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Implementation of chemical balance weighing design
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Abstract

In this paper, an implementation of the design matrix of the chemical

balance weighing design is presented. We give the relation between

the design matrix of two-colour microarrays experiment and the design

matrix of the chemical balance weighing design. Moreover, the equality

of the estimators of all contrasts in the model of two-colour microarrays

experiment and in introduced model of the chemical balance weighing

design is dished up. An application of presented theory is indicated.
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1 Introduction

In order to present the relation between the chemical balance weighing de-
sign and two-colour microarrays experiment, first off, let us consider the mi-
croarrays experiment. At the beginning let us recall a few properties of such
models. Some technique of design and optimality issues in microarrays exper-
iments has been described in [8] [9], [6], [14] and [2]. A general overview of
statistical designs in microarray experiments is presented in [1]. Many papers
have been published in selection optimal microarrays. To select efficient de-
signs for microarray experiments, in [10] a minimax approach is considered.
The importance of robustness in the context of microarray experiments has
been studied in several papers including [11] one. Here, two criteria of the
robustness of microarray designs against missing observations are considered.
In [15], simulated annealing are used to find near-optimal (A- and D-optimal)
microarray designs in one-factor experiments.
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Let us consider s treatments and a arrays. The statistical analysis is based on
the gene-specific model

log2 (yijl) = ti + αj + δl + ǫijl, (1)

where yijl describes the intensity of treatment i coloured in dye l on array j,
l = green or red, ti denotes the effect of i

th treatment, αj the effect of j
th array,

δl denotes the effect of lth colour and ǫijl are the error terms for i = 1, 2, ..., s,
j = 1, 2, ..., a. Suppose that array j has treatments i and k coloured green and
red respectively.

For analysis using intra-array information only, model (1) can be replaced
by

log2

(

yij green

ykj red

)

= ti − tk + δgreen − δred + ǫij green + ǫjk red (2)

We ignore the dye effect, δgreen = δred and we take zj = log2 (yij green) −
log2 (yjk red), j = 1, 2, ..., a, i, k = 1, 2, ..., s, i 6= k. Thus in the matrix notation,
model (2) we write in the simpler form

z = Xt + q (3)

where z = (z1, z2, ..., za)
′

is the vector of log ratios of the dye intensities,

t = (t1, t2, ..., ts)
′

is vector of unknown treatment effects, q is the random
vector of errors with E(q) = 0a and Var(q) = σ2Ia. Furthermore, X is an
a × s design matrix, with each row containing exactly one 1 and one -1, all
other elements being equal to zero. Furthermore, we said that any design X is
singular or nonsingular depending on whether the matrix X

′

X is singular or
nonsingular, respectively. In the considered case, the matrix X

′

X is singular
and the observed log intensity ratios are given by z, then the least squares

estimates of the parameters are given in the vector form by t̂ =
(

X
′

X
)

−

X
′

z

and Var
(

t̂
)

= σ2
(

X
′

X
)

−

.
Different optimality criteria such as A-, D- and E-optimality have been pro-
posed in the context of selecting efficient design for microarray experiments.
Such criteria are functions of the matrix X

′

X. For some general theory of ex-
perimental designs and some details of optimality criteria we refer the reader to
[12]. Here, we consider D-optimal designs. Usually, the design X is D-optimal
if it minimizes the determinant of (X

′

X)−1. It is equivalent to the determining
maximum of the determinant of X

′

X. In [3], as D-optimal design consider such
design which maximizes the value of

∏s−1
i=1 λi, where λi are nonzero eigenvalues

of X
′

X. On the other hand, it is worth noting that the model (3) we can treat
as usually used model of the chemical balance weighing design, in which z is
random vector of the observations, X is the design matrix having elements -1,
0, 1, t is vector of unknown parameters and q is random vector of errors for
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which E(q) = 0a and Var(q) = σ2Ia. Here, in the notation of weighing designs,
the number of arrays a corresponds with the number of measurements and the
number of treatments s corresponds with the number of objects. The pur-
pose of the paper is to bring together two approaches, the first one connected
with two-colour microarrays experiments and the second one that deals with
weighing designs. For that reason, we present the relations between weighing
designs and microarray experiments. This aim is implemented on the base of
the construction the design matrix of microarray experiment.

2 The main result

The important point to note here is the form of the matrix X. For the design
matrix X having the form as in the model (3), the matrix X

′

X is singular.
For that reason the following model is implemented

z1 = X1t + q1, (4)

where the matrix X1 is constructed from the matrix X by adding one row with
elements equal to 1, which is interpreted as additionally measurement, i.e.

