Hom-pre-Lie algebras of three dimension

Dahuan Zou
Department of Mathematics, Tonghua Normal University, Tonghua 134000, China

Abstract

In this paper, we give some examples of Hom-pre-Lie algebras of three dimension. They can be obtained from pre-Lie algebras by twisting along any algebra endomorphism.

Mathematics Subject Classification: 17Dxx, 37C10, 37C20
Keywords: Lie algebra, Pre-Lie algebra, Hom-pre-Lie algebra

1 Preliminaries

Pre-Lie algebras were introduced in the studies of different geometry and Lie group, which have a close relationship with the Lie algebras. They have already been introduced by Cayley in 1896 as a kind of rooted tree algebras [5]. They affine manifolds and affine structures on Lie group $[9,10]$. They also play very important roles in the studies of certain in tegrable systems, classical and quantum Yang-Baxter equations $[6,8]$, and so on. The Pre-Lie algebra is also called a left-symmetric algebra or Vinberg algebra. Hom-pre-Lie algebras were first introduced by Makblouf and Silvestor as a special case of G-Homassociative algebras [4]. Pre-Lie algebra appears in many fields in mathematics and mathematical physics. So far, there have been many results in the study of Hom- pre-Lie algebra, but there are still some problems that have not been solved. In this paper, we shall give some examples of the 3 -dimensional Hom-pre-Lie algebras.

Definition 1.1 [1] Let A be a vector space over a field \boldsymbol{F} equipped with a bilinear product $\mu: A^{\otimes 2} \rightarrow A . A$ is called a pre-Lie-algebra if for any $x, y, z \in A$,

$$
\begin{equation*}
(x y) z-x(y z)=(y x) z-y(x z), \tag{1}
\end{equation*}
$$

Definition 1.2 [2] Let A be a vector space over a field \boldsymbol{F} equipped with a bilinear product $\mu: A^{\otimes 2} \rightarrow A$. A is called a pre-Lie-algebra if for any $x, y, z \in A$,

$$
\begin{gather*}
\alpha(x y)=\alpha(x) \alpha(y), \tag{2}\\
(x y) \alpha(z)-\alpha(x)(y z)=(y x) \alpha(z)-\alpha(y)(x z), \tag{3}
\end{gather*}
$$

Definition 1.3 [7] Let A be a vector space over a fieldF, $\mu: A^{\otimes 2} \rightarrow A$ is bilinear map, and $\alpha: A \rightarrow A$ is a linear map. (A, μ, α) is called Hom-Novikov algebra if the linear map satisfies equation (2) and (3), and the following condition for $x, y, z \in A$:

$$
\begin{equation*}
(x y) \alpha(z)=(x z) \alpha(y), \tag{4}
\end{equation*}
$$

Definition 1.4 [3] Let A be a vector space over a field $\boldsymbol{F}, \mu: A^{\otimes 2} \rightarrow A$ be bilinear map, and $\alpha: A \rightarrow A$ be a linear map. (A, μ, α) is called G-Homassociative algebra if any $x_{i} \in A(i=1,2,3)$:

$$
\begin{equation*}
\sum_{\sigma \in G}(-1)^{\varepsilon(\sigma)}\left\{\left(x_{\sigma(1)} x_{\sigma(2)}\right) \alpha\left(x_{\sigma(3)}\right)-\alpha\left(x_{\sigma(1)}\right)\left(x_{\sigma(2)} x_{\sigma(3)}\right)\right\}, \tag{5}
\end{equation*}
$$

where $\varepsilon(\sigma)$ is the signature of σ.
(1) A Hom-associtive algebra is a G-Hom-associative algebra in which G is the trivial subgroup $\{e\}$. The G-Hom-associativity now takes the form

$$
\begin{equation*}
(x y) \alpha(z)=\alpha(x)(y z), \tag{6}
\end{equation*}
$$

which we call Hom-associativity.
(2) A Hom-pre-Lie algebra is a G-Hom-associative algebra in which $G=$ $\{e,(12)\}$. The $\{e,(1,2)\}$ Hom-associativity axiom (5) is equivalent to

$$
\begin{equation*}
(x y) \alpha(x)-\alpha(x)(y z)=(y x) \alpha(z)-\alpha(y)(x z) . \tag{7}
\end{equation*}
$$

Theorem 1.5 [3] Let $A=(A, \mu)$ be a G-associative algebra and $\alpha: A \rightarrow A$ be a linear map such that $\alpha \circ \mu=\mu \circ \alpha^{\otimes 2}$. Then $\left(A, \mu_{\alpha}=\alpha \circ \mu, \alpha\right)$ is a G -Hom-associative algebra. Moreover, α is multiplicative with respect to μ_{α}, i.e., $\alpha \circ \mu=\mu \circ \alpha^{\otimes 2}$.

