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Abstract

The main aim of the present note is to introduce co-ordinates convex
stochastic processes . Moreover, we prove Hermite-Hadamard-type in-
equalities for co-ordinated convex stochastic processes. We also define
some mappings about co-ordinates convex stochastic processes and in-
vestigate main properties of these mappings.
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1 Introduction

In 1980, Nikodem [6] introduced the convex stochastic processes in his arti-
cle. Later in 1995, Skowronski [12] presented some further results on convex



364 E. Set, M. Z. Sarıkaya and M. Tomar

stochastic processes. Moreover, in 2011, Kotrys [4] derived some Hermite-
Hadamard type inequalities for convex stochastic processes. In 2014, Maden
et.al. [7] introduced the s-convex stochastic processes in the first sense and
proved Hermite-Hadamard type inequalities to these processes. Also in 2014,
Set et.al. [9] presented the s-convex stochastic processes in the second sense
and they investigated Hermite-Hadamard type inequalities for these processes.
Moreover, in recent papers [1, 5], strongly λ-GA-convex stochastic processes
and preinvex stochastic processes has been introduced.

Definition 1.1 Let (Ω, A, P ) be an arbitrary probability space. A function
X : Ω→ R is called a random variable if it is A−measurable.

Definition 1.2 Let (Ω, A, P ) be an arbitrary probability space and T ⊂ R be
time. A collection of random variables X (t, ω), t ∈ T with values in R is
called a stochastic process. If X (t, ω) takes values in S = Rd, it is called
a vector − valued stochastic process. If the time T can be a discrete subset
of R, then X (t, ω) is called a discrete time stochastic process. If time is an
interval, R+ or R, it is called a stochastic process with continuous time. For
any fixed ω ∈ Ω, one can regard X (t, ω) as a function of t. It is called a
sample function of the stochastic process. In the case of a vector − valued
process, it is a sample path, a curve in Rd.

Definition 1.3 Let (Ω, A, P ) be a probability space and T ⊂ R be an inter-
val. We say that a stochastic process X : T × Ω→ R is

(1) convex if

X (λu+ (1− λ) v, ·) ≤ λX (u, ·) + (1− λ)X (v, ·)

for all u, v ∈ T and λ ∈ [0, 1]. This class of stochastic process is denoted
by C.

(2) λ−convex (where λ is a fixed number in (0, 1) if

X (λu+ (1− λ) v, ·) ≤ λX (u, ·) + (1− λ)X(u, ·)

for all u, v ∈ T and λ ∈ (0, 1). This class of stochastic process is denoted
by Cλ.

(3) Wright-convex if

X (λu+ (1− λ) v, ·) +X ((1− λ)u+ λv, ·) ≤ X (u, ·) +X (v, ·)

for all u, v ∈ T and λ ∈ [0, 1]. This class of stochastic process is denoted
by W .
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(4) Jensen-convex if

X

(
u+ v

2
, ·
)
≤ X (u, ·) +X (v, ·)

2
.

(see,[4, 11, 12, 6]).

Clearly, C ⊆ Cλ ⊂ W and C 1
2
⊆ Cλ, for all λ ∈ (0, 1). [12]

Definition 1.4 Let (Ω, A, P ) be a probability space and T ⊂ R be an inter-
val. We say that the stochastic process X : T × Ω→ R is called

(1) continuous in probability in T if

P − lim
t→t0

X(t, ·) = X(t0, ·)

(where P−lim denotes limit in probability) or equivalently

lim
t→t0

P{|X(t, ·)−X(t0, ·)| > ε} = 0

for any small enough ε > 0 and all t0 ∈ T.

(2) mean-square continuous (or continuous in quadratic mean) in T if

lim
t→t0

E[(X(t)−X(t0))
2] = 0

such that E[X(t)2] <∞, for all t0 ∈ T.

(3) mean-square differentiable in T if it is mean square continuous and there
exists a process X

′
(t, ·) (”speed” of the process) such that

lim
t→t0

E[

(
X(t)−X(t0)

t− t0
−X ′(t0)

)2

] = 0.

Different types of continuity concepts can be defined for stochastic pro-
cesses. Surely (everywhere) and almost surely (almost everywhere or sample
path) convergences are rarely used in applications due to the restrictive require-
ment, that is, as t → t0, X(t, ω) has to approach X(t0, ω) for each outcome
ω ∈ S ⊆ Ω. For further reading on stochastic calculus, reader may refer to [10].
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Definition 1.5 ([10]) Let (Ω, A, P ) be a probability space and T ⊂ R be
an interval with E[X(t)2] <∞ for all t ∈ T . Let [a, b] ⊂ T , a = t0 < t1 < ... <
tn = b be a partition of [a, b] and Θk ∈ [tk−1, tk] for k = 1, ..., n. A random
variable Y : Ω→ R is called mean-square integral of the process X(t) on [a, b]
if the following identity holds:

lim
n→∞

E[(X(Θk (tk − tk−1)− Y )2] = 0.

