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Abstract

In this paper, several integral inequalities are established to im-
prove the results of paper[On an open question regarding an integral
inequality.JIPAM,8(3)(2007)], and hence they given better answers to
the open problem posed in paper [Notes on an integral inequality, JI-
PAM,7(4)(2006)].
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1 Introduction

In [1], the following Theorem 1.1(That is Theorem 2.3 in [1]) was proved.
Theorem 1.1 Let f(x) ≥ 0 be a continuous function on [0, 1] satisfying
1∫
t
f(x)dx ≥

1∫
t
xdx(∀ t ∈ [0, 1]), then

1∫
0

fα+β(x)dx ≥
1∫
0

xβfα(x)dx holds for

every real number α > 1 and β > 0.
This result was a solution to an open problem proposed in [2]. The present
paper improved the result of Theorem 2.3 in [1] and give a better answer to
the open problem in [2].The improved result is expressed in Theorem 2.1,which
will be proved in section 2. Moreover, a further extended conclusion will be
expressed in section 3.

2 Main Results

Lemma 2.1 Under the conditions of Theorem 1.1, the inequality

1∫

0

xδf(x)dx ≥

1∫

0

xδ+1dx (2.1)
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holds for every δ > 0.
Proof. For δ > 0, we have

1∫
0

xδf(x)dx =
1∫
0

δtδ−1
1∫
t
f(x)dxdt ≥

1∫
0

δtδ−1
1∫
t
xdxdt

=
1∫
0

x(
x∫
0

δtδ−1dt)dx =
1∫
0

xδ+1dx.

Lemma 2.2 Under the conditions of Theorem 1.1, the inequality

1∫

0

fλ(x)dx ≥

1∫

0

xλdx (2.2)

holds for every λ ≥ 1.
Proof. For every λ > 1, by General Cauchy inequality [3], we get

1

λ
fλ(x) +

λ− 1

λ
xλ ≥ xλ−1f(x).

Integrating both sides of the inequality, and using Lemma 2.1, we further have

1

λ

1∫

0

fλ(x)dx+
λ− 1

λ

1∫

0

xλdx ≥

1∫

0

xλ−1f(x)dx ≥

1∫

0

xλdx.

It is evident that (2.2) holds for λ = 1. Therefore (2.2) holds for λ ≥ 1.
Theorem 2.1 Under the conditions of Theorem 1.1, the inequality

1∫

0

fα+β(x)dx ≥

1∫

0

xαfβ(x)dx (2.3)

holds for α ≥ 0, β ≥ 0 and α + β ≥ 1.
Proof. Using General Cauchy inequality, we have

α

α + β
xα+β +

β

α + β
fα+β(x) ≥ xαfβ(x).

Which yields

α

α + β

1∫

0

xα+βdx+
β

α+ β

1∫

0

fα+β(x)dx ≥

1∫

0

xαfβ(x)dx.

From this inequality and (2.2), the (2.3) can be obtained.
Remark: Inequality (2.3) generalized the results of Theorem 2.3 in [1] and
Theorem 3.2, Theorem 3.3 in [2].
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3 The further extended conclusion

In the following, we Assume f(x) ≥ 0 is a continuous function on [0, 1] satis-

fying the inequality
1∫
t
f γ(x)dx ≥

1∫
t
xγdx(∀ t ∈ [0, 1]), here constant γ > 0.

Lemma 3.1 The inequality

1∫

0

xδf γ(x)dx ≥

1∫

0

xδ+γdx (3.1)

holds for every δ > 0.
The proof of Lemma3.1 runs in the nearly same way as Lemma 2.1.
Lemma 3.2 The inequality

1∫

0

fλ(x)dx ≥

1∫

0

xλdx (3.2)

holds for every λ ≥ γ.
Proof. For every λ > γ, employing General Cauchy inequality, we have

γ

λ
fλ(x) +

λ− γ

λ
xλ ≥ xλ−γf γ(x).

Further, by Lemma 3.1, we get

γ

λ

1∫

0

fλ(x)dx+
λ− γ

λ

1∫

0

xλdx ≥

1∫

0

xλ−γf γ(x)dx ≥

1∫

0

xλdx.

Hence (3.2) holds for λ > γ. It is evident that (3.2) holds for λ = γ.
Therefore (3.2) holds for every λ ≥ γ.

Theorem 3.1 The following inequality

1∫

0

fα+β(x)dx ≥

1∫

0

xαfβ(x)dx (3.3)

holds for α ≥ 0, β ≥ 0 and α + β ≥ γ.
By virtue of (3.2), the proof of Theorem 3.1 is similar to that of Theorem 2.1.
Remark: Specializing Theorem 3.1 to the case γ = 1, the Theorem 2.1 ob-
tained.
Lastly, we propose the following open problem.
Open Problem: Assume constant γ > 0. Let f(x) ≥ 0 be a continuous

function on [0, 1] satisfying the inequality
1∫
t
f γ(x)dx ≥

1∫
t
xγdx, ∀t ∈ [0, 1].

Does the inequality
1∫
0

fα+β(x)dx ≥
1∫
0

xαfβ(x)dx hold for α ≥ 0, β ≥ 0 and

α + β < γ ?
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