Theorem 1.6 [3] Let $A=(A, \mu)$ be a not necessarily associative algebra and $\alpha: A \rightarrow A$ be a algebra morphism. Write A_{α} for the triple $\left(A, \mu_{\alpha}=\alpha \circ \mu, \alpha\right)$.
(1) If A is an associative algebra, then A_{α} is a Hom-associative algebra;
(2) If A is a Lie algebra, then A_{α} is a Hom-Lie algebra;
(3) If A is a pre-Lie algebra, then A_{α} is a Hom-pre-Lie algebra;
(4) If A is a Lie-admissible algebra, then A_{α} is a Hom-pre-Lie algebra.

2 Main results

Let A be a 3 -dimensional Lie algebra with a fixed linear basis $\left\{e_{1}, e_{2}, e_{3}\right\}$, and the characteristic matrix of A be

$$
M(\mu)=\left(\begin{array}{lll}
e_{1} e_{1} & e_{1} e_{2} & e_{1} e_{3} \tag{8}\\
e_{2} e_{1} & e_{2} e_{2} & e_{2} e_{3} \\
e_{3} e_{1} & e_{3} e_{2} & e_{3} e_{3}
\end{array}\right)
$$

where $e_{i} e_{j}=\sum_{k=1}^{3} d_{k}^{i j} e_{k}$. If $\alpha: A \rightarrow A$ is an algebra morphism and the $\mu_{\alpha}=\alpha \circ \mu$ is the associated Hom-pre-Lie algebra product, then its characteristic matrix is defined similarly as

$$
M\left(\mu_{\alpha}\right)=\left(\begin{array}{ccc}
\alpha\left(e_{1} e_{1}\right) & \alpha\left(e_{1} e_{2}\right) & \alpha\left(e_{1} e_{3}\right) \tag{9}\\
\alpha\left(e_{2} e_{1}\right) & \alpha\left(e_{2} e_{2}\right) & \alpha\left(e_{2} e_{3}\right) \\
\alpha\left(e_{3} e_{1}\right) & \alpha\left(e_{3} e_{2}\right) & \alpha\left(e_{3} e_{3}\right)
\end{array}\right)
$$

We denote a linear map $\alpha: A \rightarrow A$ by its 3×3-matrix with respect to the basis $\left\{e_{1}, e_{2}, e_{3}\right\}$ and its matrix is

$$
M(\alpha)=\left(\begin{array}{ccc}
a_{11} & a_{12} & a_{13} \tag{10}\\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right)
$$

where $\alpha\left(e_{i}\right)=\sum_{k=1}^{3} a_{k i} e_{k}, 1 \leq i \leq 3$.
The classification of pre-Lie algebras of dimension three given in [3] is divided five classes, A, H, N, D and E. Together with H and E associated Hom-pre-Lie products (Theorem 2.2), the classifications of algebra morphisms on 3 -dimensional pre-Lie algebras are listed in the table 1 .

$$
\begin{align*}
& \alpha\left(e_{1} e_{2}\right) \\
& =\alpha\left(e_{1}\right) \alpha\left(e_{2}\right) \\
& =\left(a_{11} e_{1}+a_{21} e_{2}+a_{31} e_{3}\right)\left(a_{11} e_{1}+a_{21} e_{2}+a_{31} e_{3}\right) \tag{11}\\
& =a_{11} e_{1}+a_{11} a_{21}\left(e_{2}+e_{3}\right)+a_{11} a_{31} e_{3}+a_{21} a_{11} e_{2}+a_{31} a_{11} e_{3} \\
& =a_{11}^{2} e_{1}+\left(a_{11} a_{21}+a_{21} a_{11}\right) e_{2}+\left(a_{11} a_{21}+2 a_{31} a_{11}\right) e_{3} .
\end{align*}
$$

