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Abstract 
This paper investigates the coupling schemes and corresponding criteria for hierarchical synchronization in multipartite 

graph networks consisting of multi-layers non-identical chaotic oscillators. The global asymptotically stable criteria for 

linearly or adaptively coupled networks are derived respectively to guarantee each layer of oscillators synchronize to the same 

behavior. The numerical simulations show that one can selectively implement certain layer synchrony while other layers not 

by means of taking part of adaptive coupling or increasing the corresponding linearly coupling strength. 
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1. Introduction 
Complex networks have been studied extensively in various disciplines, such as social, biological, mathematical, and 

engineering sciences and so on[1]. Besides the properties of “small-world”[2] and “scale-free”[3], the cluster (or hierarchical) 

structure is a common property in real-world complex networks. Many real networks are composed of several clusters (or 

multi-layers) within which the nodes have some common properties in a cluster different from other clusters[4-7]. The 

multipartite graph network is a special cluster network with multi-layers structure, there are connections of nodes between 

different layers but without any connection within a layer. For example, in social tagging systems, the relationships among 

“users - object - label” constitute a triple-graph network (see Fig.1 for the schematic diagram). 

Because of its widespread use in variety contexts such as biology, chemistry, ecology, sociology, and technology, 

synchronization of complex dynamical networks has been extensively investigated. There is a remarkable synchronous 

phenomenon, cluster (or group) synchronization, has been observed in real dynamics of complex networks[8-13]. Recently, 

some progress in cluster synchronization of complex dynamical networks have been reported[14-17]. In Ref.[14], Belykh et al. 

studied the cluster synchronization for conditional clusters and unconditional clusters in an oscillator network with given 

configuration, they proposed a graph theoretical approach and obtained the criteria for the existence and stability of cluster  

synchronization. In Ref.[15], authors presented a linear feedback control strategy to achieve the cluster synchronization for a 

network with identical oscillators. In Ref.[16], authors investigated the cluster synchronization in a dynamical network 

consisting of two groups of non-identical oscillators, and upper bounds of input strength for the synchrony of each cluster are 

derived under the “same-input” condition. In Ref.[17], we proposed a mathematical model of a complex dynamical network 

consisting of two groups of different oscillators, and presented corresponding criteria of cluster synchronization based on 

linear coupling and adaptive control schemes, respectively. In this paper, we further investigate the cluster synchronization of 

a complex dynamical network. Different from previous studies, we focus on the multipartite graph networks which consisted 

of multi-layers non-identical chaotic oscillators. The synchronization is defined as the hierarchical synchronization, which 

means that nodes in the same layer achieve the same synchronization state while nodes in different layers reach different 

synchronization state. 

This paper is organized as follows. In Section 2, the network model of our research and mathematical preliminaries are 

introduced. The linear coupling and adaptive coupling criteria for the hierarchical synchronization are derived respectively in 

Section 3. In Section 4, the numerical simulations are provided to verify the theoretical analysis. Finally, the further discussion 

and a brief summary are given in Section 5 and 6. 

 

 

 

 

 

 

 

 

 

 

Fig.1. Schematic diagram of a multipartite graph network 

2. Model Description 
Let’s consider a multipartite graph complex dynamical network with M-layers of nodes, each layer contains a number of 

nodes with identical chaotic oscillators, the individual dynamical system and its dimension in one layer can differ from that in 
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other layers. Suppose that the K-th layer contains KN  nodes which is Kn dimensional chaotic dynamical system. The 

multipartite graph network (with M-layers) is described by 
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where
nI

iI Rx ,  is state vector of the i-th node in the I-th layer. IF  is a smooth nonlinear function which describes the 

node’s dynamics of I-th layer. 0IJc  is the external excitation intensity acting on I-th layer from J-th layer. The matrix 

JI NN

IJIJ RjiaA


 )),(( (where JIMJIjiaIJ  ,,,1,,0),(  ) represents the external connection from the 

I-th to J-th layer which satisfies the “same input” condition(see Definition 1). JI nn
R


IJ is the dimension-transformation 

matrix whose form is E or [E, 0] or [E, 0]T (where E denotes identity matrix, 0 is a proper dimension zero matrix).  

For model (1), we have following assumption and definitions. 

Assumption 1.  Suppose that there exists positive constant 
K  such that 

.)()( 2121 zzzFzF KKK    

where z1, z2are time-varying vectors. 

Definition 1.  A matrix nmijhH  )(  is said to satisfy condition SI, if its elements satisfy 

.,,1,,,1,, nkmjihh jkik    

Moreover, if the external connection matrices ),,,1,( JIMJIAIJ    in model (1) satisfy the condition SI, then we 

say the network (1) satisfying “same input” condition. 

