HYERS-ULAM STABILITY OF FREDHOLM INTEGRAL EQUATION

Zhaohui Gu
School of Economics \& Trade, Guangdong University of Foreign Studies, Guangzhou, 510006, P. R. China
E-mail : zhgugz@163.com
Jinghao Huang
Department of Mathematics, Sun Yat-Sen University, Guangzhou, 510275 P. R. China
E-mail : hjinghao@mail2.sysu.edu.cn

Abstract

We prove the Hyers-Ulam stability of Fredholm integral equation. That is, if x is an approximate solution of $x(t)=f(t)+\lambda \int_{a}^{b} K(t, s) x(s) d s$, then there exists an exact solution of the differential equation near to x.

Mathematics Subject Classification: 34K20; 26D10.
Keywords: Hyers-Ulam stability, integral equation, Fredholm equation.

1 Introduction

S.M. Ulam[14] gave a wide-ranging talk about a series of important unsolved problems in 1940. The question concerning the stability of group homomorphisms is one of them. A year later, D.H. Hyers[1] proved the stability for the case of approximately additive mappings under the assumption that G_{1} and G_{2} are Banach spaces. After then, the Hyers-Ulam stability of function equation(see $[10,11,12,2]$) and differential function(see[8, 9, 13, 5, 6, 7, 3, 4]) was investigated by several mathematicians.

In this paper, we will investigate the Hyers-Ulam stability of integral equation:

$$
\begin{equation*}
x(t)=f(t)+\lambda \int_{a}^{b} K(t, s) x(s) d s \quad \text { (Fredholm equation) } \tag{1.1}
\end{equation*}
$$

by fixed point theorem.
The following theorems are the key in proving our main theorem.
Theorem 1.1 (fixed point theorem). Let (X, d) be a completed metric space. Assume that $T: X \rightarrow X$ is a strictly contractive operator with $d(T x, T y) \leq$ $\theta d(x, y)(0<\theta<1)$. Then
(a)there exists an unique fixed point x^{*} of $T\left(T x^{*}=x^{*}\right)$;
(b)the sequence $\left\{T^{n} x\right\}$ converges to x^{*}.

Theorem 1.2 (Hölder inequality). Assume that $p>1, \frac{1}{p}+\frac{1}{q}=1, x \in$ $L^{p}(E), y \in L^{q}(E)$, then $x y \in L(E)$ and

$$
\int_{E}|x(t) y(t)| d t \leq\left(\int_{E}\left|x(t)^{p}\right| d t\right)^{\frac{1}{p}}\left(\int_{E}|y(t)|^{q}\right)^{\frac{1}{q}} .
$$

2 Main Results

The following theorem is the main result of this paper.
Theorem 2.1. Suppose that $z:[a, b] \rightarrow \mathbb{R}, f \in L^{2}([a, b])$ and $K(t, s) \in$ $L^{2}([a, b] \times[a, b])$. If $z(t)$ satisfies the following inequality

$$
\begin{equation*}
\left|z(t)-f(t)-\lambda \int_{a}^{b} K(t, s) z(s) d s\right| \leq \varepsilon \quad(\varepsilon \geq 0) \tag{2.1}
\end{equation*}
$$

where $\left|\lambda \int_{a}^{b} K(t, s) d s\right| \leq M<1$ for every $t \in[a, b]$ and $\left|\lambda\left[\int_{a}^{b} \int_{a}^{b} K^{2}(t, s) d s d t\right]^{\frac{1}{2}}\right| \leq$ $M<1$, then there exists a solution x satisfies Eq.(1.1) and

$$
|x(t)-z(t)|<\frac{1}{1-M} \varepsilon
$$

for every $t \in[a, b]$.
Proof. Define an operator T by:

$$
\begin{equation*}
(T x)(t)=f(t)+g(t)+\lambda \int_{a}^{b} K(t, s) x(s) d s, \quad x \in L^{2}([a, b]) . \tag{2.2}
\end{equation*}
$$

Then, by using the Hölder inequality(theorem 1.2), we have

$$
\begin{aligned}
\int_{a}^{b}\left|\int_{a}^{b} K(t, s) x(s) d s\right|^{2} d t & \leq \int_{a}^{b}\left[\int_{a}^{b} K^{2}(t, s) d s \int_{a}^{b} x^{2}(s) d s\right] d t \\
& \leq \int_{a}^{b} x^{2}(s) d s \cdot \int_{a}^{b} \int_{a}^{b} K^{2}(t, s) d s d t \leq \infty
\end{aligned}
$$

which implies that $T x \in L^{2}([a, b])$ and T is a self-mapping of $L^{2}([a, b])$. Thus, the solution of Eq.(2.2) is the fixed point of T.