And because $\alpha\left(e_{1} e_{1}\right)=\alpha\left(e_{1}\right)$, then $a_{11}^{2} e_{1}+\left(a_{11} a_{21}+a_{21} a_{11}\right) e_{2}+\left(a_{11} a_{21}+2 a_{31} a_{11}\right) e_{3}=$ $a_{11} e_{1}+a_{21} e_{2}+a_{31} e_{3}$. We can get the equations

$$
a_{11}^{2}=a_{11}, 2 a_{11} a_{21}=a_{21}, a_{31}=a_{11} a_{21}+2 a_{11} a_{31}
$$

According to the $\alpha\left(e_{1} e_{2}\right)=\alpha\left(e_{2}\right)+\alpha\left(e_{3}\right)$, we get the equations
$a_{11} a_{12}=a_{12}+a_{13}, a_{11} a_{22}+a_{21} a_{12}=a_{22}+a_{23}, a_{12} a_{22}+a_{11} a_{32}+a_{31} a_{12}=a_{32}+a_{33}$.

Table 1: The classifications of algebra morphisms on 3-dimensional pre-Lie algebras

Pre-Lie algebra $M(\mu)$	Algebra morphism $M(\mu)$	Hom-pre-Lie algebra $M(\mu)$
$(H-1)=\left(\begin{array}{ccc}e_{1} & e_{2}+e_{3} & e_{3} \\ e_{2} & 0 & 0 \\ e_{3} & 0 & 0\end{array}\right)$	$\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & b_{2} & 0 \\ 0 & b_{3} & 0\end{array}\right)$	$\left(\begin{array}{ccc}e_{1} & b_{2} e_{2}+b_{3} e_{3} & 0 \\ b_{2} e_{2}+b_{3} e_{3} & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$
	$\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$	$\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$
$(H-2)=\left(\begin{array}{ccc}e_{1} & e_{2}+e_{3} & e_{3} \\ e_{2} & e_{3} & 0 \\ e_{3} & 0 & 0\end{array}\right)$	$\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & b_{3} & 0\end{array}\right)$	$\left(\begin{array}{ccc}e_{1} & b_{3} e_{3} & 0 \\ b_{3} e_{3} & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$
$(H-3)=\left(\begin{array}{ccc}e_{1} & e_{3} & 0 \\ 0 & e_{3} & 0 \\ 0 & 0 & 0\end{array}\right)$	$\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & b_{3} & 1\end{array}\right)$	$\left(\begin{array}{ccc}e_{1} & e_{3} & 0 \\ 0 & e_{3} & 0 \\ 0 & 0 & 0\end{array}\right)$
	$\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & b_{3} & 0\end{array}\right)$	$\left(\begin{array}{ccc}e_{1} & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$
	$\left(\begin{array}{ccc}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & b_{3} & 0\end{array}\right)$	$\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$
$(H-4)=\left(\begin{array}{ccc}e_{1} & e_{3} & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$	$\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & b_{2} & 0 \\ 0 & b_{3} & b_{2}\end{array}\right)$	$\left(\begin{array}{ccc}e_{1} & b_{2} e_{3} & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$
	$\left(\begin{array}{ccc}0 & 0 & 0 \\ 0 & b_{2} & 0 \\ 0 & b_{3} & b_{2}\end{array}\right)$	$\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$
