Mathematica Aeterna, Vol. 3, 2013, no. 4, 245 - 248

Inequalities for the incomplete gamma function

Banyat Sroysang

Department of Mathematics and Statistics, Faculty of Science and Technology, Thammasat University, Pathumthani 12121 Thailand banyat@mathstat.sci.tu.ac.th

Abstract

In this paper, we present some inequalities involving the incomplete gamma function.

Mathematics Subject Classification: 26D15

Keywords: Incomplete gamma function, inequality

1 Introduction

The gamma function is defined by

$$\Gamma(a) = \int_0^\infty t^{a-1} e^{-t} dt,$$

where a > 0.

The incomplete gamma function is defined by

$$\Gamma(a,x) = \int_x^\infty t^{a-1} e^{-t} dt,$$

where a, x > 0. We let $\Gamma(a, 0) = \Gamma(a)$.

In 2006, Ismail and Laforgia [1] gave the inequalities as follows.

$$\Gamma(a, x)\Gamma(a, y) \le \Gamma(a, x + y)\Gamma(a, 0) \tag{1}$$

where 0 < a < 1 and x, y > 0. If a > 1, then the inequality (1) is reversed. In 2010, Sulaiman [2] gave the inequalities as follows.

$$\Gamma(a, x)\Gamma(a, y) \ge \Gamma(a, xy)\Gamma(a, 1)$$
(2)

where a > 0 and x, y > 1. If 0 < y < 1, then the inequality (2) is reversed.

In this paper, we present the generalizations for the these inequalities.

2 Results

Theorem 2.1. Let 0 < a < 1 and x > 0 and let $0 \le c < y$. Then

$$\Gamma(a, x)\Gamma(a, y) \le \Gamma(a, x + y - c)\Gamma(a, c).$$
(3)

Proof. Let $g(t) = t^{a-1}e^{-t}$, $F(t) = \frac{\Gamma(a,t)}{\Gamma(a,c)}$ and G(t) = F(t+y-c) - F(t)F(y)for all t > 0. Then, for any t > 0,

$$G'(t) = F'(t+y-c) - F'(t)F(y)$$

= $\frac{g(t)F(y)}{\Gamma(a,c)} \left(1 - \frac{g(t+y-c)}{F(y)g(t)}\right)$
= $\frac{g(t)F(y)}{\Gamma(a,c)} \left(1 - \frac{e^{c-y}}{F(y)} \left(1 + \frac{y-c}{t}\right)^{a-1}\right).$

We note that $\left(1 + \frac{y-c}{t}\right)^{a-1}$ is increasing in t > 0 since a < 1 and y > c. Let $H(t) = 1 - \frac{e^{c-y}}{F(y)} \left(1 + \frac{y-c}{t}\right)^{a-1}$ for all t > 0. Then H is decreasing. We note that G(c) = F(y) - F(c)F(y) = 0 and $\lim_{t \to \infty} G(t) = 0$.

By Roll's theorem, there is a point $p \in (c, \infty)$ such that G'(p) = 0. Then H(p) = 0. Then H(t) > 0 for all $t \in (c, p)$ and H(t) < 0 for all $t \in (p, \infty)$. Then G'(t) > 0 for all $t \in (c, p)$ and G'(t) < 0 for all $t \in (p, \infty)$. This implies that $G(x) \ge 0$. Then $F(x+y-c) \ge F(x)F(y)$. Hence, we obtain the inequality (3).

We note on Theorem 2.1 that if c = 0 then we obtain the inequality (1).

Theorem 2.2. Let a > 1 and x > 0 and let $0 \le c < y$. Then

$$\Gamma(a, x)\Gamma(a, y) \ge \Gamma(a, x + y - c)\Gamma(a, c).$$
(4)

Proof. Let $g(t) = t^{a-1}e^{-t}$, $F(t) = \frac{\Gamma(a,t)}{\Gamma(a,c)}$ and G(t) = F(t)F(y) - F(t+y-c) for all t > 0. Then, for any t > 0,

$$\begin{aligned} G'(t) &= F'(t)F(y) - F'(t+y-c) \\ &= \frac{g(t)F(y)}{\Gamma(a,c)} \left(\frac{g(t+y-c)}{F(y)g(t)} - 1 \right) \\ &= \frac{g(t)F(y)}{\Gamma(a,c)} \left(\frac{e^{c-y}}{F(y)} \left(1 + \frac{y-c}{t} \right)^{a-1} - 1 \right). \end{aligned}$$

246

Inequalities for the incomplete gamma function

We note that $\left(1 + \frac{y-c}{t}\right)^{a-1}$ is decreasing in t > 0 since a > 1 and y > c. Let $H(t) = \frac{e^{c-y}}{F(y)} \left(1 + \frac{y-c}{t}\right)^{a-1} - 1$ for all t > 0. Then H is decreasing. We note that G(c) = F(c)F(y) - F(y) = 0 and $\lim_{t \to \infty} G(t) = 0$.