Then we can write
b∫
a

X(t, ·)dt = Y (·) (a.e.).

Also, mean square integral operator is increasing, that is,

b∫
a

X(t, ·)dt ≤
b∫
a

Z(t, ·)dt(a.e.)

where X(t, ·) ≤ Z(t, ·) (a.e.) in [a, b].
In throughout the paper, we will consider the stochastic processes that is

with continuous time and mean-square continuous.
Now, we present some results proved by Kotrys [4] about Hermite-Hadamard

inequality for convex stochastic processes.

Lemma 1.6 If X : I×Ω→ R is a stochastic processes of the form X (t, ·) =
A (·) t + B (·), where A,B : Ω → R are random variables, such that E [A2] <
∞, E [B2] <∞ and [a, b] ⊂ I, then

b∫
a

X (t, ·) dt = A (·) b
2 − a2

2
+B (·) (b− a) (a.e.).

Proposition 1.7 Let X : I × Ω → R be a convex stochastic processes and
t0 ∈ intI. Then there exist a random variable A : Ω → R such that X is
supported at t0 by the process A (·) (t− t0) +X (t0, ·). That is

X (t, ·) ≥ A (·) (t− t0) +X (t0, ·) (a.e.).

for all t ∈ I.

Theorem 1.8 If stochastic X : T × Ω → R is Jensen-convex and mean-
square continuous in the interval T × Ω, then for any u, v ∈ T , we have

X

(
u+ v

2
, ·
)
≤ 1

v − u

∫ v

u

X(t, ·)dt ≤ X(u, ·) +X(v, ·)
2

. (1)
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The following inequality is well-known in the literature as the Jensen inte-
gral inequality for convex stochastic processes (see, [8]):

Theorem 1.9 (Jensen-type inequality) If X : I × Ω → R be a convex
stochastic processes, for an arbitrary non-negative integrable stochastic pro-
cesses ϕ : I × Ω→ R, we have

X

(
1

b− a

∫ b

a

ϕ (t, .) dt, ·
)
≤ 1

b− a

∫ b

a

X ◦ ϕ (t, .) dt.

Proof. From Proposition 1.7, we have

1

b− a

∫ b

a

X ◦ ϕ (t, .) dt−X
(

1

b− a

∫ b

a

ϕ (t, .) dt, ·
)

=
1

b− a

∫ b

a

[
X ◦ ϕ (t, .)−X

(
1

b− a

∫ b

a

ϕ (t, .) dt, ·
)]

dt

≥ A(.)

{
1

b− a

∫ b

a

[
ϕ (t, .)− 1

b− a

∫ b

a

ϕ (t, .) dt

]
dt

}

= A(.)

{
1

b− a

∫ b

a

ϕ (t, .)− 1

b− a

∫ b

a

ϕ (t, .) dt

}
= 0

which completes the proof.
Also, note that the related results for convex stochastic processes and vari-

ous types of convex stochastic processes can be seen in [11, 12, 6, 1, 5, 14, 13].

Definition 1.10 Let us consider a bidimensional interval ∆ =: [a, b]× [c, d]
in R2 with a < b and c < d. A mapping f : ∆→ R is said to be convex on ∆
if the following inequality:

f(αx+ (1− α)z, αy + (1− α)w) ≤ αf(x, y) + (1− α)f(z, w)

holds, for all (x, y), (z, w) ∈ ∆ and α ∈ [0, 1] . If the inequality reversed then
f is said to be concave on ∆. [2]

Definition 1.11 A function f : ∆ → R is said to be convex on the co-
ordinates on ∆ if the partial mappings fy : [a, b] → R, fy(u) = f(u, y) and
fx : [c, d] → R, fx(v) = f(x, v) are convex where defined for all x ∈ [a, b],
y ∈ [c, d].

A formal definition for co-ordinated convex function may be stated as fol-
lows:
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Definition 1.12 A function f : ∆ → R will be called co-ordinated convex
on ∆, for all t, s ∈ [0, 1] and (x, y), (u,w) ∈ ∆, if the following inequality
holds:

f(tx+ (1− t)y, su+ (1− s)w) (2)

≤ tsf(x, u) + t(1− s)f(x,w)

+(1− t)sf(y, u) + (1− t)(1− s) + f(y, w).

In [3], Dragomir establish the following similar inequality of Hadamard’s
type for co-ordinated convex mapping on a rectangle from the plane R2.

