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Abstract

The main aim of the present note is to introduce co-ordinates convex
stochastic processes . Moreover, we prove Hermite-Hadamard-type in-
equalities for co-ordinated convex stochastic processes. We also define
some mappings about co-ordinates convex stochastic processes and in-
vestigate main properties of these mappings.
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1 Introduction

In 1980, Nikodem [6] introduced the convex stochastic processes in his arti-
cle. Later in 1995, Skowronski [12] presented some further results on convex
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stochastic processes. Moreover, in 2011, Kotrys [4] derived some Hermite-
Hadamard type inequalities for convex stochastic processes. In 2014, Maden
et.al. [7] introduced the s-convex stochastic processes in the first sense and
proved Hermite-Hadamard type inequalities to these processes. Also in 2014,
Set et.al. [9] presented the s-convex stochastic processes in the second sense
and they investigated Hermite-Hadamard type inequalities for these processes.
Moreover, in recent papers [1, 5], strongly A-GA-convex stochastic processes
and preinvex stochastic processes has been introduced.

Definition 1.1 Let (2, A, P) be an arbitrary probability space. A function
X :Q — R is called a random variable if it is A — measurable.

Definition 1.2 Let (2, A, P) be an arbitrary probability space and T C R be
time. A collection of random variables X (t,w), t € T with values in R is
called a stochastic process. If X (t,w) takes values in S = R?, it is called
a vector — valued stochastic process. If the time T can be a discrete subset
of R, then X (t,w) is called a discrete time stochastic process. If time is an
interval, RT or R, it is called a stochastic process with continuous time. For
any fized w € Q, one can regard X (t,w) as a function of t. It is called a
sample function of the stochastic process. In the case of a vector — valued
process, it is a sample path, a curve in RY.

Definition 1.3 Let (£, A, P) be a probability space and T C R be an inter-
val. We say that a stochastic process X : T x Q0 — R s

(1) convez if
XM+ (1=XNv,) <AX (u,-)+ (1= X)X (v,-)

for all u,v € T and X € [0,1]. This class of stochastic process is denoted
by C'.

(2) A—convex (where X is a fivzed number in (0,1) if
XA+ (1=Nv,-) <AX (u,-)+ (1 —A) X(u,-)

for allu,v € T and X\ € (0,1). This class of stochastic process is denoted
by C)\.

(3) Wright-convex if
XAMu+A=Nv, )+ X (1 —=Nu+ M, -) < X (u,-)+ X (v,-)

for all u,v € T and X € [0,1]. This class of stochastic process is denoted
by W.
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(4) Jensen-convex if

(see.[4, 11, 12, 6]).

Clearly, C € Cx C W and Cy C C), for all A € (0,1). [12]

Definition 1.4 Let (2, A, P) be a probability space and T C R be an inter-
val. We say that the stochastic process X : T x €2 — R s called

(1) continuous in probability in T if

P—lmX(t-) = X(t, )

t—to
(where P—lim denotes limit in probability) or equivalently

lim P{|X (¢, ) — X (to, )] > e} =0

t—to

for any small enough ¢ > 0 and all ¢, € T.

(2) mean-square continuous (or continuous in quadratic mean) in T' if

lim B[(X () — X (t0))*] = 0

t—to

such that E[X(t)?] < oo, for all ty € T.

(3) mean-square differentiable in T if it is mean square continuous and there
exists a process X (t,-) ("speed” of the process) such that

limE[(%i(to) — X’(to)) ] =0.