X1 =

[

X

1
′

s

]

. (5)

Here X1 is an (a+1)× s design matrix, X is an a× s matrix and has the form
as described in the model (3) and, what’s more, a = 0.5s(s−1). Besides, z1 =
[z

′

z0], q1 = [q
′

q0], E(q1) = 0a+1, Var(q1) = σ2Ia+1. In the formula (5), the
design matrix X of the form given in (3), can be expressed as X = 2N

′

−1a1
′

s,
where N is the incidence matrix of the balanced incomplete block design with
the parameters v, b = 0.5v(v − 1), r = v − 1, k = 2, λ = 1, where, according
to the above notation, v = s and b = a.

Lemma 2.1 For X1 given in the form (5), the matrix X
′

1X1 is nonsingular.

Proof. An easy computation shows that for the matrix X of the form given in
the model (3), we have X

′

X = sIs − 1s1
′

s. Besides, for the matrix X1 of the
form (5) it is obvious that X

′

1X1 = sIs , which completes the proof.
There are many problems of practical interest of microarrays experiments. In
many application there is a need to estimate the elementary contrasts of the
vector of treatment effects t. So, let us consider the function

c
′

t = ti − tk for i, k = 1, 2, ..., s, i > k. (6)

Lemma 2.2 In the model (3) and (4) each function of the form (6) is
estimable.
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Proof. We first consider the model (3). It is worth emphasizing, the design X

is connected if all linear contrasts in t are estimable. Authors in [13] showed
that the design is connected if and only if the matrix X

′

X has s− 1 nonzero
eigenvalues. For the design matrix X in the model (3), the matrix X

′

X has
s − 1 nonzero eigenvalues. Therefore, any contrast is estimable. Next, let us
examine the model (4). For the matrix X1 given by the form (5) we have
X

′

1X1 = sIs. Thus the matrix X
′

1X1 is nonsingular. It implies all treatment
effects are estimable, particularly all linear contrasts are estimable, i.e. the
function c

′

t is estimable. So, the proof is completed.

Theorem 2.3 The form of the estimator of any function c
′

t given in (6)
and it’s variance is the same in the models (3) and (4).

Proof. Our proof starts with the observation that one of possible generalized

inverses of X
′

X is given as
(

X
′

X
)

−

= 1

s

[

Is−1 + 1s−11
′

s−1 0s−1

0
′

s−1 0

]

. In the

model (3), the estimator of c
′

t is equal c
′

(X
′

X)−X
′

z. Because c
′

(X
′

X)− =
s−1c

′

then we obtain that the estimator of c
′

t is equal s−1c
′

X
′

z. The variance
of the difference of the estimators of treatment effects is given as Var(t̂i− t̂k) =
2s−1σ2, i, k = 1, 2, ..., s, i > k. Next, the procedure is to show that in the

model (4) we have ĉ
′

t = c
′

(X
′

1X1)
−1X

′

1z1 = s−1c
′

(

X
′

z + 1sz0
)

. In addition

from c
′

1s = 0 we obtain the same form of the estimator of c
′

t as in the model
(3). Furthermore, Var(t̂i) = s−1σ2 and simultaneously Var(t̂i − t̂k) = 2s−1σ2,
i, k = 1, 2, ..., s, i > k. In this way, we obtain the thesis of Theorem.

3 The illustration of above theory

Our paper is concerned with some issues regard to the planning of microarrays
experiments. In order to place some simple results in a conceptual frame work
for the designs of two-coloured experiments, we demonstrate the utility of our
approach by determining optimal designs for the following example. As the
application of the theory presented so far, under assumption that we ignore
the dye effect, let us consider the experiment in which we have at our disposal
three objects, i.e. s = 3 and, according to the above theory, three microarrays,
i.e. a = 3. Afterwards, observed log intensity ratios are given by z

′

= [z1 z2 z3]

and for j = 1, 2, 3, let zj = log2
(

yij green

yjk red

)

= ti−tk+ǫij green+ǫjk red = ti−tk+qj,

where i, j, k = 1, 2, 3, i > k. The design matrix would have the form given as

X =







1 0 −1
−1 1 0
0 −1 1






. So zj = xjt+qj , where xj denotes j

th row of the matrix

X. The matrix X
′

X of this design is singular. The matrix X of such structure
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we can treat as commonly used the matrix of the chemical balance weighing
design. We refer readers to [5]. Here, authors provide detailed accounts of the
relevant background concerned on singular chemical balance weighing designs.
In mentioned paper, the design matrix of such structure is considered. They

propose to take into account the matrix X1 of the form











1 0 −1
−1 1 0
0 −1 1
1 1 1











.

