IMPROVED ANSWERS TO AN OPEN PROBLEM CONCERNING AN INTEGRAL INEQUALITY

Qinglong Huang
School of Mathematics and Physics
Changzhou University, Changzhou 213164, P.R. China

Abstract

In this paper, several integral inequalities are established to improve the results of $\operatorname{paper}[\mathrm{On}$ an open question regarding an integral inequality.JIPAM,8(3)(2007)], and hence they given better answers to the open problem posed in paper [Notes on an integral inequality, JIPAM,7(4)(2006)].

Mathematics Subject Classification: 26D15
Keywords: Integral inequality, general Cauchy inequality,solutions of open problem

1 Introduction

In [1], the following Theorem 1.1(That is Theorem 2.3 in [1]) was proved.
Theorem 1.1 Let $f(x) \geq 0$ be a continuous function on [0, 1] satisfying $\int_{t}^{1} f(x) d x \geq \int_{t}^{1} x d x(\forall t \in[0,1])$, then $\int_{0}^{1} f^{\alpha+\beta}(x) d x \geq \int_{0}^{1} x^{\beta} f^{\alpha}(x) d x$ holds for every real number $\alpha>1$ and $\beta>0$.
This result was a solution to an open problem proposed in [2]. The present paper improved the result of Theorem 2.3 in [1] and give a better answer to the open problem in [2].The improved result is expressed in Theorem 2.1,which will be proved in section 2. Moreover, a further extended conclusion will be expressed in section 3 .

2 Main Results

Lemma 2.1 Under the conditions of Theorem 1.1, the inequality

$$
\begin{equation*}
\int_{0}^{1} x^{\delta} f(x) d x \geq \int_{0}^{1} x^{\delta+1} d x \tag{2.1}
\end{equation*}
$$

holds for every $\delta>0$.
Proof. For $\delta>0$, we have

$$
\begin{aligned}
\int_{0}^{1} x^{\delta} f(x) d x & =\int_{0}^{1} \delta t^{\delta-1} \int_{t}^{1} f(x) d x d t \geq \int_{0}^{1} \delta t^{\delta-1} \int_{t}^{1} x d x d t \\
& =\int_{0}^{1} x\left(\int_{0}^{x} \delta t^{\delta-1} d t\right) d x=\int_{0}^{1} x^{\delta+1} d x
\end{aligned}
$$

Lemma 2.2 Under the conditions of Theorem 1.1, the inequality

$$
\begin{equation*}
\int_{0}^{1} f^{\lambda}(x) d x \geq \int_{0}^{1} x^{\lambda} d x \tag{2.2}
\end{equation*}
$$

holds for every $\lambda \geq 1$.
Proof. For every $\lambda>1$, by General Cauchy inequality [3], we get

$$
\frac{1}{\lambda} f^{\lambda}(x)+\frac{\lambda-1}{\lambda} x^{\lambda} \geq x^{\lambda-1} f(x) .
$$

Integrating both sides of the inequality, and using Lemma 2.1, we further have

$$
\frac{1}{\lambda} \int_{0}^{1} f^{\lambda}(x) d x+\frac{\lambda-1}{\lambda} \int_{0}^{1} x^{\lambda} d x \geq \int_{0}^{1} x^{\lambda-1} f(x) d x \geq \int_{0}^{1} x^{\lambda} d x
$$

It is evident that (2.2) holds for $\lambda=1$. Therefore (2.2) holds for $\lambda \geq 1$.
Theorem 2.1 Under the conditions of Theorem 1.1, the inequality

$$
\begin{equation*}
\int_{0}^{1} f^{\alpha+\beta}(x) d x \geq \int_{0}^{1} x^{\alpha} f^{\beta}(x) d x \tag{2.3}
\end{equation*}
$$

holds for $\alpha \geq 0, \beta \geq 0$ and $\alpha+\beta \geq 1$.
Proof. Using General Cauchy inequality, we have

$$
\frac{\alpha}{\alpha+\beta} x^{\alpha+\beta}+\frac{\beta}{\alpha+\beta} f^{\alpha+\beta}(x) \geq x^{\alpha} f^{\beta}(x) .
$$

Which yields

$$
\frac{\alpha}{\alpha+\beta} \int_{0}^{1} x^{\alpha+\beta} d x+\frac{\beta}{\alpha+\beta} \int_{0}^{1} f^{\alpha+\beta}(x) d x \geq \int_{0}^{1} x^{\alpha} f^{\beta}(x) d x
$$

From this inequality and (2.2), the (2.3) can be obtained.
Remark: Inequality (2.3) generalized the results of Theorem 2.3 in [1] and Theorem 3.2, Theorem 3.3 in [2].

