Important Results on Janowski Starlike Log-harmonic Mappings Of Complex Order b

Melike AYDOG̃AN.

Department of Mathematics
Isik University- Sile Kampusu
Mesrutiyet Koyu Universite Sokak, D Kapi No:2
34980, Istanbul, Turkey

Abstract

Let $H(D)$ be a linear space of all analytic functions defined on the open unit disc D. A sense-preserving log-harmonic function is the solution of the non-linear elliptic partial differential equation $$
\overline{f_{\bar{z}}}=w \frac{\bar{f}}{f} f_{z}
$$ where $w(z)$ is analytic, satisfies the condition $|w(z)|<1$ for every $z \in D$ and is called the second dilatation of f. It has been shown that if f is a non-vanishing log-harmonic mapping then f can be represented by

$$
f(z)=h(z) \overline{g(z)}
$$

where $h(z)$ and $g(z)$ are analytic in D with $h(0) \neq 0, g(0)=1([1])$. If f vanishes at $z=0$ but it is not identically zero, then f admits the representation

$$
f(z)=z|z|^{2 \beta} h(z) \overline{g(z)}
$$

where $\operatorname{Re} \beta>-\frac{1}{2}, h(z)$ and $g(z)$ are analytic in D with $g(0)=1$ and $h(0) \neq 0$. The class of sense-preserving log-harmonic mappins is denoted by $S_{L H}$. We say that f is a Janowski starlike log-harmonic mapping.If

$$
1+\frac{1}{b}\left(\frac{z f_{z}-\bar{z} f_{\bar{z}}}{f}-1\right)=\frac{1+A \phi(z)}{1+B \phi(z)}
$$

where $\phi(z)$ is Schwarz function. The class of Janowski starlike logharmonic mappings is denoted by $S_{L H}^{*}(A, B, b)$. We also note that, if $(z h(z))$ is a starlike function, then the Janowski starlike log-harmonic mappings will be called a perturbated Janowski starlike log-harmonic mappings. And the family of such mappings will be denoted by $S_{P L H}^{*}(A, B, b)$. The aim of this paper is to give some distortion theorems of the class $S_{L H}^{*}(A, B, b)$.

Mathematics Subject Classification: 30C45, 30C55
Keywords: Starlike function, Distortion theorem

1 Introduction

Let Ω be the family of functions $\phi(z)$ which are regular in D and satisfying the conditions $\phi(0)=0,|\phi(z)|<1$ for all $z \in D$.
Next, denote by $P(A, B)$ the family of functions

$$
p(z)=1+p_{1} z+p_{2} z^{2}+\ldots
$$

regular in D, such that $p(z)$ is in $P(A, B)$ if and only if

$$
\begin{equation*}
p(z)=\frac{1+A \phi(z)}{1+B \phi(z)}, \quad-1 \leq B<A \leq 1 \tag{1}
\end{equation*}
$$

for some function $\phi(z) \in \Omega$ and for every $z \in D$. Therefore we have $p(0)=1$, $\operatorname{Rep}(z)>\frac{1-A}{1-B}>0$ whenever $p(z) \in P(A, B)$. Moreover, let $S^{*}(A, B)$ denote the family of functions

$$
s(z)=z+a_{2} z^{2}+\ldots
$$

regular in D, and such that $s(z)$ is in S^{*} if and only if

$$
\begin{equation*}
\operatorname{Re}\left(z \frac{s^{\prime}(z)}{s(z)}\right)=p(z)=\frac{1+\phi(z)}{1-\phi(z)}, p(z) \in P(1,-1) \tag{2}
\end{equation*}
$$