Theorem 1.13 Suppose that f : ∆→ R is co-ordinated convex on ∆. Then
one has the inequalities:

f

(
a+ b

2
,
c+ d

2

)
(3)

≤ 1

2

[
1

b− a

∫ b

a

f

(
x,
a+ b

2

)
dx+

1

d− c

∫ d

c

f

(
c+ d

2
, y

)
dy

]
≤ 1

(b− a) (d− c)

∫ b

a

∫ d

c

f (x, y) dxdy

≤ 1

4
[

1

b− a

∫ b

a

f (x, c) dx+
1

b− a

∫ b

a

f (x, d) dx

+
1

d− c

∫ d

c

f (a, y) dy +
1

d− c

∫ d

c

f (b, y) dy]

≤ f (a, c) + f (a, d) + f (b, c) + f (b, d)

4
.

In the present paper, we introduce coordinated convex stochastic processes.
Also, we establish Hermite-Hadamard type inequalities for coordinated convex
stochastic processes similar to those from [3].

2 Convex stochastic processes on co-ordinates

Definition 2.1 Let us consider Λ := T1× T2, T1, T2 ⊂ R and X : Λ×Ω→
R be a stochastic process. X : Λ → R is said to be convex in Λ if following
inequality holds:

X ((λt1 + (1− λ) t2, λs1 + (1− λ) s2) , .) ≤ λX ((t1, s1) , .)+(1− λ)X ((t2, s2) , .)
(4)
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for all (t1, s1) , (t2, s2) ∈ Λ and λ ∈ [0, 1]. If the inequality reversed then X is
said to be concave on Λ.

Definition 2.2 A stochastic process X : Λ × Ω → R is said to be convex
on the co-ordinates on Λ if the partial mappings Xs : T1 ×Ω→ R, Xs(u, .) :=
X((u, s) , .) and Xt : T2 × Ω → R, Xt(v, .) := X((t, v) , .) are convex where
defined for all u ∈ T1, v ∈ T2

As in (2), a formal definition for co-ordinated convex stochastic processes
may be stated as follows:

Definition 2.3 A stochastic process X : Λ × Ω → R will be called co-
ordinated convex on Λ, for all α, β ∈ [0, 1] and (t1, s1), (t2, s2) ∈ Λ, if the
following inequality holds:

X((αt1 + (1− α)t2, βs1 + (1− β)s2) , .)

≤ αβX((t1, s1) , .) + α(1− β)X((t1, s2) , .)

+(1− α)βX((t2, s1) , .) + (1− α)(1− β)X((t2, s2) , .)

Lemma 2.4 Every convex stochastic process X : Λ × Ω → R on Λ is
convex on the co-ordinates.

Proof. Suppose that stochastic processX : Λ × Ω → R is convex on Λ.
Consider Xt : T2 × Ω → R, Xt(v, .) := X((t, v) , .). Then for all λ ∈ [0, 1] and
s1, s2 ∈ T2, one has:

Xt((λs1 + (1− λ)s2) , .)

= X((t, λs1 + (1− λ)s2) , .)

= X((λt+ (1− λ)t, λs1 + (1− λ)s2) , .)

≤ λX((t, s1) , .) + (1− λ)X((t, s2) , .)

= λXt(s1, .) + (1− λ)Xt(s2, .)

which shows the convexity of Xt.

The fact that Xs : T1 × Ω → R, Xs(u, .) := X((u, s) , .) is also convex on
T1 for all s ∈ T2 goes likewise, and we shall omit the details.

The following inequalties of Hadamard type hold.
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Theorem 2.5 Suppose that stochastic process X : Λ × Ω → R is convex
on the co-ordinates on Λ. Then one has the inequalities:

X

((
t1 + t2

2
,
s1 + s2

2

)
, .

)
(5)

≤ 1

2

[
1

t2 − t1

∫ t2

t1

X

((
t,
s1 + s2

2

)
, .

)
dt

+
1

s2 − s1

∫ s2

s1

X

((
t1 + t2

2
, s

)
, .

)
ds

]
≤ 1

(t2 − t1) (s2 − s1)

∫ t2

t1

∫ s2

s1

X ((t, s) , .) dtds

≤ 1

4

[
1

t2 − t1

∫ t2

t1

X ((t, s1) , .) dt+
1

t2 − t1

∫ t2

t1

X ((t, s2) , .) dt

+
1

s2 − s1

∫ s2

s1

X ((t1, s) , .) ds+
1

s2 − s1

∫ s2

s1

X ((t2, s) , .) ds

]
≤ X ((t1, s1) , .) +X ((t1, s2) , .) +X ((t2, s1) , .) +X ((t2, s2) , .)

