Improved bounds for some nonstandard problems for Maxwell-Cattaneo equations

Yan Liu

Department of Applied Mathematics, Guangdong University of Finance, Guangzhou, 510521, China

Xianxia Liu

Lidong High school, Lixian, Hunan, 415500, China

Yuanfei Li

Department of Accounting, Huashang College Guangdong University of Business Studies, Guangzhou, 511300, China

Abstract

We consider the Maxwell-Cattaneo equations where the temperature θ and heat flux **u** satisfy a non-standard auxiliary condition which prescribes a combination of their values initially. The L_2 bound for temperature is obtained by using Lagrange identities.

Mathematics Subject Classification: 35K50, 35K45, 35B40

Keywords: Maxwell-Cattaneo equations, Nonstandard problems.

1 Introduction

In this paper, we consider the following equations

$$\tau u_{i,t} = u_i - k\theta_{,i} + \mu \Delta u_i + \gamma u_{j,ji} ; \qquad (1.1)$$

$$k\theta_{,ii} = u_{i,i} + c\dot{\theta},\tag{1.2}$$

with boundary conditions

$$u_i = 0, \quad \nabla \theta = 0, \quad \theta = 0, \quad on \ \partial \Omega \times [0, T],$$
 (1.3)

and the nonstandard conditions

$$\theta(x,T) + \alpha \theta(x,0) = g(x), \quad u_i(x,T) + \alpha u_i(x,0) = f_i(x), \ x \in \Omega$$
(1.4)

for some constant α .

We take the divergence of (1.1) and eliminate the heat flux terms to arrive at the following initial-boundary value problem for the temperature θ :

$$\tau \theta_{,tt} + \theta_{,t} - a\Delta\theta_{,t} - 2kc^{-1}\Delta\theta + b\Delta^2\theta = 0 \quad in \ \Omega \times (0,T)$$
(1.5)

$$\nabla \theta = 0, \quad \theta_{,t} = 0, \quad \theta = 0 \quad on \ \partial \Omega \times [0,T]; \tag{1.6}$$

$$\theta(x,T) + \alpha \theta(x,0) = g(x) \quad in \ \Omega;$$
 (1.7)

$$\theta_{t}(x,T) + \alpha \theta_{t}(x,0) = h(x) \quad in \ \Omega, \tag{1.8}$$

where $a = c^{-1}[\tau k + (\mu + \gamma)c], b = c^{-1}(\mu + \gamma)k$ and $h = c^{-1}(k\Delta g - f_{i,i})$. For compatibility, we assume that g vanishes on $\partial\Omega$. In fact, there are many papers to study the nonstandard problems for many equations. More references, one could refer to [1]-[8].

In the present paper, the comma is used to indicate partial differentiation and the differentiation with respect to the direction x_k is denoted as , k, thus $u_{,i}$ denotes $\frac{\partial u}{\partial x_i}$. The usual summation convection is employed with repeated Latin subscripts i summed from 1 to 3. Hence, $u_{i,i} = \sum_{i=1}^{3} \frac{\partial u_i}{\partial x_i}$.

2 Bounds for the temperature θ

In this section we consider the initial-boundary problem (1.5)-(1.8) and seek L_2 bounds for θ which is valid in the interval (0,1).

To this end, we set

$$\widetilde{\theta}(x,t) = \theta(x,2t-\eta)$$

and use Lagrange identity for $0 \le t \le \frac{T}{2}$,

$$\int_{0}^{t} \int_{\Omega} \widetilde{\theta}_{\eta} (\tau \theta_{,\eta\eta} + \theta_{,\eta} - a\Delta\theta_{,\eta} - 2kc^{-1}\Delta\theta + b\Delta^{2}\theta) + \theta_{,\eta} (\tau \theta_{,\eta\eta} - \theta_{,\eta} + a\Delta\theta_{,\eta} - 2kc^{-1}\Delta\theta + b\Delta^{2}\theta) dxd\eta = 0$$
(2.1)

from which it follows that

$$\int_{0}^{t} \int_{\Omega} \tau(\widetilde{\theta}_{,\eta}\theta_{,\eta})_{,\eta} + 2kc^{-1}(\theta_{,i\eta}\widetilde{\theta}_{,i} + \theta_{,i}\widetilde{\theta}_{,i\eta}) + b(\Delta\widetilde{\theta}_{,\eta}\Delta\theta + \Delta\theta_{,\eta}\Delta\widetilde{\theta})dxd\eta = 0,$$
(2.2)

where we have used the divergence theorem. We define

$$P(t) = \tau \int_{\Omega} \theta_{,t}(t)\theta_{,t}(t)dx + 2kc^{-1} \int_{\Omega} \theta_{,i}(t)\theta_{,i}(t)dx + b \int_{\Omega} \theta(t)\Delta\theta(t)dx \quad (2.3)$$

and from (2.2) we know

$$P(t) = \tau \int_{\Omega} \theta_{,t}(2t)\theta_{,t}(0)dx + 2kc^{-1} \int_{\Omega} \theta_{,i}(0)\theta_{,i}(2t)dx + b \int_{\Omega} \Delta\theta(2t)\Delta\theta(0)dx.$$
(2.4)