Let $S_{1}(z)$ and $S_{2}(z)$ be analytic functions in D with $S_{1}(0)=S_{2}(0)$. We say that $S_{1}(z)$ subordinated to $S_{2}(z)$ and denote by $S_{1}(z) \prec S_{2}(z)$, if $S_{1}(z)=$ $S_{2}(\phi(z))$ for some function $\phi(z) \in \Omega$ and every $z \in D$. If $S_{1}(z) \prec S_{2}(z)$, then $S_{1}(D) \subset S_{2}(D)([5])$.
The radius of starlikeness of the class of sense-preserving log-harmonic mapping is

$$
r_{s}=\sup \left\{r \left\lvert\, \operatorname{Re}\left(\frac{z f_{z}-\bar{z} f_{\bar{z}}}{f}\right)>0\right.,0<r<1\right\} .
$$

Finally, let $H(D)$ be the linear space of all analytic functions defined on the open unit disc D. A sense-preserving log-harmonic mapping is the solution of the non-linear elliptic partial differantial equation

$$
\begin{equation*}
\frac{\overline{f_{\bar{z}}}}{\bar{f}}=w(z) \frac{f_{z}}{f}, \tag{3}
\end{equation*}
$$

where $w(z) \in H(D)$ is the second dilatation of f such that $|w(z)|<1$ for every $z \in D$. It has been shown that if f is a non-vanishing log-harmonic mapping, then f can be expressed as

$$
\begin{equation*}
f=h(z) \overline{g(z)} \tag{4}
\end{equation*}
$$

where $h(z)$ and $g(z)$ are analytic functions in D.
On the other hand, if f vanishes at $z=0$ and at no other point, then f admits the representation,

$$
\begin{equation*}
f=z|z|^{2 \beta} h(z) \overline{g(z)}, \tag{5}
\end{equation*}
$$

where $\operatorname{Re} \beta>-1 / 2, h(z)$ and $g(z)$ are analytic in D with $g(0)=1$ and $h(0) \neq 0$. We note that the class of log-harmonic mappings is denoted by $S_{L H}$. Let $f=z h(z) g(z)$ be an element of $D_{L H}$. We say that f is a Janowski starlike log-harmonic mapping if

$$
\begin{equation*}
1+\frac{1}{b}\left(\frac{z f_{z}-\bar{z} f_{\bar{z}}}{f}-1\right)=p(z)=\frac{1+A \phi(z)}{1+B \phi(z)}, p(z) \in P(A, B) \tag{6}
\end{equation*}
$$

where $-1 \leq B<A \leq 1, b \neq 0$ and complex and denote by $S_{L H}^{*}(A, B, b)$ the set of all starlike log-harmonic mappings. Also we denote ${ }_{P L H}^{*}(A, B, b)$ the class of all functions in $S_{L H}^{*}(A, B, b)$ for which $(z h(z)) \in S^{*}(A, B)$ for all $z \in D$.
We note that if we give special values to b, then we obtain important subclasses of Janowski starlike log-harmonic mappings
i. For $b=0$, we obtain the class of starlike log-harmonic mappings.
ii. For $b=1-\alpha, 0 \leq \alpha<1$, we obtain the class of starlike log-harmonic mappings of order α.
iii. For $b=e^{-i \lambda} \cos \lambda,|\lambda|<\frac{\pi}{2}$, we obtain the class of λ - spirallike \log harmonic mappings.
iv. For $b=(1-\alpha) e^{-i \lambda} \cos \lambda, 0 \leq \alpha<1,|\lambda|<\frac{\pi}{2}$, we obtain the class of $\lambda-$ spirallike log-harmonic mappings of order α.

2 Main Results

Theorem 2.1 Let $f=z h(z) \overline{g(z)}$ be an element of $S_{P L H}^{*}(A, B, b)$. Then

$$
\begin{gather*}
f=z h(z) \overline{g(z)} \in S_{L H}^{*}(A, B, b) \Leftrightarrow z \frac{h^{\prime}(z)}{h(z)}-\bar{z} \frac{\overline{g^{\prime}(z)}}{\overline{g(z)}} \prec \frac{b(A-B) z}{1+B z} ; B \neq 0, \tag{7}\\
\Leftrightarrow z \frac{h^{\prime}(z)}{h(z)}-\bar{z} \frac{\overline{g^{\prime}(z)}}{\overline{g(z)}} \prec b A z, B=0 \tag{8}
\end{gather*}
$$