4
.

Proof. Since stochastic process X : Λ×Ω→ R is convex on the co-ordinates
on Λ, it follows that the mapping Xt : T2 × Ω → R, Xt(s, .) := X((t, s) , .) is
convex on T2 for all t ∈ T1. Then, by the inequality (1), one has:

Xt

(
s1 + s2

2
, .

)
≤ 1

s2 − s1

∫ s2

s1

Xt (s, .) ds

≤ Xt(s1, .) +Xt(s2, .)

2
, t ∈ T1.

Namely,

X

((
t,
s1 + s2

2

)
, .

)
≤ 1

s2 − s1

∫ s2

s1

X ((t, s) , .) ds

≤ X((t, s1) , .) +X((t, s2) , .)

2
, t ∈ T1.

Integrating this inequality on [t1, t2] and multiplying each side of the in-
equality by 1

t2−t1 , we have:

1

t2 − t1

∫ t2

t1

X

((
t,
s1 + s2

2

)
, .

)
dt (6)

≤ 1

(t2 − t1) (w2 − w1)

∫ t2

t1

∫ s2

s1

X ((t, s) , .) dsdt

≤ 1

2

[
1

t2 − t1

∫ t2

t1

X((t, s1) , .)

2
dt+

1

t2 − t1

∫ t2

t1

X((t, s2) , .)

2
dt

]
.
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By a similar argument applied for the mapping Xs : T1×Ω→ R, Xs(u, .) :=
X((u, s) , .) we get

1

s2 − s1

∫ s2

s1

X

((
t1 + t2

2
, s

)
, .

)
ds (7)

≤ 1

(t2 − t1) (s2 − s1)

∫ t2

t1

∫ s2

s1

X ((t, s) , .) dsdt

≤ 1

2

[
1

s2 − s1

∫ s2

s1

X((t1, s) , .)

2
ds+

1

s2 − s1

∫ s2

s1

X((t2, s) , .)

2
ds

]
.

Summing the inequalities (6) and (7), we get the second and third inequality
in (5) .

By the inequality (1), we also have:

X

((
t1 + t2

2
,
s1 + s2

2

)
, .

)
≤ 1

t2 − t1

∫ t2

t1

X

((
t,
s1 + s2

2

)
, .

)
dt

and

X

((
t1 + t2

2
,
ω1 + ω2

2

)
, .

)
≤ 1

s2 − s1

∫ s2

s1

X

((
t1 + t2

2
, s

)
, .

)
ds

which give, by addition, the first inequality in (5).

Lastly, by the same inequality, we can also write:

1

t2 − t1

∫ t2

t1

X((t, s1) , .)dt ≤
X((t1, s1) , .) +X((t2, s1) , .)

2

1

t2 − t1

∫ t2

t1

X((t, s2) , .)dt ≤
X((t1, s2) , .) +X((t2, s2) , .)

2

1

s2 − s1

∫ s2

s1

X((t1, s) , .)ds ≤
X((t1, s1) , .) +X((t1, s2) , .)

2

and

1

s2 − s1

∫ s2

s1

X((t2, s) , .)ds ≤
X((t2, s1) , .) +X((t2, s2) , .)

2

which give, by the addition, the last inequality (5).
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3 Some mappings associated to Hermte-Hadamard

inequality

Now, for stochastic process X : Λ×Ω→ R, [t1, t2]× [s1, s2] ⊂ Λ, we can define
the following mapping H : [0, 1]2 × Ω→ R,

H ((α, β) , .) :

=
1

(t2 − t1) (s2 − s1)

∫ t2

t1

∫ s2

s1

X

((
αt+ (1− α)

t1 + t2
2

, βs+ (1− β)
s1 + s2

2

)
, .

)
dsdt.

The properties of this mapping are embodied in the following theorem.

Theorem 3.1 Suppose that stochastic process X : Λ × Ω → R is convex
on the co-ordinates on Λ. Then:

(i) The mapping H is convex on the co-ordinates on [0, 1]2.
(ii) We have the bounds:

supH((α, β) , .) =
(α,β)∈[0,1]2

1

(t2 − t1) (s2 − s1)

∫ t2

t1

∫ s2

s1

X ((t, s) , .) dsdt = H(1, 1);

inf H((α, β) , .) =
(α,β)∈[0,1]2

X

((
t1 + t2

2
,
s1 + s2

2

)
, .

)
= H(0, 0);

(iii) The mapping H is monotonic nondecreasing on the co-ordinates.
Proof. (i) Let s be a fixed number in [0, 1]. Then for all γ, θ ≥ 0 with
γ + θ = 1 and k1, k2 ∈ [0, 1].

H((γk1 + θk2, s) , .)