Different types of continuity concepts can be defined for stochastic pro-
cesses. Surely (everywhere) and almost surely (almost everywhere or sample
path) convergences are rarely used in applications due to the restrictive require-
ment, that is, as t — t5, X(f,w) has to approach X(¢y,w) for each outcome
w € S C Q. For further reading on stochastic calculus, reader may refer to [10].
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Definition 1.5 ([10]) Let (2, A, P) be a probability space and T C R be
an interval with E[X ()] < oo for allt € T. Let [a,b] C T, a =1ty <t; < .. <
t, = b be a partition of [a,b] and O € [ty_1,tx] for k = 1,...,n. A random
variable Y : Q@ — R is called mean-square integral of the process X (t) on [a,b]
if the following identity holds:

lim E[(X(@k (tk - tk—l) - Y)Q] =0.

n—oo

Then we can write ,
/X(t, Jdt =Y (+) (a.e.).

Also, mean square integral operator is increasing, that is,

7X(t, Nt < 72(7:, Vdt(a.e.)

where X(t,-) < Z(t,-) (a.e.) in [a,b].

In throughout the paper, we will consider the stochastic processes that is
with continuous time and mean-square continuous.

Now, we present some results proved by Kotrys [4] about Hermite-Hadamard
inequality for convex stochastic processes.

Lemma 1.6 If X : IxQ — R is a stochastic processes of the form X (t,-) =
A()t+ B(-), where A, B : Q — R are random variables, such that F[A*] <
00, E [B?| < 00 and [a,b] C I, then

b? — a?

/X(t,-)dt:A(~) L B()(b—a) (ac.).

Proposition 1.7 Let X : I x Q2 — R be a convex stochastic processes and
to € intl. Then there exist a random variable A : Q@ — R such that X 1is
supported at ty by the process A() (t —to) + X (to,-). That is

X (t,) > A()(t—to) + X (to,") (a-e.).
forallt e l.

Theorem 1.8 If stochastic X : T x Q0 — R s Jensen-convex and mean-
square continuous in the interval T' x €, then for any u,v € T, we have

X(“J””.)g 1 /:X(t,.)dtgX(u">;X(U"). (1)

2 v—u
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The following inequality is well-known in the literature as the Jensen inte-
gral inequality for convex stochastic processes (see, [8]):

Theorem 1.9 (Jensen-type inequality) If X : I x Q — R be a convex
stochastic processes, for an arbitrary non-negative integrable stochastic pro-
cesses @ 1 I x Q) — R, we have

1 b 1 b
X(b_a/ so(t,.)dt,.) gb_a/ X op(t,.)dt.

Proof. From Proposition 1.7, we have

bia/aongp(t,.)dt—X(bia/abgo(t,.)dt,-)
[ revt-x (75 [ etom )] a
A(.){bia/ab {ap(t,.)—bia/abgo(t,.)dt] dt}

_ A(.){bia/abgo(t,.)—ﬁ abcp(t,.)dt}

= 0

v

which completes the proof.
Also, note that the related results for convex stochastic processes and vari-
ous types of convex stochastic processes can be seen in [11, 12, 6, 1, 5, 14, 13].

Definition 1.10 Let us consider a bidimensional interval A =: [a, b] X [c, d]
in R? with a < b and ¢ < d. A mapping f : A — R is said to be conver on A
if the following inequality:

flax+ (1= a)z,ay + (1 - ajw) < af(z,y) + (1 - @) f(z,w)

holds, for all (x,y),(z,w) € A and « € [0,1] . If the inequality reversed then
[ is said to be concave on A. [2]

Definition 1.11 A function f : A — R is said to be convex on the co-
ordinates on A if the partial mappings f, : [a,b] = R, f,(u) = f(u,y) and
fe e, d] = R, fu(v) = f(x,v) are conver where defined for all z € [a,b],
y € [c,d].

A formal definition for co-ordinated convex function may be stated as fol-
lows:
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Definition 1.12 A function f : A — R will be called co-ordinated convex
on A, for all t,s € [0,1] and (x,y), (u,w) € A, if the following inequality
holds:

fltz+ (1 —t)y,su+ (1 — s)w) (2)
< tsf(x,u) +t(1 —s)f(z,w)

HI=)sf(y,u) + (1 =) = 5) + fy, w).

