Mathematica Aeterna, Vol. 6, 2016, no. 4, 551 - 556

Hyers-Ulam Stability of A Kind of Polynomial Equation

Zhihong Zhao

School of Science Beijing Institute of Technology, Zhuhai Zhuhai 519088, P. R. China

Abstract

In this paper, we prove the stability in the sense of Hyers-Ulam stability of a kind of polynomial equation. That is, if y is an approximate solution of the polynomial equation $a_n y^n + a_{n-1} y^{n-1} + \cdots + a_1 y + a_0 = 0$, then there exists an exact solution of the polynomial equation near to y.

Mathematics Subject Classification: Primary 39B82. Secondary 34K20, 26D10.

Keywords: Hyers-Ulam Stability, Polynomial equation, Contraction mapping, Banach space

1 Introduction

In 1940, S. M. Ulam [1] gave a wide ranging talk about the important concerning the stability of homomorphisms. In 1941, Hyers [2] solved the problem for the case of approximately additive mappings between spaces. Since then, the stability problems of functional equations have been extensively studied by several authors [3 - 7].

Y. Li remarked that the polynomial equation $x^n + \alpha x + \beta = 0$ and the differential equation $y'' = \lambda y$, $y'' + \alpha y'(t) + \beta y = f(t)$ have the Hyers-Ulam Stability [8 - 9]. Recently, Jung studied the Hyers-Ulam Stability of several types of linear differential equations of second order [10 - 15].

Motivated by and connected to the results mentioned above and [8], we consider stability problems for a polynomial equation. In this paper, we will studied the Hyers-Ulam Stability of the following polynomial equation

$$x^n + \alpha x^2 + \beta x + \gamma = 0. \tag{1}$$

where $x \in [-1, 1]$.

We say that equation (1) has the Hyers-Ulam Stability if there exists a constant K > 0 with the following property: for every $\varepsilon > 0, y \in [-1, 1]$, if

$$y^n + \alpha y^2 + \beta y + \gamma \le \varepsilon$$

then there exists some $z \in [-1, 1]$ satisfying

$$z^n + \alpha z^2 + \beta z + \gamma = 0$$

such that $|y-z| < K\varepsilon$. K is the Hyers-Ulam Stability constant for equation (1).

The similar conclusions apply to the following equation

$$a_n y^n + a_{n-1} y^{n-1} + \dots + a_1 y + a_0 = 0.$$
⁽²⁾

Main Results 2

Now, the main result of this work is given in the following theorem.

Theorem 2.1. If $2|\alpha| + n \leq |\beta|$ and $y \in [-1, 1]$ satisfies the inequality

$$|y^n + \alpha y^2 + \beta y + \gamma| \le \varepsilon$$

then there exists a solution $z \in [-1, 1]$ of Eq.(1) such that

$$|y - z| \le K\varepsilon$$

where K > 0 is a constant.

Proof. Let $\varepsilon > 0$ and $y \in [-1, 1]$ such that

$$|y^n + \alpha y^2 + \beta y + \gamma| \le \varepsilon$$

We need to prove that there exists a constant K independent of ε and z such that $|y-z| \leq K\varepsilon$ for some $z \in [-1,1]$ satisfying $x^n + \alpha x^2 + \beta x + \gamma = 0$.

Let

$$T(x) = \frac{1}{\beta}(-x^n - \alpha x^2 - \gamma) \qquad x \in [-1, 1]$$

then

$$|T(x)| = |\frac{1}{\beta}(-x^n - \alpha x^2 - \gamma)| \le 1.$$

Let X = [-1, 1], d(x, y) = |x - y|, then (X, d) is a complete metric space, and $T \mod X$ into X.

We will prove that T is a contraction mapping from X to X. For any $x, y \in X$, one has

$$d(T(x), T(y)) = \left|\frac{1}{\beta}(-x^n - \alpha x^2 - \gamma) - \frac{1}{\beta}(-y^n - \alpha y^2 - \gamma)\right|$$

$$\leq \frac{1}{|\beta|}|(x^n - y^n) + \alpha(x^2 - y^2)|$$

$$\leq \frac{1}{|\beta|}(|x - y||x^{n-1} + x^{n-2}y + \dots + xy^{n-2} + y^{n-1}| + |\alpha||x - y||x + y|)$$

Since $x, y \in [-1, 1], x \neq y, 2|\alpha| + n \leq |\beta|$, we obtain

$$d(T(x), T(y)) \le Cd(x, y)$$

where $C = \frac{2|\alpha|+n}{|\beta|} \in [0, 1]$. Thus, T is a contraction mapping from X to X, by S.Banachs contraction mapping theorem, there exists unique $z \in X$, such that

$$T(z) = z$$

Hence, Eq.(1) has a solution on [-1, 1].

Finally, Eq.(1) of the Hyers-Ulam stability will be showed.

$$|y - z| = |y - T(y) + T(y) - T(z)| \le |y - \frac{1}{\beta}(-y^n - \alpha y^2 - \gamma - \beta y)| + C|y - z|$$

Thus, we get

$$|y-z| \le \frac{1}{|\beta|(1-C)} |y^n + \alpha y^2 + \gamma + \beta y)|$$

Let $\frac{1}{|\beta|(1-C)} = K$, we get

$$|y-z| \le K|y^n + \alpha y^2 + \gamma + \beta y)| \le K\varepsilon.$$

Proof of Theorem 2.1 is complete.

By applying a similar argument of the proof of Theorem 2.1, it is easy to see the following theorem holds.

