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Abstract

We prove the Hyers-Ulam stability of Fredholm integral equation.
That is, if x is an approximate solution of x(t) = f(t)+λ

∫ b

a
K(t, s)x(s)ds,

then there exists an exact solution of the differential equation near to
x.
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1 Introduction

S.M. Ulam[14] gave a wide-ranging talk about a series of important unsolved
problems in 1940. The question concerning the stability of group homomor-
phisms is one of them. A year later, D.H. Hyers[1] proved the stability for
the case of approximately additive mappings under the assumption that G1

and G2 are Banach spaces. After then, the Hyers-Ulam stability of function
equation(see [10, 11, 12, 2]) and differential function(see[8, 9, 13, 5, 6, 7, 3, 4])
was investigated by several mathematicians.

In this paper, we will investigate the Hyers-Ulam stability of integral equa-
tion:

x(t) = f(t) + λ

∫ b

a

K(t, s)x(s)ds (Fredholm equation) (1.1)



258 Z. Gu and J. Huang

by fixed point theorem.
The following theorems are the key in proving our main theorem.

Theorem 1.1 (fixed point theorem). Let (X, d) be a completed metric space.
Assume that T : X → X is a strictly contractive operator with d(Tx, Ty) ≤
θd(x, y)(0 < θ < 1). Then

(a)there exists an unique fixed point x∗ of T (Tx∗ = x∗);
(b)the sequence {T nx} converges to x∗.

Theorem 1.2 (Hölder inequality). Assume that p > 1, 1
p

+ 1

q
= 1, x ∈

Lp(E), y ∈ Lq(E), then xy ∈ L(E) and

∫

E

|x(t)y(t)|dt ≤ (

∫

E

|x(t)p|dt)
1

p (

∫

E

|y(t)|q)
1

q .

2 Main Results

The following theorem is the main result of this paper.

Theorem 2.1. Suppose that z : [a, b] → R, f ∈ L2([a, b]) and K(t, s) ∈
L2([a, b] × [a, b]). If z(t) satisfies the following inequality

|z(t) − f(t) − λ

∫ b

a

K(t, s)z(s)ds| ≤ ε (ε ≥ 0), (2.1)

where |λ
∫ b

a
K(t, s)ds| ≤ M < 1 for every t ∈ [a, b] and |λ[

∫ b

a

∫ b

a
K2(t, s)dsdt]

1

2 | ≤
M < 1, then there exists a solution x satisfies Eq.(1.1) and

|x(t) − z(t)| <
1

1 −M
ε

for every t ∈ [a, b].

Proof. Define an operator T by:

(Tx)(t) = f(t) + g(t) + λ

∫ b

a

K(t, s)x(s)ds, x ∈ L2([a, b]). (2.2)

Then, by using the Hölder inequality(theorem 1.2), we have

∫ b

a

∣

∣

∣

∫ b

a

K(t, s)x(s)ds
∣

∣

∣

2

dt ≤

∫ b

a

[

∫ b

a

K2(t, s)ds

∫ b

a

x2(s)ds]dt

≤

∫ b

a

x2(s)ds ·

∫ b

a

∫ b

a

K2(t, s)dsdt ≤ ∞,
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which implies that Tx ∈ L2([a, b]) and T is a self-mapping of L2([a, b]). Thus,
the solution of Eq.(2.2) is the fixed point of T .

Moreover,

d2(Tx, Ty) = [

∫ b

a

|(Tx)(t) − (Ty)(t)|2dt]
1

2

= [

∫ b

a

|λ

∫ b

a

K(t, s){x(s) − y(s)}ds|2dt]
1

2

≤ |λ|[

∫ b

a

{

∫ b

a

K2(t, s)ds

∫ b

a

|x(s) − y(s)|2ds}dt]
1

2

= |λ|[

∫ b

a

∫ b

a

K2(t, s)dsdt]
1

2d(x, y).

And we note that

∣

∣

∣
λ[

∫ b

a

∫ b

a

K2(t, s)dsdt]
1

2

∣

∣

∣
≤ M < 1.

Thus, T is a contractive operator.

It follows from theorem 1.1 that Eq.(2.2) has a unique solution x∗ ∈

L2([a, b]), where x∗ = limn→∞ xn for xn(t) = f(t)+g(t)+λ
∫ b

a
K(t, s)xn−1(s)ds

and x0 ∈ L2([a, b]) is an arbitrary function.

Now, assume that g(t) = 0 in Eq.(2.2)(equivalent to Eq.(1.1)), then we can
know that there exists an unique solution x∗ ∈ L2([a, b]) of

x(t) = f(t) + λ

∫ b

a

K(t, s)x(s)ds, (2.3)

where x∗ = limn→∞ xn for xn(t) = f(t) + λ
∫ b

a
K(t, s)xn−1(s)ds and x0 is an

arbitrary function in L2([a, b]).

Then, let z ∈ L2([a, b]) be a solution of Ineq.(2.1) and

z(t) − f(t) − λ

∫ b

a

K(t, s)z(s)ds := h(t). (2.4)

Obviously, |h(t)| ≤ ε for all t ∈ [a, b]. Then we can know that the solution
of Eq.(2.4) is z∗ = limn→∞ zn, where z∗ ∈ L2([a, b]) and zn(t) = f(t) + h(t) +

λ
∫ b

a
K(t, s)zn−1(s)ds and z0 is an arbitrary function in L2([a, b]).
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At last, let x0(t) = z0(t) = 0, then we have

|x1(t) − z1(t)| = |h(t)| ≤ ε;

|x2(t) − z2(t)| = |h(t) + λ

∫ b

a

K(t, s)(x1(s) − z1(x))ds| ≤ ε(1 + λ

∫ b

a

|K(t, s)|ds);

|x3(t) − z3(t)| = |h(t) + λ

∫ b

a

K(t, s)(x2(s) − z2(x))ds|

≤ ε + ελ

∫ b

a

|K(t, s2)|(1 + λ

∫ b

a

|K(s2, s1)|ds1)ds2

≤ ε(1 + λ

∫ b

a

|K(t, s)|ds + λ2

∫ b

a

|K(t, s2)|

∫ b

a

|K(s2, s1)|ds1ds2);

· · · · · · · · · · · · · · · · · ·

|xn(t) − zn(t)| ≤ ε(1 + λ

∫ b

a

|K(t, s)|ds + λ2

∫ b

a

|K(t, s2)|

∫ b

a

|K(s2, s1)|ds1ds2

+λn

∫ b

a

· · ·

∫ b

a

|K(t, sn)K(sn, sn−1) · · ·K(s2, s1)|dsn · · · ds2ds1)

≤ ε(1 + M + M2 + · · · + Mn) (|λ

∫ b

a

K(t, s)ds| ≤ M < 1)

= ε
1 −Mn+1

1 −M
;

|x∗(t) − z∗(t)| ≤
1

1 −M
ε, (as n → ∞),

which completes our proof.
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