In [3], Dragomir establish the following similar inequality of Hadamard’s
type for co-ordinated convex mapping on a rectangle from the plane R2.

Theorem 1.13 Suppose that f : A — R is co-ordinated convex on A. Then
one has the inequalities:

a+b c+d
() ®)
17 1 b a+b 1 c+d
< sl [ e [ () o)
1 b d
S Oa@—al, ) e
< ;l[b%/bf(accdw—l——/fxd
/faydy+—/fbydy
< f(ac+f(ad)—i—f(bc)

4

In the present paper, we introduce coordinated convex stochastic processes.
Also, we establish Hermite-Hadamard type inequalities for coordinated convex
stochastic processes similar to those from [3].

2 Convex stochastic processes on co-ordinates

Definition 2.1 Let us consider A :==T, x Ty, T, T C R and X : A x Q —
R be a stochastic process. X : A — R is said to be convex in A if following
inequality holds:

X (Ot 4 (1= Aty Asp+ (1= N)s2),.) < AX (1, 51) 5 )1 — A) X ((H2, 50
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for all (t1,s1), (ta,82) € A and X € [0,1]. If the inequality reversed then X is
said to be concave on A.

Definition 2.2 A stochastic process X : A x Q0 — R is said to be convex
on the co-ordinates on A if the partial mappings X, : Th x Q — R, X (u,.) :=
X((u,8),.) and X; : To x Q@ — R, Xy(v,.) := X((¢t,v),.) are conver where
defined for allu € Ty, v € Ty

As in (2), a formal definition for co-ordinated convex stochastic processes
may be stated as follows:

Definition 2.3 A stochastic process X : A x Q — R will be called co-
ordinated convexr on A, for all a,f € [0,1] and (t1,s1), (t2,82) € A, if the
following inequality holds:

X((aty + (1 —a)te, Bs1 + (1 — B)s2) , )
< aﬁX((tlv Sl) ) ) + Oz(l - B)X((tla 52) ) )
+(1 — )BX ((ta,51),.) + (1 —a)(1 = B) X ((t2, 52),.)

Lemma 2.4 Fvery convex stochastic process X : A x Q@ — R on A is
convexr on the co-ordinates.

Proof.  Suppose that stochastic processX : A x € — R is convex on A.
Consider X; : To X Q@ — R, X;(v,.) := X((t,v),.). Then for all X € [0, 1] and
s1, 89 € Ty, one has:

Xt(()\Sl + (1 — /\)82) s )
= X((t,As1+ (1= XN)s2),.)
= X(()\t + (1 - )\)t, )\81 + (1 - )\)52) s )
< AX((t,s1),.)+ (1 = N)X((t,52),.)
AX (s1,.) + (1 — N Xi(s2,.)

which shows the convexity of X;.

The fact that X : 77 x Q — R, X((u,.) := X((u,s),.) is also convex on
T, for all s € T; goes likewise, and we shall omit the details.

The following inequalties of Hadamard type hold.
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Theorem 2.5 Suppose that stochastic process X : A x Q@ — R is convex
on the co-ordinates on A. Then one has the inequalities:

((555))

(). )e
], 2 (), )dS]

< (t2_t11(82_81//x (t,s)..) dids

< Ht = "X ((51) )dt+t2_ 1/ X ((t,5),.) dt
52151 :QX((tl,s),.)derSQ_Sl/s X((tz,s),.)dsl

. X((tl,sl),.;+X((t1,32),.)+X((t2,31)1,.)+X((t2,52),.)'

4

Proof. Since stochastic process X : A x €2 — R is convex on the co-ordinates
on A, it follows that the mapping X; : To x Q = R, Xi(s,.) := X((¢,s),.) is
convex on Ty for all ¢ € T7. Then, by the inequality (1), one has:

1 52
Xt (81+827.> S Xt (S,.) ds
2 So — 51
Xt(317 ) —|— Xt(SQ, )
2

S1 + So 1 52
X S X .
(:252).) = 5 [ s

X((t,s1),.)+ X((t,s2),.)
2

Integrating this inequality on [t1,t3] and multiplying each side of the in-
equality by —— o e have:

t;tl /tQX(<t 31;82) )dt (6)

IN

 teT.