We now compute

$$\frac{dP(t)}{dt} = 2 \int_{\Omega} \theta_{,t} (-\theta_{,t} + a\Delta\theta_{,t} + 2kc^{-1}\Delta\theta - b\Delta^{2}\theta) dx + 4kc^{-1} \int_{\Omega} \theta_{,i}\theta_{,it} dx + 2b \int_{\Omega} \Delta\theta\Delta\theta_{,t} dx
\leq -2 \int_{\Omega} \theta_{,t}\theta_{,t} dx - 2a \int_{\Omega} \theta_{,it}\theta_{,it} dx.$$
(2.5)

Obviously, we deduce that P(t) is non-increasing on the interval [0,T]. Hence, we obtain

$$P(T) \le P(\frac{T}{2}), \quad P(t) \le P(0), \quad 0 \le t \le T.$$
 (2.6)

In order to seek the bound for P(t), we need bound P(0) firstly. To this end we use $(2.6)^1$ along with (1.8), and (1.7) to write

$$P(T) = \tau \int_{\Omega} \theta_{,t}(T)\theta_{,t}(T)dx + 2kc^{-1} \int_{\Omega} \theta_{,i}(T)\theta_{,i}(T)dx + b \int_{\Omega} \Delta\theta(T)\Delta\theta(T)dx$$

$$= \tau \int_{\Omega} (h - \alpha\theta_{,t}(0))(h - \alpha\theta_{,t}(0))dx + 2kc^{-1} \int_{\Omega} (g_{,i} - \alpha\theta_{,i}(0))(g_{,i} - \alpha\theta_{,i}(0))dx$$

$$+ b \int_{\Omega} (\Delta g - \alpha\Delta\theta(0))(\Delta g - \alpha\Delta\theta(0))dx$$

$$= \tau \int_{\Omega} h^{2}dx + \alpha^{2} \int_{\Omega} \theta_{,t}^{2}(0)dx - 2\alpha\tau \int_{\Omega} \theta_{,t}(0)hdx$$

$$+ 2kc^{-1} \int_{\Omega} g_{,i}g_{,i}dx + 2kc^{-1}\alpha^{2} \int_{\Omega} \theta_{,i}(0)\theta_{,i}(0)dx - 4kc^{-1}\alpha \int_{\Omega} g_{,i}\theta_{,i}(0)dx$$

$$+ b \int_{\Omega} \Delta g\Delta gdx + \alpha^{2} \int_{\Omega} \Delta\theta(0)\Delta\theta(0)dx - 2b\alpha \int_{\Omega} \Delta\theta(0)\Delta gdx$$

(2.7)

and

$$P(\frac{T}{2}) = \int_{\Omega} \theta_{,t}(T)\theta_{,t}(0)dx + 2kc^{-1}\int_{\Omega} \theta_{,i}(T)\theta_{,i}(0)dx + b\int_{\Omega} \Delta\theta(0)\Delta\theta(T)dx$$

$$= \tau \int_{\Omega} \theta_{,t}(0)hdx - \alpha\tau \int_{\Omega} \theta_{,t}^{2}(0)dx + 2kc^{-1}\int_{\Omega} g_{,i}\theta_{,i}(0)dx - 2kc^{-1}\alpha \int_{\Omega} \theta_{,i}(0)\theta_{,i}(0)dx$$

$$+ b\int_{\Omega} \Delta\theta(0)\Delta gdx - b\alpha \int_{\Omega} \Delta\theta(0)\Delta\theta(0)dx.$$

(2.8)