3 The further extended conclusion

In the following, we Assume $f(x) \geq 0$ is a continuous function on $[0,1]$ satisfying the inequality $\int_{t}^{1} f^{\gamma}(x) d x \geq \int_{t}^{1} x^{\gamma} d x(\forall t \in[0,1])$, here constant $\gamma>0$.
Lemma 3.1 The inequality

$$
\begin{equation*}
\int_{0}^{1} x^{\delta} f^{\gamma}(x) d x \geq \int_{0}^{1} x^{\delta+\gamma} d x \tag{3.1}
\end{equation*}
$$

holds for every $\delta>0$.
The proof of Lemma3.1 runs in the nearly same way as Lemma 2.1.
Lemma 3.2 The inequality

$$
\begin{equation*}
\int_{0}^{1} f^{\lambda}(x) d x \geq \int_{0}^{1} x^{\lambda} d x \tag{3.2}
\end{equation*}
$$

holds for every $\lambda \geq \gamma$.
Proof. For every $\lambda>\gamma$, employing General Cauchy inequality, we have

$$
\frac{\gamma}{\lambda} f^{\lambda}(x)+\frac{\lambda-\gamma}{\lambda} x^{\lambda} \geq x^{\lambda-\gamma} f^{\gamma}(x)
$$

Further, by Lemma 3.1, we get

$$
\frac{\gamma}{\lambda} \int_{0}^{1} f^{\lambda}(x) d x+\frac{\lambda-\gamma}{\lambda} \int_{0}^{1} x^{\lambda} d x \geq \int_{0}^{1} x^{\lambda-\gamma} f^{\gamma}(x) d x \geq \int_{0}^{1} x^{\lambda} d x
$$

Hence (3.2) holds for $\lambda>\gamma$. It is evident that (3.2) holds for $\lambda=\gamma$. Therefore (3.2) holds for every $\lambda \geq \gamma$.
Theorem 3.1 The following inequality

$$
\begin{equation*}
\int_{0}^{1} f^{\alpha+\beta}(x) d x \geq \int_{0}^{1} x^{\alpha} f^{\beta}(x) d x \tag{3.3}
\end{equation*}
$$

holds for $\alpha \geq 0, \beta \geq 0$ and $\alpha+\beta \geq \gamma$.
By virtue of (3.2), the proof of Theorem 3.1 is similar to that of Theorem 2.1.
Remark: Specializing Theorem 3.1 to the case $\gamma=1$, the Theorem 2.1 obtained.
Lastly, we propose the following open problem.
Open Problem: Assume constant $\gamma>0$. Let $f(x) \geq 0$ be a continuous function on [0, 1] satisfying the inequality $\int_{t}^{1} f^{\gamma}(x) d x \geq \int_{t}^{1} x^{\gamma} d x, \quad \forall t \in[0,1]$. Does the inequality $\int_{0}^{1} f^{\alpha+\beta}(x) d x \geq \int_{0}^{1} x^{\alpha} f^{\beta}(x) d x$ hold for $\alpha \geq 0, \beta \geq 0$ and $\alpha+\beta<\gamma$?

References

[1] K. BOUKERRIOUA AND GUEZANE-LAKOUD, On an open question regarding an integral inequality, JIPAM, 8(3)(2007), Art. 77. [ONLINE: http: // jipam. vu. edu. au/ article. php? sid= 885].
[2] Q.A.NGÔ, D.D.THANG, T.T.DAT AND D.A.TUAN, Notes on an integral inequality, JIPAM, 7(4)(2006), Art. 120. [ONLINE: http: // jipam. vu. edu. au/article. php? sid=737].
[3] J.CH. KUANG, Applied Inequalities, 3rd edition,Shangdong Science and Technology Press, Jinan, China, 2004.(Chinese)

Received: March, 2012