By Roll's theorem, there is a point $p \in (c, \infty)$ such that G'(p) = 0. Then H(p) = 0. Then H(t) > 0 for all $t \in (c, p)$ and H(t) < 0 for all $t \in (p, \infty)$. Then G'(t) > 0 for all $t \in (c, p)$ and G'(t) < 0 for all $t \in (p, \infty)$. This implies that $G(x) \ge 0$. Then $F(x)F(y) \ge F(x+y-c)$. Hence, we obtain the inequality (4).

Theorem 2.3. Let a, c > 0 and x, y > c. Then

$$\Gamma(a, x)\Gamma(a, y) \ge \Gamma(a, \frac{xy}{c})\Gamma(a, c).$$
(5)

Proof. Let $g(t) = t^{a-1}e^{-t}$, $F(t) = \frac{\Gamma(a,t)}{\Gamma(a,c)}$ and $G(t) = F(t)F(y) - F(\frac{ty}{c})$ for all t > 0. Then, for any t > 0,

$$G'(t) = F'(t)F(y) - \frac{y}{c}F'(\frac{ty}{c})$$

= $\frac{g(t)F(y)}{\Gamma(a,c)} \left(\frac{yg(\frac{ty}{c})}{cF(y)g(t)} - 1\right)$
= $\frac{g(t)F(y)}{\Gamma(a,c)} \left(\frac{y^a}{c^aF(y)}e^{-t(y-c)/c} - 1\right).$

We note that $e^{-t(y-c)/c}$ is decreasing in t > 0 since y > c.

Let $H(t) = \frac{y^a}{c^a F(y)} e^{-t(y-c)/c} - 1$ for all t > 0. Then H is decreasing.

We note that G(c) = F(c)F(y) - F(y) = 0 and $\lim_{t \to \infty} G(t) = 0$.

By Roll's theorem, there is a point $p \in (c, \infty)$ such that G'(p) = 0. Then H(p) = 0. Then H(t) > 0 for all $t \in (c, p)$ and H(t) < 0 for all $t \in (p, \infty)$. Then G'(t) > 0 for all $t \in (c, p)$ and G'(t) < 0 for all $t \in (p, \infty)$. This implies that $G(x) \ge 0$. Then $F(x)F(y) \ge F(\frac{xy}{c})$. Hence, we obtain the inequality (5).

We note on Theorem 2.3 that if c = 1 then we obtain the inequality (2).

Theorem 2.4. Let a > 0 and 0 < y < c < x. Then

$$\Gamma(a,x)\Gamma(a,y) \le \Gamma(a,\frac{xy}{c})\Gamma(a,c).$$
(6)

Banyat Sroysang

Proof. Let $g(t) = t^{a-1}e^{-t}$, $F(t) = \frac{\Gamma(a,t)}{\Gamma(a,c)}$ and $G(t) = F(\frac{ty}{c}) - F(t)F(y)$ for all t > 0. Then, for any t > 0,

$$G'(t) = \frac{y}{c}F'(\frac{ty}{c}) - F'(t)F(y)$$

= $\frac{g(t)F(y)}{\Gamma(a,c)} \left(1 - \frac{yg(\frac{ty}{c})}{cF(y)g(t)}\right)$
= $\frac{g(t)F(y)}{\Gamma(a,c)} \left(1 - \frac{y^a}{c^aF(y)}e^{-t(y-c)/c}\right)$

We note that $e^{-t(y-c)/c}$ is increasing in t > 0 since y < c.

Let
$$H(t) = 1 - \frac{y^a}{c^a F(y)} e^{-t(y-c)/c}$$
 for all $t > 0$. Then H is decreasing.

We note that G(c) = F(c)F(y) - F(y) = 0 and $\lim_{t\to\infty} G(t) = 0$. By Roll's theorem, there is a point $p \in (c, \infty)$ such that G'(p) = 0. Then H(p) = 0. Then H(t) > 0 for all $t \in (c, p)$ and H(t) < 0 for all $t \in (p, \infty)$. Then G'(t) > 0 for all $t \in (c, p)$ and G'(t) < 0 for all $t \in (p, \infty)$. This implies that $G(x) \ge 0$. Then $F(\frac{xy}{c}) \ge F(x)F(y)$. Hence, we obtain the inequality (6).

References

- [1] M. E. H. Ismail and A. Laforgia, Functional inequalities for incomplete gamma and related functions, Math. Ineq. Appl., 2006, 9(2), 299-302.
- [2] W. T. Sulaiman, Functional inequalities for incomplete beta and gamma functions, J. Inequal. Spec. Func., 2010, 1(1), 10–15.

Received: February, 2013