Mathematica Aeterna, Vol. 3, 2013, no. 4, 241-244

Inequalities for the incomplete beta function

Banyat Sroysang

Department of Mathematics and Statistics,
Faculty of Science and Technology,
Thammasat University, Pathumthani 12121 Thailand
banyat@mathstat.sci.tu.ac.th

Abstract

In this paper, we prersent some inequalities involving the incomplete beta function.

Mathematics Subject Classification: 26D15

Keywords: Incomplete beta function, inequality

1 Introduction

The beta function is defined by

$$
\beta(a, b)=\int_{0}^{\infty} \frac{t^{a-1}}{(1+t)^{a+b}} d t,
$$

where $a, b>0$.
The incomplete beta function is defined by

$$
\beta(a, b, x)=\int_{x}^{\infty} \frac{t^{a-1}}{(1+t)^{a+b}} d t
$$

where $a, b, x>0$. We let $\beta(a, b, 0)=\beta(a, b)$.
In 2010, Sulaiman [1] gave the inequalities as follows.

$$
\begin{equation*}
\beta(a, b, x) \beta(a, b, y) \geq \beta(a, b, x y) \beta(a, b, 1) \tag{1}
\end{equation*}
$$

where $a, b>0$ and $x, y>1$.

$$
\begin{equation*}
\beta(a, b, x) \beta(a, b, y) \leq \beta(a, b, x y) \beta(a, b, 1) \tag{2}
\end{equation*}
$$

where $a, b>0$ and $0<y<1<x$.

$$
\begin{equation*}
\beta(a, b, x) \beta(a, b, y) \leq \beta(a, b, x+y) \beta(a, b, 0) \tag{3}
\end{equation*}
$$

where $0<a<1$ and $b, x, y>0$.
In this paper, we present the generalizations for the inequalities (1), (2) and (3).

2 Results

Theorem 2.1. Let $a, b, c>0$ and $x, y>c$. Then

$$
\begin{equation*}
\beta(a, b, x) \beta(a, b, y) \geq \beta\left(a, b, \frac{x y}{c}\right) \beta(a, b, c) . \tag{4}
\end{equation*}
$$

Proof. Let $g(t)=\frac{t^{a-1}}{(1+t)^{a+b}}, F(t)=\frac{\beta(a, b, t)}{\beta(a, b, c)}$ and $G(t)=F(t) F(y)-F\left(\frac{t y}{c}\right)$ for all $t>0$.

Then, for all $t>0$,

$$
\begin{aligned}
G^{\prime}(t) & =F^{\prime}(t) F(y)-\frac{y}{c} F^{\prime}\left(\frac{t y}{c}\right) \\
& =\frac{g(t) F(y)}{\beta(a, b, c)}\left(\frac{y g\left(\frac{t y}{c}\right)}{c F(y) g(t)}-1\right) \\
& =\frac{g(t) F(y)}{\beta(a, b, c)}\left(\frac{y^{a}}{c^{a} F(y)}\left(\frac{1+t}{1+\frac{t y}{c}}\right)^{a+b}-1\right) .
\end{aligned}
$$

We note that $\left(\frac{1+t}{1+\frac{t y}{c}}\right)^{a+b}$ is decreasing in $t>0$ since $y>c$.
Let $H(t)=\frac{y^{a}}{c^{a} F(y)}\left(\frac{1+t}{1+\frac{t y}{c}}\right)^{a+b}-1$ for all $t>0$. Then H is decreasing.
We note that $G(c)=F(c) F(y)-F(y)=0$ and $\lim _{t \rightarrow \infty} G(t)=0$.
By Roll's theorem, there is a point $p \in(c, \infty)$ such that $G^{\prime}(p)=0$. Then $H(p)=0$. Then $H(t)>0$ for all $t \in(c, p)$ and $H(t)<0$ for all $t \in(p, \infty)$. Then $G^{\prime}(t)>0$ for all $t \in(c, p)$ and $G^{\prime}(t)<0$ for all $t \in(p, \infty)$. This implies that $G(x) \geq 0$. Then $F(x) F(y) \geq F\left(\frac{x y}{c}\right)$. Hence, we obtain the inequality (4).

We note on Theorem 2.1 that if $c=1$ then we obtain the inequality (1).

Theorem 2.2. Let $a, b>0$ and $0<y<c<x$. Then

$$
\begin{equation*}
\beta(a, b, x) \beta(a, b, y) \leq \beta\left(a, b, \frac{x y}{c}\right) \beta(a, b, c) . \tag{5}
\end{equation*}
$$

Proof. Let $g(t)=\frac{t^{a-1}}{(1+t)^{a+b}}, F(t)=\frac{\beta(a, b, t)}{\beta(a, b, c)}$ and $G(t)=F\left(\frac{t y}{c}\right)-F(t) F(y)$ for all $t>0$.