=
1

(t2 − t1) (s2 − s1)

×
∫ t2

t1

∫ s2

s1

X

((
(γk1 + θk2) t+ (1− (γk1 + θk2))

t1 + t2
2

,

βs+ (1− β)
s1 + s2

2

)
, .

)
dsdt

=
1

(t2 − t1) (s2 − s1)

×
∫ t2

t1

∫ s2

s1

X

((
γ

(
k1t+ (1− k1)

t1 + t2
2

)
+θ

(
k2t+ (1− k2)

t1 + t2
2

)
, βω + (1− β)

ω1 + ω2

2

)
, .

)
dsdt
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≤ γ
1

(t2 − t1) (s2 − s1)

×
∫ t2

t1

∫ s2

s1

X

((
k1t+ (1− k1)

t1 + t2
2

, βs+ (1− β)
s1 + s2

2

)
, .

)
dsdt

+θ
1

(t2 − t1) (s2 − s1)

×
∫ t2

t1

∫ s2

s1

X

((
k2t+ (1− k2)

t1 + t2
2

, βs+ (1− β)
s1 + s2

2

)
, .

)
dsdt

= γH((k1, s) , .) + θH((k2, s) , .).

If t ∈ [0, 1] is fixed, then for all γ, θ ≥ 0 with γ + θ = 1 and l1, l2 ∈ [0, 1] ,
we also have:

H((t, γl1 + θl2) , .) ≤ γH((t, l1) , .) + θH((t, l2) , .)

and the statement is proved.

(ii) Since X is convex on the co-ordinates on Λ, we have, by Jensen’s
inequality for integrals, that:

H((α, β) , .)

=
1

(t2 − t1) (s2 − s1)

∫ t2

t1

∫ s2

s1

X

((
αt+ (1− α)

t1 + t2
2

, βs+ (1− β)
s1 + s2

2

)
, .

)
dsdt

≥ 1

(t2 − t1)

∫ t2

t1

X

[
αt+ (1− α)

t1 + t2
2

,

1

s2 − s1

∫ s2

s1

(
βω + (1− β)

s1 + s2
2

)
ds

)
, ·
]
dt

=
1

(t2 − t1)

∫ t2

t1

X

((
αt+ (1− α)

t1 + t2
2

,
s1 + s2

2

)
, .

)
dt

≥ X

[(
1

(t2 − t1)

∫ t2

t1

[
αt+ (1− α)

t1 + t2
2

]
dt,

s1 + s2
2

)
, .

]
= X

((
t1 + t2

2
,
s1 + s2

2

)
, .

)
= X((0, 0) , .).
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By the convexity of H on the co-ordinates, we have:

H((α, β) , .)

≤ β
1

(t2 − t1)
×
∫ t2

t1

[
1

(s2 − s1)

∫ s2

s1

X

((
αt+ (1− α)

t1 + t2
2

, s

)
, .

)
ds

+ (1− β)
1

(s2 − s1)
×
∫ s2

s1

X

((
αt+ (1− α)

t1 + t2
2

,
s1 + s2

2

)
, .

)
ds

]
dt

≤ β
1

(s2 − s1)

∫ s2

s1

[
α

1

(t2 − t1)

∫ t2

t1

X ((t, s) , .) ds

+(1− α)
1

(t2 − t1)

∫ t2

t1

X

((
t1 + t2

2
, s

)
, .

)
ds

]
dt

+ (1− β)
1

(s2 − s1)

∫ s2

s1

[
α

1

(t2 − t1)

∫ t2

t1

X

((
t,
s1 + s2

2

)
, .

)
dt

+(1− α)X

((
t1 + t2

2
,
s1 + s2

2

)
, .

)]
ds

= αβ
1

(t2 − t1) (s2 − s1)

∫ s2

s1

∫ t2

t1

X ((t, s) , .) dtds

+(1− α)β
1

(s2 − s1)

∫ t2

t1

X

((
t1 + t2

2
, s

)
, .

)
ds

+α (1− β)
1

(t2 − t1)

∫ t2

t1

X

((
t,
s1 + s2

2

)
, .

)
dt

+(1− α) (1− β)X

((
t1 + t2

2
,
s1 + s2

2

)
, .

)
.

By the inequality (1), we also have:

X

((
t1 + t2

2
, s

)
, .

)
≤ 1

(t2 − t1)

∫ t2

t1

X ((t, s) , .) dt, s ∈ [s1, s2]

and

X

(
t,
s1 + s2

2

)
≤ 1

(s2 − s1)

∫ s2

s1

X ((t, s) , .) ds, t ∈ [t1, t2] .

So, by the integration, we get that:

1

(s2 − s1)

∫ s2

s1

X

((
t1 + t2

2
, s

)
, .