Note that, if the model (1) satisfies “same input” condition, one can get ),1(),( jajia IJIJ  .and 
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Definition 2. The set 

 .,,1,,,1:),,,,( ,,,1,,11,1 1
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is called hierarchical synchronous manifold of the network (1). 

The synchronous errors of the I-th layer oscillators can be denoted as ).,,1(,, IIiIiI Nisxx   Combining (1) 

and (2), the hierarchical synchronous errors of  the network (1) satisfy 





M

IJJ

IiIIJIJIIiIIiI MINixacsFxFx
,1

,,, .,,2,1,,,2,1)(
~

)(                           (3) 

Obviously, the stability of hierarchical synchronous manifold S in network (1) is equivalent to the stability of system (3) at 

zero. we try to derive the criteria for the coupling strength such that the network(1) achieves hierarchical synchronization ,that 

is, ),,1,,,1(0lim , MINix IiI
t

 

 , which implies that each layer reaches synchronization. 

In this paper, we assume that the model (1) satisfies Assumption 1 and “same input” condition. 

 

3. Main Result 
In this section, we derive hierarchical synchronization criteria for network (1) with linear and adaptive coupling, 

respectively. 
Theorem 1. The hierarchical synchronous manifold S of the linearly coupled network (1) is globally exponentially stable if 

the linear coupling strength IJc satisfies 
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Proof:  Consider the Lyapunov function 
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Its time derivative along the trajectory of Eq.(3) is 

 
 


M

IJJ

iIIJIJ

T
N

i

iIII

N

i

II

T

iIII

M

I

N

i

iII

T

iI xacxsFsFxsFxFxtV
III

,1

,

1

,

1

,

1 1

,, ],)())(
~

)(()())()(()([)(   

 Since 





II N

i

T

IiIIIIIII

N

i

II

T

iI sxsFsFsFsFx
1

,

1

, 0)()(
~

)(())(
~

)(()(  

There has 

  
  


M

IJJ

iI

T
N

i

iIIJIJII

M

I

N

i

iII

T

iI xxacsFxFxtV
II

,1

,

1

,

1 1

,, ])())()(()([)(   

   
   


M

I

N

I

M

IJJ

iI

T
N

i

iIIJIJiI

T

iII

I I

xxacxx
1 1 ,1

,

1

,,, ])()([   

)(2)()(
1

,,

1 ,1

tVxxac
IN

i

iI

T

iI

M

I

M

IJJ

IJIJI    
 

 

where }1|:min{|
,1





M

IJJ

IJIJk MIac .Then there has 
teVtV 2)0()(    

Notice that
2

,
2

1
)( iIxtV  ,so ,0)0(2,   t

iI eVx  i.e., ),,1,,,1(0lim , MINix IiI
t

 

 . It implies 

that the hierarchical synchronization manifold S of network (1) is globally exponentially stable. Now the proof is completed. 

 

  According to Theorem 1, the hierarchical synchronization can be achieved if there exists a J such that 

).,,1( MIac IIJIJ   It implies there only need an external coupling drive for each layer to achieved the hierarchical 

synchronization. So we can get the following Corollary 1. 

Corollary 1.In network (1), if for each I there exists constants J such that 

                        1, , .IJ IJ Ic a I M                                                       (5) 

Then the hierarchical synchronous manifold S of the linearly coupled network (1) is globally exponentially stable. Note that, 

according to the criteria (4) and (5), one need to know the Lipschitz constant I  However, it is often difficult to obtain the 

precise values of I  in some practical systems. To overcome this drawback, we design the coupling strength IJc  in 

network (1) as adaptive variable, and present an adaptive coupling scheme to realize hierarchical synchronization as following. 

Theorem 2. For the network (1), take the coupling strength IJc  Jas adaptive variable (t)IJc , then the hierarchical 

synchronous manifold S is globally asymptotically stable under following adaptive laws 
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Proof: Consider the Lyapunov function 
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Its time derivative along the trajectory of Eq.(3) is 

 
  


M

I

M

IJI

IJIIJIJ

M

I

N

i

iI

T

iI tc
MM

tcaxxtW
I

1 ,11 1

,, )()
11

)(()()(    

=   
  


M

IJJ

iI

T
N

i

iIIJIJII

M

I

N

i

iII

T

iI xxacsFxFx
II

,1

,

1

,

1 1

,, ])())(
~

)(()([   

  
  


M

I

M

IJI

N

i

iI

T

iIIIJIJ

I

xxac
1 ,1 1

,, )()1(   

 
 


II N

i

iI

T

iI

M

I

N

i

IiI

T

iII xxxx
1

,,

1 1

,, ])()1()([   



G.J. E.D.T.,Vol.3(1):5-11                        (January-February, 2014)                      ISSN: 2319 – 7293 
 

8 

.0)(
1 1

,,  
 

M

I

N

i

iI

T

iI

I

xx   

By the LaSalle-Yoshizawa theorem[18,19], there has, ),,1,,,1(0lim ,
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which means that the hierarchical synchronous manifold S is globally asymptotically stable. Now the proof is completed. 