<

L teT.

< / / X ((t,s),.)dsdt
(ta —t1) (we — wl
to to
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By a similar argument applied for the mapping X, : T} xQ — R, X,(u,.) :=
X((u,s),.) we get

] () ) g
(t2 — t1)1(52 — 51) /: /: X((5,9), ) dsdf
% in& /: X((tlés)")der 52:91 /32 X((t22’3)")ds] .

S1

IN

Summing the inequalities (6) and (7), we get the second and third inequality
in (5).

By the inequality (1), we also have:

X t1+t2781—|—32 )< 1 /th t,81+82 N dt
2 2 ta—t Jy, 2
and

s2
X t1+t27W1+WQ N < 1 / X t1+t275 N ds
2 2 So9 — 51 51 2

which give, by addition, the first inequality in (5).
Lastly, by the same inequality, we can also write:

- /:X((t, o)t < A2 ) P X))

1 ta X((tl,sz),.)—I—X((t2’32)’.)
to —t /t1 X((t,s2),.)dt < :

—_— /SQX((IH,S) s < o)) X 52) )

and

1 /32 X((t% 3) ’ )ds < X((tg, 81> s ) + X((t27 82) s )

S9 — 8 2
2 1

which give, by the addition, the last inequality (5).
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3 Some mappings associated to Hermte-Hadamard
inequality

Now, for stochastic process X : A x Q — R, [tq, 1] X [s1, $2] C A, we can define
the following mapping H : [0 1]2 x Q — R,

H((O«ﬁ)

_ t1 + 1o
_<t2_t1 (82 — 51) / / ((at—l— (1-0) 2
Bs+(1— ) 31232) ) dsd.

The properties of this mapping are embodied in the following theorem.

Theorem 3.1 Suppose that stochastic process X : A x  — R is convex
on the co-ordinates on A. Then:

(7) The mapping H is convex on the co-ordinates on [0, 1]2.
(77) We have the bounds:

sup H((a, B) ,.) = = tl)l(SQ — /tl2 /:2 X ((t,s),.)dsdt = H(1,1);

(a:B)€[071]2
t t
ian((a,m,»zx(( . ;) ) — H(0,0);
(e,8)€l0,1]2

(74i) The mapping H is monotonic nondecreasing on the co-ordinates.
Proof. (i) Let s be a fixed number in [0,1]. Then for all v,0 > 0 with
v+60=1and ky, ko € [0,1].

H((’yk’l + 9[’6’2, S) s )
1

(ta —t1) (52 — s1)

/ / ((7k1+9k2)t+(1_(7k1+9k2))t1;t2’

Bs+ (1 —p5) 81282) ,.) dsdt

1
tg — tl 82 — 81>

// x (o (mera-rng®)

+6 (k2t+(1—k2) tl;t2> Bw+(1—p) wl;‘”) ) dsdt




Hermite-Hadamard type inequalities 373

1
252 —t1) (s2 — 51)

/ / ((k1t+ (1= k) 1;t2,ﬁs+(1—5)51'§32),.)dsdt

tg —tl 82 —81)

[P {(e w2 22,

= vyH((k1,s),.)+0H((k2,s),.).

IN

_|_

If ¢t € [0,1] is fixed, then for all v,6 > 0 with v+ 6 =1 and l3,15 € [0,1],

we also have:

H((t/yll + 012) ’ ) S IVH((tv ll) ) ) + QH((t> l2) ) )

and the statement is proved.

