=F(c) F(y)-F(y)=0$ and $\lim _{t \rightarrow \infty} G(t)=0$.
By Roll's theorem, there is a point $p \in(c, \infty)$ such that $G^{\prime}(p)=0$. Then $H(p)=0$. Then $H(t)>0$ for all $t \in(c, p)$ and $H(t)<0$ for all $t \in(p, \infty)$. Then $G^{\prime}(t)>0$ for all $t \in(c, p)$ and $G^{\prime}(t)<0$ for all $t \in(p, \infty)$. This implies that $G(x) \geq 0$. Then $F(x) F(y) \geq F(x+y-c)$. Hence, we obtain the inequality (4).

Theorem 2.3. Let $a, c>0$ and $x, y>c$. Then

$$
\begin{equation*}
\Gamma(a, x) \Gamma(a, y) \geq \Gamma\left(a, \frac{x y}{c}\right) \Gamma(a, c) . \tag{5}
\end{equation*}
$$

Proof. Let $g(t)=t^{a-1} e^{-t}, F(t)=\frac{\Gamma(a, t)}{\Gamma(a, c)}$ and $G(t)=F(t) F(y)-F\left(\frac{t y}{c}\right)$ for all $t>0$. Then, for any $t>0$,

$$
\begin{aligned}
G^{\prime}(t) & =F^{\prime}(t) F(y)-\frac{y}{c} F^{\prime}\left(\frac{t y}{c}\right) \\
& =\frac{g(t) F(y)}{\Gamma(a, c)}\left(\frac{y g\left(\frac{t y}{c}\right)}{c F(y) g(t)}-1\right) \\
& =\frac{g(t) F(y)}{\Gamma(a, c)}\left(\frac{y^{a}}{c^{a} F(y)} e^{-t(y-c) / c}-1\right)
\end{aligned}
$$

We note that $e^{-t(y-c) / c}$ is decreasing in $t>0$ since $y>c$.
Let $H(t)=\frac{y^{a}}{c^{a} F(y)} e^{-t(y-c) / c}-1$ for all $t>0$. Then H is decreasing.
We note that $G(c)=F(c) F(y)-F(y)=0$ and $\lim _{t \rightarrow \infty} G(t)=0$.
By Roll's theorem, there is a point $p \in(c, \infty)$ such that $G^{\prime}(p)=0$. Then $H(p)=0$. Then $H(t)>0$ for all $t \in(c, p)$ and $H(t)<0$ for all $t \in(p, \infty)$. Then $G^{\prime}(t)>0$ for all $t \in(c, p)$ and $G^{\prime}(t)<0$ for all $t \in(p, \infty)$. This implies that $G(x) \geq 0$. Then $F(x) F(y) \geq F\left(\frac{x y}{c}\right)$. Hence, we obtain the inequality (5).

We note on Theorem 2.3 that if $c=1$ then we obtain the inequality (2).
Theorem 2.4. Let $a>0$ and $0<y<c<x$. Then

$$
\begin{equation*}
\Gamma(a, x) \Gamma(a, y) \leq \Gamma\left(a, \frac{x y}{c}\right) \Gamma(a, c) . \tag{6}
\end{equation*}
$$

Proof. Let $g(t)=t^{a-1} e^{-t}, F(t)=\frac{\Gamma(a, t)}{\Gamma(a, c)}$ and $G(t)=F\left(\frac{t y}{c}\right)-F(t) F(y)$ for all $t>0$. Then, for any $t>0$,

$$
\begin{aligned}
G^{\prime}(t) & =\frac{y}{c} F^{\prime}\left(\frac{t y}{c}\right)-F^{\prime}(t) F(y) \\
& =\frac{g(t) F(y)}{\Gamma(a, c)}\left(1-\frac{y g\left(\frac{t y}{c}\right)}{c F(y) g(t)}\right) \\
& =\frac{g(t) F(y)}{\Gamma(a, c)}\left(1-\frac{y^{a}}{c^{a} F(y)} e^{-t(y-c) / c}\right) .
\end{aligned}
$$

We note that $e^{-t(y-c) / c}$ is increasing in $t>0$ since $y<c$.
Let $H(t)=1-\frac{y^{a}}{c^{a} F(y)} e^{-t(y-c) / c}$ for all $t>0$. Then H is decreasing.
We note that $G(c)=F(c) F(y)-F(y)=0$ and $\lim _{t \rightarrow \infty} G(t)=0$.
By Roll's theorem, there is a point $p \in(c, \infty)$ such that $G^{\prime}(p)=0$. Then $H(p)=0$. Then $H(t)>0$ for all $t \in(c, p)$ and $H(t)<0$ for all $t \in(p, \infty)$. Then $G^{\prime}(t)>0$ for all $t \in(c, p)$ and $G^{\prime}(t)<0$ for all $t \in(p, \infty)$. This implies that $G(x) \geq 0$. Then $F\left(\frac{x y}{c}\right) \geq F(x) F(y)$. Hence, we obtain the inequality (6).

References

[1] M. E. H. Ismail and A. Laforgia, Functional inequalites for incomplete gamma and related functions, Math. Ineq. Appl., 2006, 9(2), 299-302.
[2] W. T. Sulaiman, Functional inequalites for incomplete beta and gamma functions, J. Inequal. Spec. Func., 2010, 1(1), 10-15.

Received: February, 2013