)
ds

≤ 1

(t2 − t1) (s2 − s1)

∫ s2

s1

∫ t2

t1

X ((t, s) , .) dtds
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1

(t2 − t1)

∫ t2

t1

X

((
t,
s1 + s2

2

)
, .

)
dt

≤ 1

(t2 − t1) (s2 − s1)

∫ s2

s1

∫ t2

t1

X ((t, s) , .) dtds

Using the above inequality, we obtain that

H((α, β) , .)

≤ [αβ + (1− α)β + α (1− β) + (1− α) (1− β)]

× 1

(t2 − t1) (s2 − s1)

∫ s2

s1

∫ t2

t1

X ((t, s) , .) dtds

=
1

(t2 − t1) (s2 − s1)

∫ s2

s1

∫ t2

t1

X ((t, s) , .) dtds

= H((1, 1) , .)

and the second bound in (ii) is proved.
(iii) Firstly, we will show that

H((α, β) , .) ≥ H((0, β) , .), for all (α, β) ∈ [0, 1]2 . (8)

By Jensen’s inequality for integrals,

H((α, β) , .)

≥ 1

s2 − s1

∫ s2

s1

X

((
1

(t2 − t1)

∫ t2

t1

[
αt+ (1− α)

t1 + t2
2

]
dt

, βs+ (1− β)
s1 + s2

2

)
, .

)
ds

=
1

s2 − s1

∫ s2

s1

X

((
t1 + t2

2
, βs+ (1− β)

s1 + s2
2

)
, .

)
ds

= H((0, β) , .),

for all (α, β) ∈ [0, 1]2.
Now let 0 ≤ α1 ≤ α2 ≤ 1. By the convexity of mapping H((·, β) , .) for all

β ∈ [0, 1], we have

H((α2, β) , .)−H((α1, β) , .)

α2 − α1

≥ H((α1, β) , .)−H((0, β) .)

β
≥ 0.

For the last inequality, we use (8).
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Theorem 3.2 Suppose that stochastic process X : Λ × Ω → R is convex
on [t1, t2]× [s1, s2] ⊂ Λ. Then

(i) The mapping H is convex on Λ;
(ii) Define the mapping h : [0, 1] → R, h(α) := H((α, α) , .). Then h is

convex, monotonic nondecreasing on [0, 1] and one has the bounds:

suph(α)
(α,β)∈[0,1]2

= h(1) =
1

(t2 − t1) (s2 − s1)

∫ t2

t1

∫ s2

s1

X ((t, s) , .) dsdt

and

inf h(α)
(α,β)∈[0,1]2

= h(0) = X

((
t1 + t2

2
,
s1 + s2

2

)
, .

)
Proof. (i) Let (α1, β1), (α2, β2) ∈ [0, 1]2 and γ, θ ≥ 0 with γ + θ = 1. Since
X : Λ× Ω→ R is convex on [t1, t2]× [s1, s2], we have

H (γ (α1, β1) + θ (α2, β2) , .)

= H ((γα1 + θα2, γβ1 + θβ2) , .)

=
1

(t2 − t1) (s2 − s1)

×
∫ t2

t1

∫ s2

s1

X

[(
γ

(
α1t+ (1− α1)

t1 + t2
2

, β1s+ (1− β1)
s1 + s2

2

)
+θ

(
α2t+ (1− α2)

t1 + t2
2

, β2s+ (1− β2)
s1 + s2

2

))
, .

]
dsdt

≤ γ.
1

(t2 − t1) (s2 − s1)

×
∫ t2

t1

∫ s2

s1

X

((
α1t+ (1− α1)

t1 + t2
2

, β1s+ (1− β1)
s1 + s2

2

)
, .

)
dsdt

+θ.
1

(t2 − t1) (s2 − s1)

×
∫ t2

t1

∫ s2

s1

X

((
α2t+ (1− α2)

t1 + t2
2

, β2s+ (1− β2)
s1 + s2

2

)
, .

)
dsdt

= γH ((α1, β1) , .) + θH ((α2, β2) , .) ,

which shows that H is convex on [0, 1]2.
(ii) Let α1, α2 ∈ [0, 1] and γ, θ ≥ 0 with γ + θ = 1. Then

h(γα1 + θα2) = H((γα1 + θα2, γα1 + θα2) , .)

= H ((γ (α1, α1) + θ (α2, α2)) , .)

≤ γH ((α1, α1) , .) + θH ((α2, α2) , .)

= γh(α1) + θh (α2)
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which shows the convexity of h on [0, 1].
We have, by the above theorem, that

h(α) := H((α, α) , .) ≥ H((0, 0) , .) = X

((
t1 + t2

2
,
s1 + s2

2

)
, .