Proof: Let $f \in S_{L H}^{*}(A, B, b)$. Using the principle of subordination then we have

$$
1+\frac{1}{b}\left(\frac{z f z-\bar{z} f_{\bar{z}}}{f}-1\right)=1+\frac{1}{b}\left(z \frac{h^{\prime}(z)}{h(z)}-\bar{z} \overline{\overline{g^{\prime}(z)}} \overline{g(z)}\right)=
$$

$$
\begin{gathered}
\frac{1+A \phi(z)}{1+B \phi(z)} ; B \neq 0, \\
1+A \phi(z) ; B=0, \\
\Leftrightarrow z \frac{h^{\prime}(z)}{h(z)}-\bar{z} \frac{\overline{g^{\prime}(z)}}{\overline{g(z)}}= \\
\frac{b(A-B) \phi(z)}{1+B \phi(z)} ; B \neq 0, \\
b A \phi(z) ; B=0 \\
\Leftrightarrow z \frac{h^{\prime}(z)}{h(z)}-\bar{z} \frac{\overline{g^{\prime}(z)}}{\overline{g(z)}} \prec \\
\frac{b(A-B) z}{1+B z} ; B \neq 0, \\
b A z ; B=0 .
\end{gathered}
$$

Theorem 2.2 Let $F=z .|z|^{2 \beta} . H(z) \cdot \overline{G(z)} \in S_{L H}$ and then;

$$
\begin{gathered}
1+\frac{1}{b}\left(\frac{z F_{z}-\bar{z} F_{\bar{z}}}{F}-1\right)=1+\frac{1}{b}\left(z \frac{H^{\prime}(z)}{H(z)}-\bar{z} \cdot \frac{\overline{G^{\prime}(z)}}{\overline{G(z)}}\right) \\
\frac{1+A \phi(z)}{1+B \phi(z)}, B \neq 0 ; \\
1+A \phi(z), B=0 ;
\end{gathered}
$$

Proof: Let $F=z \cdot|z|^{2 \beta} \cdot H(z) \cdot \overline{G(z)} \in S_{L H}$

$$
\begin{gather*}
\log F=\log z \cdot|z|^{2 \beta} \cdot H(z) \cdot \overline{G(z)} \in S_{L H} \\
\log F=\log z+\beta \log z+\beta \log \bar{z}+\log H(z)+\log \overline{G(z)} . \tag{2.1}
\end{gather*}
$$

On the other hand we have;

$$
\begin{gather*}
F_{z}=F\left(\frac{1}{z}+\frac{\beta}{z}+\frac{H^{\prime}(z)}{H(z)}\right) \ldots \ldots \tag{2.2}\\
F_{\bar{z}}=F\left(\frac{\beta}{\bar{z}}+\frac{\overline{G^{\prime}(z)}}{\overline{G(z)}}\right) \ldots \ldots \tag{2.3}
\end{gather*}
$$

$f=z \cdot h(z) \cdot g(z)$ is a log-harmonic mapping;

$$
1+\frac{1}{b}\left(\frac{z f_{z}-\bar{z} f_{\bar{z}}}{f}-1\right)=
$$

$$
\begin{aligned}
& \frac{1+A \phi(z)}{1+B \phi(z)}, B \neq 0 \\
& 1+A \phi(z), B=0
\end{aligned}
$$

Therefore; if $\beta \neq 0 ; F=z .|z|^{2 \beta} . H(z) \cdot \overline{G(z)}$
If we make simple calculations at (2.2) and (2.3); we get the result.

