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Abstract

In this paper, we prove the stability in the sense of Hyers-Ulam

stability of a kind of polynomial equation. That is, if y is an approximate

solution of the polynomial equation any
n+an−1y

n−1+· · ·+a1y+a0 = 0,

then there exists an exact solution of the polynomial equation near to

y.
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1 Introduction

In 1940, S. M. Ulam [1] gave a wide ranging talk about the important con-
cerning the stability of homomorphisms. In 1941, Hyers [2] solved the problem
for the case of approximately additive mappings between spaces. Since then,
the stability problems of functional equations have been extensively studied
by several authors [3− 7].

Y. Li remarked that the polynomial equation xn + αx + β = 0 and the
differential equation y′′ = λy, y′′ + αy′(t) + βy = f(t) have the Hyers-Ulam
Stability [8 − 9]. Recently, Jung studied the Hyers-Ulam Stability of several
types of linear differential equations of second order [10− 15].

Motivated by and connected to the results mentioned above and [8], we
consider stability problems for a polynomial equation. In this paper, we will
studied the Hyers-Ulam Stability of the following polynomial equation

xn + αx2 + βx+ γ = 0. (1)
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where x ∈ [−1, 1].
We say that equation (1) has the Hyers-Ulam Stability if there exists a

constant K > 0 with the following property: for every ε > 0, y ∈ [−1, 1], if

yn + αy2 + βy + γ ≤ ε

then there exists some z ∈ [−1, 1] satisfying

zn + αz2 + βz + γ = 0

such that |y − z| < Kε. K is the Hyers-Ulam Stability constant for equation
(1).

The similar conclusions apply to the following equation

any
n + an−1y

n−1 + · · ·+ a1y + a0 = 0. (2)

2 Main Results

Now, the main result of this work is given in the following theorem.

Theorem 2.1. If 2|α|+ n ≤ |β| and y ∈ [−1, 1] satisfies the inequality

|yn + αy2 + βy + γ| ≤ ε

then there exists a solution z ∈ [−1, 1] of Eq.(1) such that

|y − z| ≤ Kε

where K > 0 is a constant.

Proof. Let ε > 0 and y ∈ [−1, 1] such that

|yn + αy2 + βy + γ| ≤ ε

We need to prove that there exists a constant K independent of ε and z such
that |y − z| ≤ Kε for some z ∈ [−1, 1] satisfying xn + αx2 + βx+ γ = 0.

Let

T (x) =
1

β
(−xn − αx2 − γ) x ∈ [−1, 1]

then

|T (x)| = |
1

β
(−xn − αx2 − γ)| ≤ 1.

Let X = [−1, 1], d(x, y) = |x− y|, then (X, d) is a complete metric space, and
T map X into X .
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We will prove that T is a contraction mapping from X to X . For any
x, y ∈ X , one has

d(T (x), T (y)) = |
1

β
(−xn − αx2 − γ)−

1

β
(−yn − αy2 − γ)|

≤
1

|β|
|(xn − yn) + α(x2 − y2)|

≤
1

|β|
(|x− y||xn−1 + xn−2y + · · ·+ xyn−2 + yn−1|+ |α||x− y||x+ y|)

Since x, y ∈ [−1, 1], x 6= y, 2|α|+ n ≤ |β|, we obtain

d(T (x), T (y)) ≤ Cd(x, y)

where C = 2|α|+n

|β|
∈ [0, 1].

Thus, T is a contraction mapping from X to X , by S.Banachs contraction
mapping theorem, there exists unique z ∈ X , such that

T (z) = z

Hence, Eq.(1) has a solution on [−1, 1].
Finally, Eq.(1) of the Hyers-Ulam stability will be showed.

|y − z| = |y − T (y) + T (y)− T (z)| ≤ |y −
1

β
(−yn − αy2 − γ − βy)|+ C|y − z|

Thus, we get

|y − z| ≤
1

|β|(1− C)
|yn + αy2 + γ + βy)|

Let 1
|β|(1−C)

= K, we get

|y − z| ≤ K|yn + αy2 + γ + βy)| ≤ Kε.

Proof of Theorem 2.1 is complete.

By applying a similar argument of the proof of Theorem 2.1, it is easy to
see the following theorem holds.

Theorem 2.2. If |nan + (n − 1)an−1 + · · · + 2a2| ≤ |a1| and y ∈ [−1, 1]
satisfies the inequality

|any
n + an−1y

n−1 + · · ·+ a1y + a0| ≤ ε

then there exists a solution z ∈ [−1, 1] of Eq.(2) such that

|y − z| ≤ Kε

where K > 0 is a constant.
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Proof. Let ε > 0 and y ∈ [−1, 1] such that

|any
n + an−1y

n−1 + · · ·+ a1y + a0| ≤ ε

We need to prove that there exists a constant K independent of ε and z such
that |y − z| ≤ Kε for some z ∈ [−1, 1] satisfying Eq.(2).

Let

T (x) =
1

a1
(−anx

n − an−1x
n−1 − · · · − a2x

2 − a0) x ∈ [−1, 1]

then

|T (x)| = |
1

β
(−xn − αx2 − γ)| ≤ 1.

Let X = [−1, 1], d(x, y) = |x− y|, then (X, d) is a complete metric space, and
T map X into X .

We will prove that T is a contraction mapping from X to X . For any
x, y ∈ X , one has

d(T (x), T (y)) = |
1

a1
(−anx

n − an−1x
n−1 − · · · − a2x

2 − a0)

−
1

a1
(−any

n − an−1y
n−1 − · · · − a2y

2 − a0)|

≤
1

|a1|
|an(x

n − yn) + an−1(x
n−1 − yn−1) + · · ·+ a2(x

2 − y2)|

≤
1

|a1|
(|x− y||an(x

n−1 + xn−2y + · · ·+ xyn−2 + yn−1) + · · ·+ a2(x+ y)|

Since x, y ∈ [−1, 1], x 6= y, |nan + (n− 1)an−1 + · · ·+ 2a2| ≤ |a1|, we obtain

d(T (x), T (y)) ≤ Cd(x, y)

where C = |nan+(n−1)an−1+···+2a2
|a1|

∈ [0, 1].
Thus, T is a contraction mapping from X to X , by S.Banachs contraction

mapping theorem, there exists unique z ∈ X , such that

T (z) = z

Hence, Eq.(2) has a solution on [−1, 1].
Finally, Eq.(2) of the Hyers-Ulam stability will be showed.

|y − z| = |y − T (y) + T (y)− T (z)| ≤ |y − T (y)|+ |T (y)− T (z)|

≤ |y −
1

a1
(−any

n − an−1y
n−1 − a2y

2 − a0)|+ C|y − z|
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Thus, we get

|y − z| ≤
1

|a1|(1− C)
|any

n + an−1y
n−1 + · · ·+ a1y + a0|

Let 1
|a1|(1−C)

= K, we get

|y − z| ≤ Kε.

Proof of Theorem 2.2 is complete.
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