)
, α ∈ [0, 1]

and

h(α) = H((α, α) , .) ≤ H((1, 1) , .)

=
1

(t2 − t1) (s2 − s1)

∫ s2

s1

∫ t2

t1

X (t, s) dtds, α ∈ [0, 1]

which prove the required bounds.
Now let 0 ≤ α1 ≤ α2 ≤ 1. Then, by the conveity of h we have that

h(α2)− h(α1)

α2 − α1

≥ h(α1)− h(0)

α1

≥ 0

and the theorem is proved.
Next, we will consider the following mapping which is closely connected

with Hadamard’s inequality:
∼
H : [0, 1]2 × Ω→ [0,∞) the stochastic processes

∼
H ((α, β) , .) =

1

(t2 − t1)2 (s2 − s1)2

×
∫ t2

t1

∫ t2

t1

∫ s2

s1

∫ s2

s1

X((αt+ (1− α)u, βs+ (1− β) v) , .)dtdudsdv.

The following theorem contains the main properties of these stochastic
processes.

Theorem 3.3 Suppose that stochastic process X : Λ × Ω → R is convex
on the co-ordinates on [t1, t2]× [ω1, ω2] ⊂ Λ. Then:

(i) We have the equalities:

∼
H

((
α +

1

2
, β

)
, .

)
=
∼
H

((
1

2
− α, β

)
, .

)
for all α ∈

[
0, 1

2

]
, β ∈ [0, 1] ;

∼
H

((
α +

1

2
, β

)
, .

)
=
∼
H

((
1

2
− α, β

)
, .

)
for all α ∈

[
0, 1

2

]
, β ∈ [0, 1] ;

∼
H((1− α, β) , .) =

∼
H((α, β) , .)
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and
∼
H((α, 1− β) , .) =

∼
H((α, β) , .),

for all (α, β) ∈ [0, 1]2.

(ii) The stochastic process
∼
H is convex on the co-ordinates.

(iii) We have the bounds

inf
∼
H((α, β) , .)
(α,β)∈[0,1]2

=
∼
H

((
1

2
,
1

2

)
, .

)
=

1

(t2 − t1)2 (s2 − s1)2

×
∫ t2

t1

∫ t2

t1

∫ s2

s1

∫ s2

s1

X

((
t1 + t2

2
,
s1 + s2

2

)
, .

)
dtdudsdv

and

sup
∼
H((α, β) , .)
(α,β)∈[0,1]2

=
∼
H((0, 0) , )

=
1

(t2 − t1) (s2 − s1)

∫ t2

t1

∫ s2

s1

X ((t, s) , .) dsdt.

(iv) The stochastic process
∼
H ((·, β) , .) is monoton nonincreasing on

[
0, 1

2

)
and nondecreasing on

[
1
2
, 1
]

for all α ∈ [0, 1]. A similar property has the

stochastic process
∼
H ((α, ·) , .) for all β ∈ [0, 1].

(v) We have the inequality

∼
H((α, β) , .) ≥ max {H((α, β) , .), H ((1− α, β) , .) (9)

, H((α, 1− β) , .), H((1− α, 1− β) , .)}

for all α ∈ [0, 1].

Proof. (i),(ii) are obvious from definition of
∼
H.

(iii) By the convexity of X in the first variable, we get that

X

((
t+ u

2
, βs+ (1− β) v

)
, .

)
= X

((
αt+ (1− α)u+ (1− α)t+ αu

2
, βv + (1− β) s

)
, .

)
≤ 1

2
[X((αt+ (1− α)u, βs+ (1− β) v) , .)

+X(((1− α)t+ αu, βv + (1− β) s) , .)]

for all (t, u) ∈ [t1, t2]
2,(v, s) ∈ [s1, s2]

2 and (α, β) ∈ [0, 1]2.
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Integrating on [t1, t2]
2, we get

1

(t2 − t1)2
∫ t2

t1

∫ t2

t1

X((αt+ (1− α)u, βs+ (1− β) v) , .)dtdu (10)

≥ 1

(t2 − t1)2
∫ t2

t1

∫ t2

t1

X

((
t+ u

2
, βs+ (1− β) v

)
, .

)
dtdu

Similarly,

1

(s2 − s1)2
∫ s2

s1

∫ s2

s1

X

((
t+ u

2
, βω + (1− β) v

)
, .

)
dtdu (11)

≥ 1

(s2 − s1)2
∫ s2

s1

∫ s2

s1

X

((
t+ u

2
,
s+ v

2

)
, .

)
dtdu.

Now, integrating 10 inequality integrating on [s1, s2]
2 and inequality 11 on

[t1, t2]
2 we deduce,

∼
H((α, β) , .)