$(H-5)=\left(\begin{array}{ccc}0 & 0 & 0 \\ -e_{3} & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$	$\begin{aligned} & \left(\begin{array}{ccc} a_{1} & b_{1} & 0 \\ a_{2} & b_{2} & 0 \\ a_{3} & b_{3} & a_{1} b_{2} \end{array}\right) \\ & \left(b_{2} b_{1}=0, a_{2} a_{1}=0, a_{2} b_{1}=0\right) \end{aligned}$	$\left(\begin{array}{ccc}0 & 0 & 0 \\ -a_{1} b_{2} e_{3} & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$
$(H-6)=\left(\begin{array}{ccc}0 & 0 & 0 \\ -e_{3} & e_{1} & 0 \\ 0 & 0 & 0\end{array}\right)$	$\left(\begin{array}{ccc}b_{2}^{2} & b_{1} & 0 \\ 0 & b_{2} & 0 \\ -b_{1} b_{2} & b_{3} & b_{2}^{3}\end{array}\right)$	$\left(\begin{array}{ccc}0 & 0 & 0 \\ -b_{2}^{3} e_{3} & b_{2}^{2} e_{1}-\frac{-b_{1} b_{2} e_{3}}{} & 0 \\ 0 & 0 & 0\end{array}\right)$
$(H-7)_{\lambda}=\left(\begin{array}{ccc}e_{3} & e_{3} & 0 \\ 0 & \lambda e_{3} & 0 \\ 0 & 0 & 0\end{array}\right),(\lambda \neq 0)$	$\begin{aligned} & \left(\begin{array}{ccc} a_{1} & b_{1} & 0 \\ a_{2} & b_{2} & 0 \\ a_{3} & b_{3} & 2 a_{1} b_{2} \end{array}\right) \\ & \left(\lambda a_{1}^{2}+\lambda a_{1} a_{2}+\lambda^{2} a_{2}^{2}\right. \\ & \left.=b_{1}^{2}+b_{1} b_{2}+\lambda b_{2}\right) \end{aligned}$	$\begin{aligned} & \left(\begin{array}{ccc} 2 a_{1} b_{2} e_{3} & 2 a_{1} b_{2} e_{3} & 0 \\ 0 & 2 \lambda a_{1} b_{2} e_{3} & 0 \\ 0 & 0 & 0 \end{array}\right) \\ & \left(a_{1} b_{2}+a_{2} b_{1}=0\right) \end{aligned}$
$(H-8)=\left(\begin{array}{ccc}0 & \frac{1}{2} e_{3} & 0 \\ -\frac{1}{2} e_{3} & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$	$\left(\begin{array}{lll}a_{1} & b_{1} & 0 \\ a_{2} & b_{2} & 0 \\ a_{3} & b_{3} & 0\end{array}\right)$	$\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$
$(H-9)=\left(\begin{array}{ccc}0 & e_{3} & 0 \\ 0 & e_{1} & 0 \\ 0 & 0 & 0\end{array}\right)$	$\left(\begin{array}{ccc}b_{2}^{2} & b_{1} & 0 \\ 0 & b_{2} & 0 \\ b_{1} b_{2} & b_{3} & b_{2}^{3}\end{array}\right)$	$\left(\begin{array}{ccc}0 & b_{2}^{3} e_{3} & 0 \\ 0 & b_{2}^{2} e_{1}+b_{1} b_{2} e_{3} & 0 \\ 0 & 0 & 0\end{array}\right)$
$(H-10)=\left(\begin{array}{ccc}0 & \frac{\lambda}{\lambda-1} e_{3} & 0 \\ \frac{1}{\lambda-1} e_{3} & \lambda e_{1} & 0 \\ 0 & 0 & 0\end{array}\right)(\lambda \neq 0,1)$	$\left(\begin{array}{ccc}b_{2}^{2} & b_{1} & 0 \\ 0 & b_{2} & 0 \\ \frac{\lambda+1}{\lambda(\lambda-1)} b_{1} b_{2} & b_{3} & b_{2}^{3}\end{array}\right)$	$\left(\begin{array}{ccc}0 & \frac{\lambda}{\lambda-1} b_{2}^{3} e_{3} & 0 \\ \frac{1}{\lambda-1} b_{2}^{3} e_{3} & \lambda b_{2}^{2} e_{1}+\frac{\lambda+1}{\lambda-1} b_{1} b_{2} e_{3} & 0 \\ 0 & 0 & 0\end{array}\right)$
$(E-1)_{\lambda}=\left(\begin{array}{ccc}0 & 0 & 0 \\ 0 & 0 & 0 \\ e_{1} & e_{1}+e_{2} & \lambda e_{3}\end{array}\right)$	$\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$	$\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$