Moreover,

$$
\begin{aligned}
d_{2}(T x, T y) & =\left[\int_{a}^{b}|(T x)(t)-(T y)(t)|^{2} d t\right]^{\frac{1}{2}} \\
& =\left[\int_{a}^{b}\left|\lambda \int_{a}^{b} K(t, s)\{x(s)-y(s)\} d s\right|^{2} d t\right]^{\frac{1}{2}} \\
& \leq|\lambda|\left[\int_{a}^{b}\left\{\int_{a}^{b} K^{2}(t, s) d s \int_{a}^{b}|x(s)-y(s)|^{2} d s\right\} d t\right]^{\frac{1}{2}} \\
& =|\lambda|\left[\int_{a}^{b} \int_{a}^{b} K^{2}(t, s) d s d t\right]^{\frac{1}{2}} d(x, y) .
\end{aligned}
$$

And we note that

$$
\left|\lambda\left[\int_{a}^{b} \int_{a}^{b} K^{2}(t, s) d s d t\right]^{\frac{1}{2}}\right| \leq M<1 .
$$

Thus, T is a contractive operator.
It follows from theorem 1.1 that Eq.(2.2) has a unique solution $x^{*} \in$ $L^{2}([a, b])$, where $x^{*}=\lim _{n \rightarrow \infty} x_{n}$ for $x_{n}(t)=f(t)+g(t)+\lambda \int_{a}^{b} K(t, s) x_{n-1}(s) d s$ and $x_{0} \in L^{2}([a, b])$ is an arbitrary function.

Now, assume that $g(t)=0$ in Eq.(2.2)(equivalent to Eq.(1.1)), then we can know that there exists an unique solution $x^{*} \in L^{2}([a, b])$ of

$$
\begin{equation*}
x(t)=f(t)+\lambda \int_{a}^{b} K(t, s) x(s) d s \tag{2.3}
\end{equation*}
$$

where $x^{*}=\lim _{n \rightarrow \infty} x_{n}$ for $x_{n}(t)=f(t)+\lambda \int_{a}^{b} K(t, s) x_{n-1}(s) d s$ and x_{0} is an arbitrary function in $L^{2}([a, b])$.

Then, let $z \in L^{2}([a, b])$ be a solution of Ineq.(2.1) and

$$
\begin{equation*}
z(t)-f(t)-\lambda \int_{a}^{b} K(t, s) z(s) d s:=h(t) . \tag{2.4}
\end{equation*}
$$

Obviously, $|h(t)| \leq \varepsilon$ for all $t \in[a, b]$. Then we can know that the solution of Eq.(2.4) is $z^{*}=\lim _{n \rightarrow \infty} z_{n}$, where $z^{*} \in L^{2}([a, b])$ and $z_{n}(t)=f(t)+h(t)+$ $\lambda \int_{a}^{b} K(t, s) z_{n-1}(s) d s$ and z_{0} is an arbitrary function in $L^{2}([a, b])$.