≥ 1

(t2 − t1)2 (s2 − s1)2
∫ s2

s1

∫ s2

s1

X

((
t+ u

2
,
s+ v

2

)
, .

)
dtdudsdv

for (α, β) ∈ [0, 1]2. Therefore, the first bound in (iii) is proved.

Since X is convex on the co-ordinates on ∆

∼
H((α, β) , .) =

1

(t2 − t1)2 (s2 − s1)2

×
∫ t2

t1

∫ t2

t1

∫ s2

s1

∫ s2

s1

X((αt+ (1− α)u, βs+ (1− β) v) , .)dtdudsdv

≤ αβ
1

(t2 − t1)2 (s2 − s1)2

×
∫ t2

t1

∫ t2

t1

∫ s2

s1

∫ s2

s1

X((t, s) , .)dtdudsdv

+α (1− β)
1

(t2 − t1)2 (s2 − s1)2

×
∫ t2

t1

∫ t2

t1

∫ s2

s1

∫ s2

s1

X((t, v) , .)dtdudsdv
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+ (1− α) β
1

(t2 − t1)2 (s2 − s1)2

×
∫ t2

t1

∫ t2

t1

∫ s2

s1

∫ s2

s1

X((u, s) , .)dtdudsdv

+ (1− α) (1− β)
1

(t2 − t1)2 (s2 − s1)2

×
∫ t2

t1

∫ t2

t1

∫ s2

s1

∫ s2

s1

X((u, v) , .)dtdudsdv

= [αβ + α (1− β) + (1− α) β + (1− α) (1− β)]

× 1

(t2 − t1) (s2 − s1)

∫ t2

t1

∫ s2

s1

X((t, s) , .)dsdt

=
1

(t2 − t1) (s2 − s1)

∫ t2

t1

∫ s2

s1

X((t, s) , .)dsdt

=
∼
H((0, 0) , .).

Therefore, the second bound in (iii) is proved.

(iv) The monotonicity of
∼
H(α, β) follows by a similar argument as in the

proof of theorem 2.5, and we shall omit the details.
(v) By Jensen’s inequality we have successively for all (α, β) ∈ [0, 1]2 that

∼
H((α, β) , .)

≥ 1

(t2 − t1) (s2 − s1)2
∫ t2

t1

∫ s2

s1

∫ s2

s1

X

((
1

(t2 − t1)

∫ t2

t1

[αt+ (1− α)u] du

, βs+ (1− β) v) , .) dtdsdv

=
1

(t2 − t1) (s2 − s1)2
∫ t2

t1

∫ s2

s1

∫ s2

s1

X

((
αt+ (1− α)

t1 + t2
2

, βs+ (1− β) v) , .) dtdωdv

≥ 1

(t2 − t1) (s2 − s1)

∫ t2

t1

∫ s2

s1

X

((
αt+ (1− α)

t1 + t2
2

, βs+ (1− β)
v1 + v2

2

)
, .

)
dtdω

= H((α, β) , .).
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In addition, as

∼
H ((α, β) , .) =

∼
H ((1− α, β) , .) =

∼
H((α, 1− β) , .) =

∼
H((1− α, 1− β) , .)

for all (α, β) ∈ [0, 1]2, then by the above inequality we deduce (9).
Finally we can also state the following theorem which can be proved in a

similar fashion to Theorem 3.1 and we will omit the details.

Theorem 3.4 Suppose that stochastic process X : Λ × Ω → R is convex
on the co-ordinates on [t1, t2]× [s1, s2] ⊂ Λ. Then we have:

(i) The mapping
∼
H is convex on ∆.

(ii) Define the mapping
∼
h : [0, 1] → R,

∼
h(t) :=

∼
H((t, t) , .). Then

∼
h is

convex, monotonic nonincreasing on
[
0, 1

2

]
and nondecreasing on

[
1
2
, 1
]

and
one has the bounds:

sup
∼
h(α)

α,β∈[0,1]
=
∼
h(1) =

∼
h(0) =

1

(t2 − t1) (s2 − s1)

∫ t2

t1

∫ s2

s1

X ((t, s) , .) dsdt

and

inf
∼
h(α, β)

α,β∈[0,1]
=
∼
h(

1

2
)

=
1

(t2 − t1)2 (s2 − s1)2
∫ t2

t1

∫ t2

t1

∫ s2

s1

∫ s2

s1

X

((
t1 + t2

2
,
s1 + s2

2

)
, .

)
dtdudsdv.

(iii) One has the inequality

∼
h(α) ≥ max

{∼
h(α),

∼
h(1− α)

}
for all α ∈ [0, 1] .
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