 

4. Numerical Example 
In order to verify the above theoretical results, an illustrative example is provided in this section. Let us consider a 

triple-graph network consisting 3-layers of non-identical nodes, where x-layer, y-layer and z-layer contain 30 Lorenz chaotic 

oscillators[20], 20 hyperchaotic Lu oscillators[21], and 50 Chen oscillators[22], respectively. The model as a numerical 

example of network (1) is described by 
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where the matrixes
1 2 3), ( ), ( )ij ij ijB b B b and B b  （  and 1 , 2 , 3 satisfy the conditions of model（1）. 

1 2 1 1 2 1 3 1 2 3( ) (10( ), 28 , 8 / 3 ) ,T

i i i i i i i i i iF x x x x x x x x x x      

2 2 1 4 2 1 3 1 2 3 1 3 4( ) (36( ) , 20 , 3 , ) ,T

i i i i i i i i i i i i iF y y y y y y y y y y y y y     

3 2 1 1 2 1 3 1 2 3( ) (35( ), 7 28 , 8 / 3 ) .T

i i i i i i i i i iF z z z z z z z z z z       

In the simulation, we take initial values (0) ( 5 0.5 ,0.5 ,5 0.5 ) (1 30),T

ix i i i i       

(0) ( 5 0.5 ,0.5 ,5 0.5 ) (1 20),T

iy i i i i       (0) ( 5 0.5 ,0.5 ,5 0.5 ,10 0.5 ) (1 50),T

iz i i i i i        and 

1 2 3(0) (0) (0) 1.c c c    
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Fig.2 and Fig.3 display the numerical simulation results of network (7) with linear coupling and adaptive oupling, 

respectively. They show that a set of nodes belonging to each layer synchrony to the same behavior, that is, the hierarchical 

synchronization has been achieved. 

 

5. Further Discussion 
In the above section, we have derived the global asymptotically stable synchronous criteria for linearly or adaptively 

coupled networks under the “same input” condition. However, the synchronous conditions are sufficient but not necessary. 

The Fig.2 and 3 show that the chaotic oscillators reach almost complete synchronization which implied the sufficient 

conditions are too strong. If we try to relax the theoretical conditions, what would happen? 

First, we reduce part of the linear coupling strength in network (1). The numerical simulation results show that there has 

been partial hierarchical synchronization. Fig.4 shows that only x-layer reaches synchronization while other layers can not 

when we reduce the coupling strength of y-layer and z-layer. Next, we reduce part of the adaptive coupling variables in 

network (1). There also appeared partial hierarchical synchronization. Fig.5 shows only y-layer reaches synchronization while 

other layers can not by taking part of external adaptive coupling. In the same way, we can selectively implement any one 

layer-synchrony while other layers not so as to save the physical cost. 

 

 
Fig.4. Partly hierarchical synchronization in the linearly coupled network (7)(c1= 1, c2= c3= 0.1). (a)The synchrony states 

xi(1 ≤ i ≤ 30) of x-layer oscillators; (b) The asynchrony states yi(1 ≤ i ≤ 20) of y-layer oscillators; (c) The asynchrony states 

zi(1 ≤ i ≤ 50) of z-layer oscillators. 
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Fig.5. Partly hierarchical synchronization in the partly adaptively coupled network (7)(c1= c3= 0.1, c2is an adaptive 

variable). (a) The asynchrony states xi(1 ≤ i ≤ 30) of x-layer oscillators; (b) The ynchrony states yi(1 ≤ i ≤ 20) of y-layer 

oscillators; (c) The asynchrony states zi(1 ≤ i ≤ 50) of z-layer oscillators; (d)The adaptive coupling strength c2. 

 

6. Conclusion 
This paper has presented linear and adaptive coupling schemes and the corresponding criteria in order to achieve hierarchical 

synchronization in multipartite graph networks. The research shows that the global asymptotical stability of the hierarchical synchronization 

can be guaranteed by increasing the linear coupling strength or taking adaptive coupling scheme. Moreover, one can apply this method to 

selectively implement partial hierarchical synchronization so as to save the physical cost. 
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