Lemma 2.3 Let $f(z)=z|z|^{2 \beta} h(z) \overline{g(z)} \in S_{L H} . \operatorname{Re} \beta>-\frac{1}{2} ; h(z)$ and $g(z)$ are both analytic in $D, g(0)=1$ and $h(0) \neq 0$. Then

$$
R e \frac{h(z)}{g(z)}>0 \Leftrightarrow \operatorname{Re} \frac{f(z)}{z|z|^{2 \beta}}>0 \ldots
$$

Proof: Let $f=z|z|^{2 \beta} h(z) \overline{g(z)} \in S_{L H}$

$$
\begin{aligned}
& \operatorname{Re} \frac{f(z)}{z|z|^{2 \beta}}>0 \Rightarrow 0<\operatorname{Re} \frac{|z|^{2 \beta} h(z) \overline{g(z)}}{z|z|^{2 \beta}}=\operatorname{Reh}(z) \overline{g(z)} \\
& =\operatorname{Re} \frac{h(z) \overline{g(z)} g(z)}{g(z)}=\operatorname{Re} \frac{h(z)|g(z)|^{2}}{g(z)}=|g(z)|^{2} \cdot \operatorname{Re} \frac{h(z)}{g(z)}
\end{aligned}
$$

satisfied.

$$
\begin{equation*}
0<|g(z)|^{2} \cdot R e \frac{h(z)}{g(z)} \Rightarrow R e \frac{h(z)}{g(z)}>0 \ldots \tag{2.5}
\end{equation*}
$$

satisfied. On the contrary;

$$
\begin{gathered}
R e \frac{h(z)}{g(z)}>0 \Rightarrow R e \frac{h(z)|g(z)|^{2}}{g(z)}>0 \Leftrightarrow R e \frac{h(z) \overline{g(z)} g(z)}{g(z)}>0 \\
\operatorname{Reh}(z) \cdot \overline{g(z)}>0 \Rightarrow \operatorname{Re} \frac{|z|^{2 \beta} h(z) \overline{g(z)}}{z|z|^{2 \beta}}>0 \ldots \text { (2.6) }
\end{gathered}
$$

satisfied. If we use (2.5) and (2.6) ;we take the expression of (2.4).

Lemma 2.4 Let $f=z . h(z) \overline{g(z)} \in S_{L H}^{*}(A, B, b)$ ve $\frac{h(z)}{g(z)}=p(z)$ $h(z), g(z), p(z)$ are all analytic functions at D. And their Taylor formulas are ; $h(z)=1+\sum_{n=1}^{\infty} a_{n} z^{n}, g(z)=1+\sum_{n=1}^{\infty} b_{n} z^{n}, p(z)=1+\sum_{n=1}^{\infty} p_{n} z^{n}$;

$$
\left|a_{n}\right| \leq 2 \sum_{k=0}^{n-1}\left|b_{k}\right|+\left|b_{n}\right| ;\left|b_{0}\right|=1
$$

Proof: Let $f=z h(z) \overline{g(z)} \in S_{L H}^{*}(A, B, b)$. Then $h(z)=1+a_{1} z+a_{2} z^{2}+\ldots+$ $a_{n} z^{n} ; g(z)=1+b_{1} z+b_{2} z^{2}+\ldots+b_{n} z^{n} ; p(z)=1+p_{1} z+p_{2} z^{2}+\ldots+p_{n} z^{n}$ are like this. Here $\frac{h(z)}{g(z)}=p(z) \Rightarrow$
$\Rightarrow\left(1+a_{1} z+a_{2} z^{2}+\ldots+a_{n} z^{n}\right)=\left(1+p_{1} z+p_{2} z^{2}+\ldots+p_{n} z^{n}\right) \cdot\left(1+b_{1} z+b_{2} z^{2}+\ldots+b_{n} z^{n}\right)$
satisfied. Then,
$1+a_{1} z+a_{2} z^{2}+\ldots+a_{n} z^{n}=1+\left(b_{1}+p_{1}\right) z+\left(b_{2}+p_{1} b_{1}+p_{2}\right) z^{2}+\left(b_{3}+p_{1} b_{2}+\right.$ $\left.p_{2} b_{1}+p_{3}\right) z^{3}+\left(b_{4}+p_{1} b_{3}+p_{2} b_{2}+p_{3} b_{1}+p_{4}\right) z^{4}+\left(b_{5}+p_{1} b_{4}+p_{2} b_{3}+p_{3} b_{2}+p_{4} b_{1}+\right.$ $\left.p_{5}\right) z^{5}+\ldots+\left(b_{n}+p_{1} b_{n-1}+p_{2} b_{n-2}+\ldots+p_{n}\right) z^{n}+$ \qquad (2.7)
we get the expression. In this expression; If we look coefficient equalities and take their absolute values;