This is the design matrix of the D-optimal chemical balance weighing design.
Thereafter, for X we obtain as in (3)

t̂ =







t̂1
t̂2
t̂3





 = (X
′

X)−X
′

z = 1

3







2 1 0
1 2 0
0 0 0













1 0 −1
−1 1 0
0 −1 1













z1
z2
z3





 . Thus

t̂ = 1

3







z1 + 2z2 + z3
−z1 + z2 + 2z3

0






. Therefore t̂1 − t̂2 = 1

3
(2z1 + z2 − z3), t̂1 − t̂3 =

1

3
(z1 + 2z2 + z3), t̂2− t̂3 =

1

3
(−z1 + z2 + 2z3). For X1, we obtain t̂ =







t̂1
t̂2
t̂3





 =

1

s
X

′

1z1 =
1

3







z1 + z2 + z0
−z1 + z3 + z0
−z2 − z3 + z0





. Moreover, t̂1 − t̂2 =
1

3
(2z1 + z2 − z3), t̂1 − t̂3 =

1

3
(z1 + 2z2 + z3), t̂2 − t̂3 = 1

3
(−z1 + z2 + 2z3). As you can see the contrasts

are the same, besides the measurement z0 is not important. In both models,
Var(t̂i − t̂k) = 2

3
σ2, i, k = 1, 2, 3, i > k. It means, the information on the

contrasts in both models is the same.

4 Discussion

The results in this paper we obtained under the assumption that the design
X1 in (4) is optimal in that sense that its information matrix is proportional to
the identity matrix. In the literature, such design is called optimal in the sense
of Hotelling, see [7], [4]. The design constructed in this form is very suitable
for checking the properties of designs and allows to examine the properties of
nonsingular designs, that is very easy and desirable. In addition, the design
X1 given by the formula (4) satisfies the criterion of D-optimality in usual
sense: the determinant of the information matrix of the design is maximal, so
the general variance of the estimators is minimal. Hence, especially when the
matrix X is of the form described in the model (3), the information matrix of
this design is singular. In this situation, the criterion of D-optimality as the
maximum of the product of the nonzero eigenvalues of the information matrix
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of the design is considered. Moreover, determined variance of the estimator of
comparisons of these effects is also equal. However, in the model (4) we con-
sider the design matrix which is of full column rank, so we are working under
usually established optimality criteria. This simplification may, however, have
practical benefits. Taking as the design matrix the matrix of the chemical
balance weighing design we receive the matrix of optimal design. Therefore,
in that design we obtain the estimators having the smallest general variance.
Here, some issues of the planning of experiments are discussed under as-
sumption a = 0.5s(s − 1). A discussion of this assumption is needed. For
a < 0.5s(s − 1), the product of the nonzero eigenvalues of the information
matrix of the design is always smaller as the product of the nonzero eigen-
values of the information matrix of the design for a = 0.5s(s − 1). Thus the
variance of the estimator of any contrast of comparisons of the treatment ef-
fects in the design with a = 0.5s(s− 1) is not bigger than for the design with
a < 0.5s(s − 1). This is our motivation to consider a = 0.5s(s − 1). A ma-
jor step in the statistical analysis of microarray experiments is to estimate all
linear contrasts of the vector of treatment effects t. It is worth emphasizing
that the above considerations imply that in both models (3) and (4) the form
of the estimator of all possible comparisons of treatment effects is the same.
It demands noting that the matrix X1 is introduced in order to point out the
properties of the design of microarray experiment. We do not expect that
it will be treated as the plan of that kind of experiment. Therefore, in that
case, we do not perform experiment with one more measuring as the equality
of models is derived. In particular, the statement of this measurement is not
contributed to assessing of treatments effects and should be treated as theoret-
ical construction (technical operation) introduced in the purpose of analyzing
the properties of experimental designs. Obviously, the choice of the best (op-
timal) design matrix for the microarray experiment depends on the researcher
questions under investigation and the number of arrays at our disposal. For a
given experimental effort and any practical constrains on the problem, we seek
to optimize the choice of the design matrix on the key of biological effects and
statistical aspects. This paper should be treated as proposition in the theme of
studying the properties of design matrices used in the planning of microarrays
experiments. In addition, it is hoped that the present endeavor will generate
further interest in the above considerations.
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