Then, for all $t>0$,

$$
\begin{aligned}
G^{\prime}(t) & =\frac{y}{c} F^{\prime}\left(\frac{t y}{c}\right)-F^{\prime}(t) F(y) \\
& =\frac{g(t) F(y)}{\beta(a, b, c)}\left(1-\frac{y g\left(\frac{t y}{c}\right)}{c F(y) g(t)}\right) \\
& =\frac{g(t) F(y)}{\beta(a, b, c)}\left(1-\frac{y^{a}}{c^{a} F(y)}\left(\frac{1+t}{1+\frac{t y}{c}}\right)^{a+b}\right) .
\end{aligned}
$$

We note that $\left(\frac{1+t}{1+\frac{t y}{c}}\right)^{a+b}$ is increasing in $t>0$ since $y<c$.
Let $H(t)=1-\frac{y^{a}}{c^{a} F(y)}\left(\frac{1+t}{1+\frac{t y}{c}}\right)^{a+b}$ for all $t>0$. Then H is decreasing.
We note that $G(c)=F(y)-F(c) F(y)=0$ and $\lim _{t \rightarrow \infty} G(t)=0$.
By Roll's theorem, there is a point $p \in(c, \infty)$ such that $G^{\prime}(p)=0$. Then $H(p)=0$. Then $H(t)>0$ for all $t \in(c, p)$ and $H(t)<0$ for all $t \in(p, \infty)$. Then $G^{\prime}(t)>0$ for all $t \in(c, p)$ and $G^{\prime}(t)<0$ for all $t \in(p, \infty)$. This implies that $G(x) \geq 0$. Then $F\left(\frac{x y}{c}\right) \geq F(x) F(y)$. Hence, we obtain the inequality (5).

We note on Theorem 2.2 that if $c=1$ then we obtain the inequality (2).

Theorem 2.3. Let $0<a<1, b>0,0 \leq c<y$ and $x>c$. Then

$$
\begin{equation*}
\beta(a, b, x) \beta(a, b, y) \leq \beta(a, b, x+y-c) \beta(a, b, c) . \tag{6}
\end{equation*}
$$

Proof. For any $t>0$, we let $g(t)=\frac{t^{a-1}}{(1+t)^{a+b}}, F(t)=\frac{\beta(a, b, t)}{\beta(a, b, c)}$ and $G(t)=$ $F(t+y-c)-F(t) F(y)$.

Then, for all $t>0$,

$$
\begin{aligned}
G^{\prime}(t) & =F^{\prime}(t+y-c)-F^{\prime}(t) F(y) \\
& =\frac{g(t) F(y)}{\beta(a, b, c)}\left(1-\frac{g(t+y-c)}{F(y) g(t)}\right) \\
& =\frac{g(t) F(y)}{\beta(a, b, c)}\left(1-\frac{1}{F(y)}\left(1+\frac{y-c}{t}\right)^{a-1}\left(1+\frac{y-c}{1+t}\right)^{-a-b}\right) .
\end{aligned}
$$

We note that $\left(1+\frac{y-c}{t}\right)^{a-1}\left(1+\frac{y-c}{1+t}\right)^{-a-b}$ is increasing in $t>0$ since $a<1$ and $y>c$.

Let $H(t)=1-\frac{1}{F(y)}\left(1+\frac{y-c}{t}\right)^{a-1}\left(1+\frac{y-c}{1+t}\right)^{-a-b}$ for all $t>0$. Then H is decreasing.

We note that $G(c)=F(y)-F(c) F(y)=0$ and $\lim _{t \rightarrow \infty} G(t)=0$.
By Roll's theorem, there is a point $p \in(c, \infty)$ such that $G^{\prime}(p)=0$. Then $H(p)=0$. Then $H(t)>0$ for all $t \in(c, p)$ and $H(t)<0$ for all $t \in(p, \infty)$. Then $G^{\prime}(t)>0$ for all $t \in(c, p)$ and $G^{\prime}(t)<0$ for all $t \in(p, \infty)$. This implies that $G(x) \geq 0$. Then $F(x+y-c) \geq F(x) F(y)$. Hence, we obtain the inequality (6).

We note on Theorem 2.3 that if $c=0$ then we obtain the inequality (3).

References

[1] W. T. Sulaiman, Functional inequalites for incomplete beta and gamma functions, J. Inequal. Spec. Func., 2010, 1(1), 10-15.

Received: February, 2013