$(E-2)=\left(\begin{array}{ccc}0 & 0 & 0 \\ 0 & 0 & 0 \\ e_{1} & e_{1}+e_{2} & e_{2}+e_{3}\end{array}\right)$	$\left(\begin{array}{ccc}1 & b_{1} & c_{1} \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$	$\left(\begin{array}{ccc}0 & 0 & 0 \\ 0 & 0 & 0 \\ e_{1} & e_{1}+e_{2} & \left(b_{1}+c_{1}\right) e_{1}+\left(1+b_{1}\right) e_{2}+e_{3}\end{array}\right)$
$(E-3)=\left(\begin{array}{ccc}0 & 0 & 0 \\ 0 & 0 & -e_{1} \\ e_{1} & e_{2} & 0\end{array}\right)$	$\left(\begin{array}{ccc}a_{1} & b_{1} & c_{1} \\ 0 & 0 & c_{2} \\ 0 & 0 & c_{3}\end{array}\right)$	$\left(\begin{array}{ccc}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & b_{1} e_{1} & o\end{array}\right)$
	$\left(\begin{array}{ccc}a_{1} & b_{1} & 0 \\ 0 & a_{1} & 0 \\ 0 & 0 & 1\end{array}\right)$	$\left(\begin{array}{ccc}0 & 0 & 0 \\ 0 & 0 & -a_{1} e_{1} \\ a_{1} e_{1} & b_{1} e_{1}+a_{1} e_{2} & o\end{array}\right)$
$\begin{aligned} & (E-4)_{\lambda}=\left(\begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & \lambda e_{1} \\ e_{1} & e_{2}+(\lambda+1) e_{1} & 0 \end{array}\right) \\ & (\lambda \neq 0,-1) \end{aligned}$	$\left(\begin{array}{ccc}0 & b_{1} & c_{1} \\ 0 & 0 & c_{2} \\ 0 & 0 & c_{3}\end{array}\right)$	$\left(\begin{array}{ccc}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & b_{1} e_{1} & 0\end{array}\right)$
	$\left(\begin{array}{ccc}a_{1} & b_{1} & 0 \\ 0 & a_{1} & 0 \\ 0 & 0 & 1\end{array}\right)$	$\left(\begin{array}{ccc}0 & 0 & 0 \\ 0 & 0 & \lambda a_{1} e_{1} \\ a_{1} e_{1} & (\lambda+1) a_{1} e_{1}+b_{1} e_{1}+a_{1} e_{2} & 0\end{array}\right)$
$(E-5)=\left(\begin{array}{ccc}0 & 0 & 0 \\ 0 & e_{3} & 0 \\ e_{1} & e_{2}+e_{1} & 2 e_{3}\end{array}\right)$	$\left(\begin{array}{ccc}a_{1} & b_{1} & 0 \\ 0 & \pm 1 & 0 \\ 0 & 0 & 1\end{array}\right)$	$\left(\begin{array}{ccc}0 & 0 & 0 \\ 0 & e_{3} & 0 \\ a_{1} e_{1} & \left(a_{1}+b_{1}\right) e_{1} \pm e_{2} & 2 e_{3}\end{array}\right)$
$(E-6)=\left(\begin{array}{ccc}0 & 0 & 0 \\ 0 & e_{1} & -e_{1}-e_{2} \\ e_{1} & 0 & -e_{3}-e_{2}\end{array}\right)$	$\left(\begin{array}{ccc}1 & -1 & \frac{1}{2} \\ 0 & 1 & 1 \\ 0 & 0 & 1\end{array}\right)$	$\left(\begin{array}{ccc}0 & 0 & 0 \\ 0 & e_{1} & -e_{3}-e_{2} \\ e_{1} & 0 & \frac{1}{2} e_{1}-e_{3}-2 e_{2}\end{array}\right)$
$(E-8)=\left(\begin{array}{ccc}0 & 0 & -e_{1} \\ 0 & 0 & -e_{2} \\ 0 & e_{1} & e_{3}-e_{2}\end{array}\right)$	$\left(\begin{array}{ccc}0 & 0 & c_{1} \\ 0 & 0 & 0 \\ 0 & 0 & 1\end{array}\right)$	$\left(\begin{array}{ccc}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -c_{1} e_{1}-e_{3}\end{array}\right)$
$(E-9)=\left(\begin{array}{ccc}0 & 0 & e_{1} \\ 0 & e_{1} & 0 \\ 2 e_{1} & e_{1}+e_{2} & e_{3}-e_{2}\end{array}\right)$	$\left(\begin{array}{ccc}1 & -c_{2} & -\frac{1}{2} c_{2} \\ 0 & 1 & c_{2} \\ 0 & 0 & 1\end{array}\right)$	$\left(\begin{array}{ccc}0 & 0 & e_{1} \\ 0 & e_{1} & 0 \\ 2 e_{1} & \left(1-c_{2}\right) e_{1}+e_{2} & -\frac{1}{2} c_{2} e_{1}+e_{3}+e_{2}\end{array}\right)$