We set

$$H = \tau \int_{\Omega} h^2 dx + 2kc^{-1} \int_{\Omega} g_{,i}g_{,i}dx + b \int_{\Omega} \Delta g \Delta g dx,$$

and use the inequality

$$m_1 n_1 + m_2 n_2 \le (m_1 + m_2)^{\frac{1}{2}} (n_1 + n_2)^{\frac{1}{2}}$$

for positive constants m_1, m_2, n_1, n_2 . Then we have

$$\begin{aligned} (\alpha^{2} + \alpha)P(0) + H &\leq |2\alpha + 1| \left[\tau \int_{\Omega} \theta_{,t}(0)hdx + 2kc^{-1} \int_{\Omega} g_{,i}\theta_{,i}(0)dx + b \int_{\Omega} \Delta\theta(0)\Delta gdx\right] \\ &\leq |2\alpha + 1| \left[P(0)\right]^{\frac{1}{2}}H^{\frac{1}{2}}, \end{aligned}$$
(2.9)

it follows that

$$P^{\frac{1}{2}}(0) \le \frac{|2\alpha + 1| + 1}{2(\alpha^2 + \alpha)} H^{\frac{1}{2}}, \quad 0 \le t \le T$$
(2.10)

provided $\alpha^2 + \alpha > 0$ i.e., for $\alpha > 0$ or $\alpha < -1$. Consequently, we have

$$P(0) \le \frac{(|2\alpha + 1| + 1)^2}{4(\alpha^2 + \alpha)^2} H, \quad 0 \le t \le T.$$

In light of $(2.9)^2$, we obtain

$$P(t) \le \frac{(|2\alpha + 1| + 1)^2}{4(\alpha^2 + \alpha)^2} H, \quad 0 \le t \le T.$$
(2.11)

From (2.14) and (2.3) we can get

$$\int_{\Omega} \theta^2 dx \le \frac{1}{2kc^{-1}\lambda} \frac{(|2\alpha+1|+1)^2}{4(\alpha^2+\alpha)^2} H \doteq B_0, \quad 0 \le t \le T.$$
(2.12)

Since $\theta(x,t), \theta_i(x,t)$ vanish on $\partial\Omega$, it follows that

$$\int_{\Omega} \theta_{,i} \theta_{,i} dx \ge \lambda \int_{\Omega} \theta^2 dx \tag{2.13}$$

214

where λ is the first eigenvalue of the membrane problem

$$\Delta \varphi + \varphi = 0 \quad in \ \Omega;$$

$$\varphi = 0 \quad on \ \partial \Omega.$$
 (2.14)

So we have established the following theorem:

Theorem 1: Let $\theta(x, t)$ be a classical solution of (1.5)-(1.8), then provided α satisfied $\alpha^2 + \alpha > 0$, P(t) is bounded by (2.11) and the L_2 integral of θ by (2.12), where P(t) is defined by (2.3).

We note if $\alpha > 0$, we have simpler bound

$$P(t) \le \frac{H}{\alpha^2}, \quad \int_{\Omega} \theta^2 dx \le \frac{b\lambda^{-2}}{\alpha^2} H, \quad 0 \le t \le T$$

and if $\alpha < -1$, we have

$$P(t) \le \frac{H}{(1+\alpha)^2}, \quad \int_{\Omega} \theta^2 dx \le \frac{b\lambda^{-2}}{(\alpha+1)^2} H, \quad 0 \le t \le T.$$

ACKNOWLEDGEMENTS. The work was supported by Foundation for Distinguished Young Talents in Higher Education of Guangdong, China (LYM10100).

REFERENCES

References

- Morro.A, Payne. L.E, and Straughan.B. Decay, growth, continuous dependence and uniqueness results in generalized heat conduction themories, Appl,Anal, 1990,(38),231-243.
- [2] Payne. L.E, Schaefer. P.W and Song.J.C. Some nonstandard problem in generalized heat conduction, Z.angew.Math.Phys, 2005 (56),931-941.
- [3] Ames.K.A, Payne. L.E and Schaefer.P.W, Energy and pointwise bounds in some nonstandard parabolic problems, Pro.Roy.Soc.Edinbargh Seet.A 2004, (134),1-9.

- [4] Ames.K.A, Payne.L.E and Schaefer, P.W. On a nonstandard problem for heat condution in a cylinder, Appl, Anal, 2004, (83), 125-133.
- [5] Quintanilla.R and Straughan.B. *Energy bounds for some non-standard problem in thermoelasticity*, Pro.R.Soc.A, 2005 (461),1147-1162.
- [6] Payne, L, E. and Schacfer, P.W. Energy bounds for some nonstandard problems in partial differential equations, J.math, And, APPL, 2002 (273), 75-92.
- [7] Payne.L.E, Schaefer.P.W and Song.J.C. Some nonstandard problems in generalized heat conduction,Z. Angew. Math. Phys. 2005 (56) 931-941.
- [8] Payne.L.E, Schaefer.P.W and Song.J.C. Some nonstandard problems in vicous flow, Math.Methods Appl, Sci,2004,(27),2045-2053.

Received: May, 2011