Theorem 2.2. If $|na_n + (n-1)a_{n-1} + \cdots + 2a_2| \le |a_1|$ and $y \in [-1, 1]$ satisfies the inequality

$$|a_n y^n + a_{n-1} y^{n-1} + \dots + a_1 y + a_0| \le \varepsilon$$

then there exists a solution $z \in [-1, 1]$ of Eq.(2) such that

$$|y-z| \le K\varepsilon$$

where K > 0 is a constant.

Proof. Let $\varepsilon > 0$ and $y \in [-1, 1]$ such that

$$|a_n y^n + a_{n-1} y^{n-1} + \dots + a_1 y + a_0| \le \varepsilon$$

We need to prove that there exists a constant K independent of ε and z such that $|y-z| \leq K\varepsilon$ for some $z \in [-1, 1]$ satisfying Eq.(2).

Let

$$T(x) = \frac{1}{a_1}(-a_n x^n - a_{n-1} x^{n-1} - \dots - a_2 x^2 - a_0) \qquad x \in [-1, 1]$$

then

$$|T(x)| = |\frac{1}{\beta}(-x^n - \alpha x^2 - \gamma)| \le 1.$$

Let X = [-1, 1], d(x, y) = |x - y|, then (X, d) is a complete metric space, and $T \mod X$ into X.

We will prove that T is a contraction mapping from X to X. For any $x, y \in X$, one has

$$d(T(x), T(y)) = \left| \frac{1}{a_1} (-a_n x^n - a_{n-1} x^{n-1} - \dots - a_2 x^2 - a_0) - \frac{1}{a_1} (-a_n y^n - a_{n-1} y^{n-1} - \dots - a_2 y^2 - a_0) \right|$$

$$\leq \frac{1}{|a_1|} |a_n (x^n - y^n) + a_{n-1} (x^{n-1} - y^{n-1}) + \dots + a_2 (x^2 - y^2)|$$

$$\leq \frac{1}{|a_1|} (|x - y|| a_n (x^{n-1} + x^{n-2} y + \dots + x y^{n-2} + y^{n-1}) + \dots + a_2 (x + y)|$$

Since $x, y \in [-1, 1], x \neq y, |na_n + (n-1)a_{n-1} + \dots + 2a_2| \leq |a_1|$, we obtain

 $d(T(x), T(y)) \le Cd(x, y)$

where $C = \frac{|na_n + (n-1)a_{n-1} + \dots + 2a_2}{|a_1|} \in [0, 1]$. Thus, T is a contraction mapping from X to X, by S.Banachs contraction mapping theorem, there exists unique $z \in X$, such that

$$T(z) = z$$

Hence, Eq.(2) has a solution on [-1, 1].

Finally, Eq.(2) of the Hyers-Ulam stability will be showed.

$$|y - z| = |y - T(y) + T(y) - T(z)| \le |y - T(y)| + |T(y) - T(z)|$$
$$\le |y - \frac{1}{a_1}(-a_ny^n - a_{n-1}y^{n-1} - a_2y^2 - a_0)| + C|y - z|$$

Thus, we get

$$|y-z| \le \frac{1}{|a_1|(1-C)|} |a_n y^n + a_{n-1} y^{n-1} + \dots + a_1 y + a_0|$$

Let $\frac{1}{|a_1|(1-C)|} = K$, we get

$$|y-z| \le K\varepsilon.$$

Proof of Theorem 2.2 is complete.

ACKNOWLEDGEMENTS. The authors of this paper would like to thank the referee for a number of valuable suggestions regarding a previous version of this paper.

References

- S.M. Ulam, A Collection of the Mathematics Problems, Publisher, Interscience, New York, 1960.
- [2] D.H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U.S.A.27(1941), 222-224.
- [3] K.-W. Jun and Y.-H. Lee, A generalization of the Hyers-Ulam-Rassias stabilyty of Jensens equation, J. Math. Anal. Appl. 238(1999), 305-315.
- [4] S.-M. Jung, On the Hyers-Ulam-Rassias stabilyty of approximately additive mappings, J. Math. Anal. Appl. 204(1996), 221-226.
- [5] S.-M. Jung, Hyers-Ulam-Rassias stabilyty of Jensens equation and its application, Proc. Amer. Math. Soc. 126(1998),no,11, 3137-3143.
- [6] C.-G. Park, On the stabilyty of the linear mapping in Banach modules, J. Math. Anal. Appl. 275(2002), 711-720.
- [7] Th. M. Rassias, On the stabilyty of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72(1978), 297-300.
- [8] Yongjin Li and Liubin Hua, Hyers-Ulam stabilyty of a polynomial equation, Banach J. Math. Anal. 3(2009), no. 2, 86-90.
- [9] Y. Li, Hyers-Ulam Stabilyty of a Linear Differential Equations $y'' = \lambda^2 y$, Thai Journal of Mathematics, 223(2009), 703-713.
- [10] Jung, S-M, Legendres differential equation and its Hyers-Ulam Stabilyty, Absta. Appl. Anal. 2007, Article ID 56419 (2007). doi:10.1155/2007/56419.

- [11] Jung, S-M, Approximation of analytic functions by Airy functions, Integral Transforms Spec. Funct.19(12) (2008), 885-891.
- [12] Jung, S-M, Approximation of analytic functions by Hermite functions, Bull. Sci. Math.133,(2009), 756-764.
- [13] Jung, S-M, Approximation of analytic functions by Legendre functions, Nonlinear Anal.71(12),(2009), 103-108.
- [14] Jung, S-M, Hyers-Ulam Stabilyty of differential equation y'' + 2xy' 2ny = 0, J. Inequal. Appl. 2010, Article ID 793197(2010).doi:10.1155/2010/793197.
- [15] Jung, S-M, Approximation of analytic functions by kUMMER functions, J. Inequal. Appl. 2010, Article ID 898274 (2010). doi:10.1155/2010/898274.

Received: July 19, 2016