(17) Since X is convex on the co-ordinates on A, we have, by Jensen’s

inequality for integrals, that:

H(( 6

- (ta—tl p— / / ((at—|— Wit

Bs+(1—B) Sl;”),.) dsdt

1 t2 t + to
X |at+ (1 —
e [ x| a- @t

1 s2
/ (ﬁw+(1—5)51+52)ds>,-] dt
S2— S1 Jg, 2
1 t2 tl"‘tg S1+ 8o
_ X 1— .
t2_t1)/ ((at—i—( @) 5 g .| dt

t +to 51+ 82
<t2_t1 [at+(1—a) 5 ]dt, 5 )}

J
; Xg(m wrey )
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By the convexity of H on the co-ordinates, we have:

H((e, 8),-)

st [t [ 3 (o) )

1 52 t1—|—t2 51+ S2
+(1—5)mx/51X((at+(1—Q) 2,0l ),.)ds}dt

g [ (52 ol
v [ [ (5 )
+(1-a)X <<t1 ;tz, o1 JQF 82) )] ds

/ / X ((t,s),.)dtds
(t2 - t1 (52 — 51) ,
1
1 f2 S1 + So
+a (1 — / X((t, ),.)dt
=5 (ta —t1) Jy, 2

+(1—a>(1—5)x((“;“,81;52>,.).

By the inequality (1), we also have:

X((tlgtz,s) ) < ﬁ/:X((t,s),.)dt, s € [s1, 59

S1 + So 1 52
Xlt,—— ) < — X ((¢t Jds, t € |ty,ta].
(7 2 )_ (82—81) /51 ((73)7) S, 6[17 2]

So, by the integration, we get that:

1 / X((t1+t2 ) )ds
(82—81)
< / / X ((t,s),.)dtds
(t2—t1 Sy — 1)

and
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[2)
1 / X((t 51+52) >dt
(ta — t1) 2
< / / X ((t,s),.)dtds
(t2—t1 Sy — S1)

Using the above inequality, we obtain that

H((, 8) )
< [a5+<1—a>5+a1— +(1=-a)(l-7)]

/ / X ((t,s),.) dtds
(752 —11) (52 — 51)
1 S92 to
= X ((t,s),.)dtds
el M ARLCOI

= H((171>>')

and the second bound in (77) is proved.
(7i1) Firstly, we will show that

H((e, 8),.) = H((0,8),.), for all (o, 8) € [0,1]. (8)

By Jensen’s inequality for integrals,

H((e, 5), )

1 52 1 b2 t+1t
/ X(( / [&t+(1—a)1+2]dt
S9 — 81 51 (tg —tl) t 2

Bs+(1-B) §>) *

1 52 tl—l-tg S1 + S2
= X 1— .)d

= H((Oaﬁ) ) ')7

for all (a, ) € [0,1]%.
Now let 0 < oy < ay < 1. By the convexity of mapping H((-,3),.) for all
g € [0,1], we have

H((OQHB) ) ) B H((ahﬂ) ) ) > H((O&l,ﬁ) ) ) B H((OHB) )

Qo — 5

v

> 0.

For the last inequality, we use (8).
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Theorem 3.2 Suppose that stochastic process X : A x Q@ — R is convex
on [t1,ta] X [s1,82] C A. Then

(1) The mapping H is convex on A;
(77) Define the mapping A : [0,1] — R, h(a) := H((a,«),.). Then h is
convex, monotonic nondecreasing on [O 1] and one has the bounds:

(t,s),.)dsdt
sup h(« ) h(1) = o —t1 o / / X ((t, s) s

(a,8)€[0,1]?

inf h(a) = h(0) = X ((“ "2”2, 51 ; 52) )

(e,8)€[0,1]
Proof. (i) Let (au,B1), (aa, B2) € [0,1]° and 7,0 > 0 with 4+ 6 = 1. Since
X : A xQ — Ris convex on [ty, 3] X [s1, s2], we have
H (v (a1, B1) + 0 (az, Ba) , )