According to the $\alpha\left(e_{1} e_{3}\right)=\alpha\left(e_{3}\right)$, we get the equations

$$
a_{11} a_{13}=a_{13}, a_{11} a_{23}+a_{21} a_{13}=a_{23}, a_{11} a_{23}+a_{11} a_{33}+a_{31} a_{13}=a_{33}
$$

According to the $\alpha\left(e_{2} e_{1}\right)=\alpha\left(e_{2}\right)$, we get the equations

$$
a_{12} a_{11}=a_{12}, a_{12} a_{21}+a_{22} a_{11}=a_{22}, a_{12} a_{21}+a_{12} a_{31}+a_{32} a_{11}=a_{32}
$$

According to the $\alpha\left(e_{1} e_{2}\right)=0$, we get the equations

$$
a_{12}^{2}=0,2 a_{12} a_{22}=0, a_{12} a_{22}+2 a_{12} a_{32}=0
$$

. According to the $\alpha\left(e_{2} e_{3}\right)=0$, we get the equations

$$
a_{12} a_{13}=0, a_{12} a_{23}+a_{22} a_{13}=0, a_{12} a_{23}+a_{12} a_{33}+a_{32} a_{13}=0 .
$$

According to the $\alpha\left(e_{3} e_{1}\right)=\alpha\left(e_{3}\right)$, we get the equations

$$
a_{13} a_{11}=a_{13}, a_{13} a_{21}+a_{23} a_{11}=a_{23}, a_{33}=a_{13} a_{21}+a_{13} a_{31}+a_{33} a_{11} .
$$

According to the $\alpha\left(e_{3} e_{2}\right)=0$, we get the equations

$$
a_{13} a_{12}=0, a_{13} a_{22}+a_{23} a_{12}=0, a_{13} a_{22}+a_{13} a_{32}+a_{33} a_{12}=0 .
$$

According to the $\alpha\left(e_{3} e_{3}\right)=0$, we get the equations

$$
a_{13}^{2}=0,2 a_{13} a_{23}=0, a_{13} a_{23}+2 a_{13} a_{33}=0 .
$$

So we obtain the matrixes of α is

$$
\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right), \quad \text { or }\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & b_{2} & 0 \\
0 & b_{2} & 0
\end{array}\right) .
$$

As if $e_{i} e_{j}=\sum_{k=1}^{3} d_{k}^{i j} e_{k}$, and the corresponding characteristic matrixes are

$$
\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \quad \text { or }\left(\begin{array}{ccc}
e_{1} & b_{2} e_{2}+b_{3} e_{3} & 0 \\
b_{2} e_{2}+b_{3} e_{3} & 0 & 0 \\
0 & 0 & 0
\end{array}\right) .
$$

References

[1] Bai C M. Bijective 1-cocycles and classification of 3-dimensional leftsymmetric algebras. Communications in Algebra. 2009, 37: 1016-1057.
[2] Yau D. Hom-Novikov algebras. Journal of physics A: Mathematical and Thoretical. 2011, 44(8).
[3] Yau D. Hom-algebras and Homology. Journal of Lie Theory. 2009, 19: 409-421.
[4] Makhiouf A, Silvestrov S D. Hom-algebra structures. Journal of Generalized Lie Theory and Application. 2008, 2: 51-64.
[5] Cayley, A. . On the theoryof analytic forms called trees. In: Cayley, A. ed. Collected Mathematical Papers of Arthur Cayley, Vol. 3, oxford: Cambridge University Press,1980. 242-246.
[6] Diatta, A.Medina, A.Classical Yang-Baxter equation and left invariant affine geometry on Lie groups.Manuscripta Math. 2004, .144(4):477-486.
[7] Bai C M, Meng D J. The classification of Novikov algebras in low dimensions. Journal of Physics A: Mathematical and General. 2001, 34(8): 1581-1594.
[8] Koszul, J.L. Domaines bornes homogenes et orbites de transformations affines. Bull.Soc.Math.France. 1961, 89:515-533.
[9] Matsushima,Y. Affine structures on complex mainfolds. Osaka J.Math.1968, 5: 215-222.
[10] Liu L G, Ni X, Bai C M. L-quadri-algebras. Scientia Sinica: Mathematica. 2011,44: 105-124.