$$
\begin{aligned}
& \left|a_{1}\right|=\left|b_{1}+p_{1}\right| \\
& \left|a_{2}\right|=\left|b_{2}+p_{1} b_{1}+p_{2}\right| \\
& \left|a_{3}\right|=\left|b_{3}+p_{1} b_{2}+p_{2} b_{1}+p_{3}\right| \\
& \left|a_{4}\right|=\left|b_{4}+p_{1} b_{3}+p_{2} b_{2}+p_{3} b_{1}+p_{4}\right| \\
& \left|a_{5}\right|=\left|b_{5}+p_{1} b_{4}+p_{2} b_{3}+p_{3} b_{2}+p_{4} b_{1}+p_{5}\right|
\end{aligned}
$$

$\left|a_{n}\right|=\left|b_{n}+p_{1} b_{n-1}+p_{2} b_{n-2}+p_{3} b_{n-3}+\ldots+p_{n}\right|$
By using $p_{n} \leq 2$ at all of the equalities

$$
\begin{aligned}
& \left|a_{1}\right| \leq 2+\left|b_{1}\right| \\
& \left|a_{2}\right| \leq 2+2\left|b_{1}\right|+\left|b_{2}\right| \\
& \left|a_{3}\right| \leq 2+2\left|b_{1}\right|+2\left|b_{2}\right|+\left|b_{3}\right| \\
& \left|a_{4}\right| \leq 2+2\left|b_{1}\right|+2\left|b_{2}\right|+2\left|b_{3}\right|+\left|b_{4}\right| \\
& \left|a_{5}\right| \leq 2+2\left|b_{1}\right|+2\left|b_{2}\right|+2\left|b_{3}\right|+2\left|b_{4}\right|+\left|b_{5}\right| \\
& \ldots \\
& \left|a_{n}\right| \leq 2+2\left|b_{1}\right|+2\left|b_{2}\right|+2\left|b_{3}\right|+2\left|b_{4}\right|+2\left|b_{5}\right|+\ldots+\left|b_{n}\right|
\end{aligned}
$$

then we get the result.

Theorem 2.5 Let $f=z|z|^{2 \beta} h(z) \overline{g(z)} \in S_{L H}$ $f=z h(z) \overline{g(z)} \in S_{L H}^{*}(A, B, b)$ and $\frac{f}{z \cdot|z|^{2 \beta}}=p(z)$ If $p(z)=1+\sum_{n=1}^{\infty} p_{n} z^{n}$, then

$$
1+\frac{1}{b}\left(\frac{z f_{z}-\bar{z} f_{\bar{z}}}{f}-1\right)=1+\frac{1}{b} z \frac{p^{\prime}(z)}{p(z)}
$$

Proof: Let $f=z|z|^{2 \beta} h(z) \overline{g(z)} \in S_{L H}$; Using Lemma (2.3)
$R e \frac{h(z)}{g(z)}>0 \Leftrightarrow R e \frac{f}{z \cdot|z|^{2 \beta}}$ satisfied. Then; take $\frac{f(z)}{z \cdot|z|^{2 \beta}}=p(z)$ and from this expression
$f=z|z|^{2 \beta} . p(z)$ get the result. First take logarithm of both sides;

$$
\log f=\log z+\beta \log z+\beta \log \bar{z}+\log p \ldots \text { (2.8) }
$$

At (2.5) taking derivatives first to z and multiplying by z;

$$
\begin{gather*}
\frac{f_{z}}{f}=\frac{1}{z}+\frac{\beta}{z}+\frac{p^{\prime}}{p} \\
z \frac{f_{z}}{f}=1+\beta+z \frac{p^{\prime}}{p} \ldots \tag{2.9}
\end{gather*}
$$