= H((ya1+0az, 761 +0p2),.)
1

(to —t1) (52 — s1)

/ /82 K (a1t+<1_a1)tl;tQaﬂler(l—gl)31;52)

+6 <a2t+ (1— a2)t1 +t2,5gs + (1= 5s) i +52>) ,} dsdt

1

t2 — tl 82 — 81)

// ((altJr(l_Q)tlHQ Prs (1—61)81+82>,.)dsdt

+0.

and

< 7

(t2 —t1 (s2 — s1)

/t/ ((a2t+<1_a2)tl+t2>528 (1—62)51+52),.>dsdt
= (1(041751) ) 4 0H ((as, 82) ),

which shows that H is convex on [0,1]°.
(17) Let a1, 9 € [0,1] and 7,60 > 0 with v 4+ 6 = 1. Then

h(yoq + 0as) = H((yay + Oag, yaq + Oas) , )

= H((y(o, 1) +6(a2,02)),.)
vH ((a1, 1) ,.) + 0H (a2, a2) )
vh(ay) + 0h (o)

IN
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which shows the convexity of h on [0, 1].
We have, by the above theorem, that

h(a) == H((a,a),.) > H((0,0),.) = X <(t1‘2”2,31;32> ) a € [0,1]

ha) = H((a,a),.) < H((1,1),.)
1 S2 to
= (ta —t1) (82 — $1) /51 /t1 X (t,s)dtds, o € [0,1]

which prove the required bounds.
Now let 0 < a; < ap < 1. Then, by the conveity of h we have that

h(cs) — h(ay) S h(cq) — h(0)

>0
Qg — O aq

and the theorem is proved.
Next, we will consider the following mapping which is closely connected
with Hadamard’s inequality: H : [0,1]* x Q — [0, c0) the stochastic processes

~ 1
H{(@:h),) = (ta — tl) (82 — 51)2

////XO‘?“r 1—a)u,Bs+ (1= p)v),.)dtdudsdv.

The following theorem contains the main properties of these stochastic
processes.

Theorem 3.3 Suppose that stochastic process X : A x Q@ — R is convex
on the co-ordinates on [t1,ts] X [wy,ws] C A. Then:

(1) We have the equalities:

i ((or3):) (2.

for all w € [0,1], B €0,1];

Ef((m%,ﬁ),.) :ﬁ(<%—a,ﬁ>,.)

for all @ € [0,1], B €[0,1];
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and

~

H((a,1-5),.) = H((a,8)..),
for all (o, ) € [0, 1]%.

(77) The stochastic process H is convex on the co-ordinates.
(77i) We have the bounds

~ ~ (/11 1
inf H((a, B),.) = H((—,—) ,.) =
(a,8)€[0.1]? 272 (ta — 1) (52 — 51)°

//// <<t1+t2781;82),-)dtdudsdv

sup H((, 8),.) = H((0,0),)

(a,B)€[0,1]?
1 to 59
= X ((t,s),.)dsdt.
(el A RRLCUI

(1v) The stochastic process H ((-, ), .) is monoton nonincreasing on [0, 3)
and nondecreasing on [%, 1} for all « € [0,1]. A similar property has the

stochastic process H ((a,-),.) for all g € [0,1].
(v) We have the inequality

and

~

H((e,f),.) = max{H((e,f),.), H((1-af),.) (9)
,H((a,l—B),.),H((l—oz,l—ﬁ),.)}

for all a € [0, 1].

Proof. (1),(ii) are obvious from definition of H.
(7ii) By the convexity of X in the first variable, we get that

X((t+u,ﬁ +(1-p) )>

_ ((at+ (1—a)u+ (1 —a)t+au B +(1_5)S>7')

2
< %[X(&t—ir(l—a)u Bs+(1—B)v),.)
+X((1 —a)t+au,fv+ (1 —0)s),.)]

for all (t,u) € [t1,ts]”,(v,s) € [s1, 0] and (o, B) € [0,1]°.