At last, let $x_{0}(t)=z_{0}(t)=0$, then we have

$$
\begin{aligned}
& \left|x_{1}(t)-z_{1}(t)\right|=|h(t)| \leq \varepsilon ; \\
& \left|x_{2}(t)-z_{2}(t)\right|=\left|h(t)+\lambda \int_{a}^{b} K(t, s)\left(x_{1}(s)-z_{1}(x)\right) d s\right| \leq \varepsilon\left(1+\lambda \int_{a}^{b}|K(t, s)| d s\right) ; \\
& \left|x_{3}(t)-z_{3}(t)\right|=\left|h(t)+\lambda \int_{a}^{b} K(t, s)\left(x_{2}(s)-z_{2}(x)\right) d s\right| \\
& \leq \varepsilon+\varepsilon \lambda \int_{a}^{b}\left|K\left(t, s_{2}\right)\right|\left(1+\lambda \int_{a}^{b}\left|K\left(s_{2}, s_{1}\right)\right| d s_{1}\right) d s_{2} \\
& \leq \varepsilon\left(1+\lambda \int_{a}^{b}|K(t, s)| d s+\lambda^{2} \int_{a}^{b}\left|K\left(t, s_{2}\right)\right| \int_{a}^{b}\left|K\left(s_{2}, s_{1}\right)\right| d s_{1} d s_{2}\right) ; \\
& \left|x_{n}(t)-z_{n}(t)\right| \leq \varepsilon\left(1+\lambda \int_{a}^{b}|K(t, s)| d s+\lambda^{2} \int_{a}^{b}\left|K\left(t, s_{2}\right)\right| \int_{a}^{b}\left|K\left(s_{2}, s_{1}\right)\right| d s_{1} d s_{2}\right. \\
& \left.+\lambda^{n} \int_{a}^{b} \cdots \int_{a}^{b}\left|K\left(t, s_{n}\right) K\left(s_{n}, s_{n-1}\right) \cdots K\left(s_{2}, s_{1}\right)\right| d s_{n} \cdots d s_{2} d s_{1}\right) \\
& \leq \varepsilon\left(1+M+M^{2}+\cdots+M^{n}\right) \quad\left(\left|\lambda \int_{a}^{b} K(t, s) d s\right| \leq M<1\right) \\
& =\varepsilon \frac{1-M^{n+1}}{1-M} ; \\
& \left|x^{*}(t)-z^{*}(t)\right| \leq \frac{1}{1-M} \varepsilon, \quad(\text { as } \quad n \rightarrow \infty),
\end{aligned}
$$

which completes our proof.

ACKNOWLEDGEMENTS. This is a text of acknowledgements.

References

[1] D.H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U.S.A. 27 (1941) 222-224.
[2] K.-W. Jun and Y.-H. Lee, A generalization of the Hyers-Ulam-Rassias stability of Jensen's equation, J. Math. Anal. Appl. 238 (1999) 305-315.
[3] S.-M. Jung, Hyers-Ulam stability of linear differential equations of first order, Appl. Math. Lett. 17 (2004) 1135-1140.
[4] S.-M. Jung, Hyers-Ulam stability of linear differential equations of first order (II), Appl. Math. Lett. 19 (2006) 854-858.
[5] T. Miura, On the Hyers-Ulam stability of a differentiable map, Sci. Math. Japan 55 (2002) 17-24.
[6] T. Miura, S.-M. Jung, S.-E. Takahasi, Hyers-Ulam-Rassias stability of the Banach space valued linear differential equations $y^{\prime}=\lambda y$, J. Korean Math. Soc. 41 (2004) 995-1005.
[7] Y. Li, Y. Shen, Hyers-Ulam stability of linear differential equations of second order, Appl. Math. Lett. 23 (2010) 306-309.
[8] M. Obłoza, Hyers stability of the linear differential equation, Rocznik Nauk.-Dydakt. Prace Mat. 13 (1993) 259-270.
[9] M. Obłoza, Connections between Hyers and Lyapunov stability of the ordinary differential equations, Rocznik Nauk.-Dydakt. Prace Mat. 14 (1997) 141-146.
[10] C.-G. Park, On the stability of the linear mapping in Banach modules, J. Math. Anal. Appl. 275 (2002) 711-720.
[11] Th.M. Rassias, On the stability of linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978) 297-300.
[12] Th.M. Rassias, On the stability of functional equations and a problem of Ulam, Acta Appl. Math. 62 (2000) 23-130.
[13] S.-E. Takahasi, T. Miura, S. Miyajima, On the Hyers-Ulam stability of the Banach space-valued differential equation $y^{\prime}=\lambda y$, Bull. Korean Math. Soc. 39 (2002) 309-315.
[14] S.M. Ulam, A Collection of the Mathematical Problems, Interscience, New York, 1960.