Now at (2.8) take derivative to \bar{z} and multiplying both sides by \bar{z}

$$
\begin{gathered}
\frac{f_{z}}{f}=\beta \frac{1}{\bar{z}} \\
\bar{z} \frac{f_{z}}{f}=\beta \ldots(2.10)
\end{gathered}
$$

If we substract from (2.6) to (2.10)

$$
\frac{z f_{z}-\bar{z} f_{\bar{z}}}{f}=1+z \frac{p^{\prime}}{p} \ldots \text { (2.11) }
$$

we take this.
At expression of (2.11) multiply both sides by $\frac{1}{b}$ and then add 1 .

Theorem 2.6 Let $f=z h(z) \overline{g(z)} \in S_{L H}^{*}(A, B, b) . s(z)=1+\frac{1}{b}\left(\frac{z f_{z}-\bar{z} f_{\bar{z}}}{f}-1\right)$ and $s(z)=1+\sum_{n=1}^{\infty} s_{n} z^{n}$;
$\left|s_{1}\right| \leq \frac{2}{|b|},\left|s_{2}\right| \leq \frac{8}{|b|},\left|s_{3}\right| \leq \frac{26}{|b|},\left|s_{4}\right| \leq \frac{80}{|b|},\left|s_{5}\right| \leq \frac{202}{|b|}$
Proof: Let $f=z h(z) g(z) \in S_{L H}^{*}(A, B, b)$ and from Theorem(2.5);
$s(z)=1+\frac{1}{b}\left(\frac{z f_{z}-\bar{z} f_{\bar{z}}}{f}-1\right)=1+\frac{1}{b} z \frac{p^{\prime}(z)}{p(z)}$
$\Rightarrow b \cdot p(z)+z \cdot p^{\prime}(z)=b \cdot p(z) \cdot s(z) \ldots . .(2.12)$ satisfied.
$p(z)=1+p_{1} z+p_{2} z^{2}+\ldots+p_{n} z^{n} \ldots(2.13)$
$s(z)=1+s_{1} z+s_{2} z^{2}+\ldots+s_{n} z^{n} \ldots(2.14)$
(2.13) and (2.14) if we multiply them by b;
$b . p(z) . s(z)=b+b\left(s_{1}+p_{1}\right) z+b\left(s_{2}+p_{1} s_{1}+p_{2}\right) z^{2}+b\left(s_{3}+p_{1} s_{2}+p_{2} s_{1}+p_{3}\right) z^{3}+$
$b\left(s_{4}+p_{1} s_{3}+p_{2} s_{2}+p_{3} s_{1}+p_{4}\right) z^{4}+\ldots+b\left(s_{n-1}+p_{1} s_{n-2}+p_{2} s_{n-3}+p_{3} s_{n-4}+p_{4} s_{n-5}+\right.$
$\left.\ldots+p_{n-1}\right) z^{n-1}+b\left(s_{n}+p_{1} s_{n-1}+p_{2} s_{n-2}+p_{3} s_{n-3}+p_{4} s_{n-4}+p_{n-1} s_{1}+p_{n}\right) z^{n}+$
$b\left(s_{n+1}+p_{1} s_{n}+p_{2} s_{n-1}+p_{3} s_{n-2}+p_{4} s_{n-3}+p_{n-1} s_{2}+p_{n} s_{1}+p_{n+1}\right) z^{n+1}+\ldots .(2.15)$
On the other hand;
$\quad b \cdot p(z)+z \cdot p^{\prime}(z)=b\left(1+p_{1} z+p_{2} z^{2}+p_{3} z^{3}+\ldots+p_{n-1} z^{n-1}+p_{n} z^{n}+p_{n+1} z^{n+1}+\right.$
$\ldots)+z\left(p_{1}+2 p_{2} z+3 p_{3} z^{2}+4 p_{4} z^{3}+\ldots+(n-1) p_{n-1} z^{n-2}+n p_{n} z^{n-1}+(n+1) p_{n+1} z^{n}+\right.$
$(n+2) p_{n+2} z^{n+1}+\ldots(2.16)$