Hermite-Hadamard type inequalities 379

Integrating on [t1, t,]*, we get

@2_%12 /t > | 2 X((at+ (1 —a)u,Bs+ (1 = p)v),.)dtdu (10)

§ ﬁ/tQ/th<(t+u’5s+(1—ﬁ) >) dtdu

Similarly,

1 52 52 t+u
—_/ / X(( But (- ),.)dtdu (11)
/52/52 ((t—i—u s—i—v) )dtdu
o 82—81 2 " ‘

Now, integrating 10 inequality integrating on [sq, so]* and inequality 11 on
[t1,t5]* we deduce,

H((o, 9.
t—l—u sS+v
> (s — 1 (52 —51) / / (( 5 ),) dtdudsdv

for (o, B) € [0, 1]2. Therefore, the first bound in (i7) is proved.
Since X 1is convex on the co-ordinates on A

~ 1

),) =
(to —t1) 2 )" (89 — 81)2

////X (at + (1 = a)u, fs + (1 = B)v) , .)dtdudsdv

< ﬁ 1
(67
o tg—tl 82—51

////th )dtdudsdo

ta(l ﬁ) (to — 751 (82 — 81)2

////Xtv Ydtdudsdv
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1
- )BtQ_tl 82—31)2

/ / / / X((u,s),.)dtdudsdv

+(1—a)(1- )

)
1

(ta — t1)2 (82 — 51)
)

/ / / / X((u,v),.)dtdudsdv

= [a5+a(1—5> (I-a)B+(1—a)(l—-p)

/ X((t,s),.)dsdt
(t2 —t1) (s2 — $1)

_ (tQ_tl)l(SQ_Sl) /: /:2X((t,s),.)dsdt

— H((0,0),.).

Therefore, the second bound in (i) is proved.

(7v) The monotonicity of H (a, B) follows by a similar argument as in the
proof of theorem 2.5, and we shall omit the details.
(v) By Jensen’s inequality we have successively for all («, 8) € [0, 1]2 that

H((, 8),.)

(t2 — t1) 252—51 /tl /51 /51 (( (ty — t1) /: [at + (1 — a)u] du

,Bs+ (1 —p)v),.)dtdsdv

t t
- / / / <(at+ a) Ll
(ta—t1) (s2—51)" Sty Jsy Js 2

,Bs+ (1= p)v),.)dtdwdv

t1 + 1o
> t
- (t2—t1 S9 — 51) / / ((a T1=a) 2

,Bs+(1—7) 1;”),.) dtdw

= H((, 8), ).
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In addition, as

~ ~ ~ ~

H((a,ﬁ),.):H((l—a,ﬂ),.):H((a,l—ﬂ),.):H((l—a,l—ﬁ),.)

for all (o, 8) € [0, 1]2, then by the above inequality we deduce (9).
Finally we can also state the following theorem which can be proved in a
similar fashion to Theorem 3.1 and we will omit the details.

Theorem 3.4 Suppose that stochastic process X : A x 2 — R is convex
on the co-ordinates on [t1,ts] X [s1,$2] C A. Then we have:

(7) The mapping H is convex on A.
(i7) Define the mapping h : [0,1] — R, h(t) := H((t,t),.). Then h is

convex, monotonic nonincreasing on [O, %} and nondecreasing on [%, 1] and
one has the bounds:

~

sup h(a) = h(1) = h(0) = (t2_t1)1(82_81)/tz/52X((t, 5)..) dsdt

a,5€[0,1]

and

inf h(a, B) = h(>)
a,B€[0,1]

1 to to So So t t
_ i 2/ / / / X((1+ 2,81+S2>,.)dtdudsdv.
(to —t1)" (sa —s1)" Ju, Ju. Js1 Js 2 2

(77) One has the inequality

N | —

~ ~

h(a) > max {h(oz), }Nl(l — a)} for all @ € [0,1].
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