$=b+b p_{1} z+b p_{2} z^{2}+b p_{3} z^{3}+\ldots+b p_{n-1} z^{n-1}+b p_{n} z^{n}+b p_{n+1} z^{n+1}+\ldots .+p_{1} z+$
$2 p_{2} z^{2}+3 p_{3} z^{3}+\ldots .+(n-1) p_{n-1} z^{n-1}+n p_{n} z^{n}+(n+1) p_{n+1} z^{n+1}+\ldots .(2.17)$
(2.17) can be written;
$b . p(z)+z \cdot p^{\prime}(z)=b+\left(p_{1}+b p_{1}\right) z+\left(2 p_{2}+b p_{2}\right) z^{2}+\left(3 p_{3}+b p_{3}\right) z^{3}+\ldots .+((n-$ 1) $\left.p_{n-1}+b p_{n-1}\right) z^{n-1}+\left(n p_{n}+b p_{n}\right) z^{n}+\left((n+1) p_{n+1}+b p_{n+1}\right) z^{n+1}+\ldots . .(2.18)$ If we make an equality between (2.15) and (2.18) then;
$b\left(s_{1}+p_{1)}=p_{1}+b p_{1}\right.$
$b\left(s_{2}+s_{1} p_{1}+p_{2}\right)=2 p_{2}+b p_{2}$
$b\left(s_{3}+s_{2} p_{1}+s_{1} p_{2}+p_{3}\right)=3 p_{3}+b p_{3}$
$b\left(s_{4}+s_{3} p_{1}+s_{2} p_{2}+s_{1} p_{3}+p_{4}\right)=4 p_{4}+b p_{4}$
$b\left(s_{n-1}+s_{n-2} p_{1}+s_{n-3} p_{2}+s_{n-4} p_{3}+\ldots+p_{n-1}\right)=(n-1) p_{n-1}+b p_{n-1}$
$b\left(s_{n}+s_{n-1} p_{1}+s_{n-2} p_{2}+s_{n-3} p_{3}+\ldots . .+s_{1} p_{n-1}+p_{n}\right)=n p_{n}+b p_{n}$
$b\left(s_{n+1}+s_{n} p_{1}+s_{n-1} p_{2}+s_{n-2} p_{3}+\ldots .+s_{2} p_{n-1}+s_{1} p_{n}+p_{n+1}\right)=(n+1) p_{n+1}+b p_{n+1}$ satisfed. From here using $\left|p_{n}\right| \leq 2$ inequality orderly; we can take the estimations for first five coefficients easily.

References

[1] Z. Abdulhadi, D. Bshouty, Univalent functions in $H . \bar{H}(D)$, Trans. Amer. Math. Soc., 305(1988), 841-849.
[2] Z. Abdulhadi, W. Hengartner, One pointed univalent logharmonic mappings, J. Math. Anal. Apply. 203(2)(1996), 333-351.
[3] Z. Abdulhadi, Y. Abu Muhanna, Starlike log-harmonic mappings of order α, JIPAM.Vol.7, Issue 4, Article 123(2006).
[4] I. I. Barvin, Functions Star and Convex Univalent of Order α with Weight, Doklady. Math., Vol 76. Issue 3 (2007), 848-850.
[5] A. W. Goodman, Univalent functions, Vol I, Mariner Publishing Company, Inc., Washington, New Jersey, 1983.
[6] Zdzislaw Lewandowski, Starlike Majorants ans Subordination, Annales Universitatis Marie-Curie Sklodowska, Sectio A, Vol XV (1961) 79-84.
[7] H.E.Ozkan,Log-harmonic Univalent Functions For Which Analytic Part is Janowski Starlike Functions,Internat.Symp.on Development of GFTA,222-226,2008

