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İstanbul Kültür University
Department of Mathematics and Computer Science

Ataköy Campus
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Abstract

In the present paper we extend the fundamental property that if
h(z) and g(z) are regular functions in the open unit disc D with the
properties h(0) = g(0) = 0, h maps D onto many-sheeted region which

is starlike with respect to the origin, and Re g
′(z)

h′(z) > 0, then Re g(z)
h(z) > 0,

introduced by R.J. Libera [5] to the Janowski functions and give some
applications of this to the harmonic functions.
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1 Introduction

Let Ω be the class of functions φ(z) regular in the open unit disc D = {z ∈
C||z| < 1} and satisfy the conditions φ(0) = 0, |φ(z)| < 1 for all z ∈ D.

For arbitrary fixed numbers A, B, −1 < A ≤ 1, −1 ≤ B < A we denote
by P(A,B) the family of functions p(z) = 1 + p1z + p2z

2 + · · · regular in D

such that p(z) is in P(A,B) if and only if

p(z) =
1 + Aφ(z)

1 +Bφ(z)
(1)

for some function φ(z) ∈ Ω and every z ∈ D.
Let S∗(A,B) denote the family of functions s(z) = z + c2z

2 + · · · regular
in D such that s(z) in S∗(A,B) if and only if

z
s′(z)

s(z)
= p(z) (2)

for some p(z) in P(A,B) and all z ∈ D. We note that every function in this
family maps the unit disc univalently onto a region wihich is starlike with
respect to the origin.

Let s1(z) = z+ d2z
2 + · · · and s2(z) = z + e2z

2 + · · · be analytic functions
in D. If there exists φ(z) ∈ Ω such that s1(z) = s2(φ(z)), then we say that
s1(z) is subordinate to s2(z) and write s1(z) ≺ s2(z) so that s1(D) ⊂ s2(D).

Finally, univalent harmonic functions are generalization of univalent ana-
lytic functions the point of the departure is the canonical representation

f = h(z) + g(z), g(0) = 0 (3)

of a harmonic function f in the unit disc D as the sum of an analytic function
h(z) and conjugate of an analytic function g(z). With the convention that
g(0) = 0, the representation is unique. The power series expansions of h(z)
and g(z) are denoted by

h(z) =

∞
∑

n=0

anz
n, g(z) =

∞
∑

n=0

bnz
n. (4)

If f is sense-preserving harmonic mapping of D onto some other region,
then by Lewy’s theorem its Jacobian is strictly positive, i.e,

Jf(z) = |h′(z)|2 − |g′(z)|2 > 0.
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Equivalently, the inequality |g′(z)| < |h′(z)| holds for all z ∈ D. This shows,
in particular, that h′(0) 6= 0 and h′(0) = 1. The class of all sense-preserving
harmonic mapping of the disc with a0 = b0 = 0, a1 = 1 will be denoted by
SH. Thus SH contains the standard class S of analytic univalent functions.
Although the analytic part h(z) of a function f ∈ SH is locally univalent, it
will be come apparent that it not be univalent. The class of functions f ∈ SH

with g′(0) = 0 will be denoted by S0
H. At the same time, we note that SH is a

normal family and S0
H is a compact normal family. For details, see [2].

Now, we consider the following class of harmonic mappings in the plane

S∗
HPST =

{

f = h(z) + g(z)
∣

∣

∣
f ∈ SH, h(z) ∈ S∗(A,B),

w(z) =
g′(z)

b1h′(z)
∈ P(A,B),−1 ≤ B < A ≤ 1

}

.

In this paper we will investigate the subclass S∗
HPST . We will need the following

theorems in the sequel.

Theorem 1.1 [4] Let h(z) be an element of S∗(A,B), then

C(r,−A,−B) ≤ |h(z)| ≤ C(r, A,B), (5)

where

C(r, A,B) =

{

r(1 +Br)
A−B

B , B 6= 0,

reAr, B = 0.

These bounds are sharp, being attained at the point z = reiθ, 0 ≤ θ ≤ 2π, by

f∗ = zf0(z;−A,−B), (6)

f ∗ = zf0(z;A,B), (7)

respectively, where

f0(z;A,B) =

{

(1 +Be−iθz)
A−B

B , B 6= 0,

reAe−iθz, B = 0.

Theorem 1.2 [6] If h(z) = z + a2z
2 + · · · belongs to S∗(A,B), then

|an| ≤

{

∏n−2
k=0

|(A−B)+kB|
k+1

, B 6= 0,
∏n−2

k=0
|A|
k+1

, B 6= 0.

These bound are sharp because the extremal function is

f∗(z) =

{

(1 +Bz)
A−B

B , B 6= 0,

reAz, B = 0.

Lemma 1.3 (Jack’s Lemma, [3]) Let φ(z) be regular in the unit disc D,
with φ(0) = 0. Then if |φ(z)| attains its maximum value on the circle |z| = r
at the point z1, one has z1φ

′(z1) = kφ(z1) for some k ≥ 1.
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2 Main Results

Theorem 2.1 If h(z) and g(z) are regular in D such that h(0) = g(0) = 0.

If h(z) ∈ S∗(A,B) and g′(z)
b1h′(z)

∈ P(A,B), then g(z)
b1h(z)

∈ P(A,B).

Proof. Since the linear transformation 1+Az
1+Bz

maps |z| = r onto the disc with

the center C(r) =
(

1−ABr2

1−B2r2
, 0
)

and the radius ρ(r) = (A−B)r
1−B2r2

and using the

subordination principle we can write

g′(z)

h′(z)
≺ b1

1 + Az

1 +Bz

so
1

b1

g′(z)

h′(z)
≺

1 + Az

1 +Bz
⇒

∣

∣

∣

∣

1

b1

g′(z)

h′(z)
−

1− ABr2

1− B2r2

∣

∣

∣

∣

≤
(A− B)r

1−B2r2

thus
∣

∣

∣

∣

g′(z)

h′(z)
−

b1(1−ABr2)

1− B2r2

∣

∣

∣

∣

≤
|b1|(A− B)r

1− B2r2
. (8)

The inequality (8) shows that the values of g′(z)/h′(z) are in the disc

Dr(b1) =







{

g′(z)
h′(z)

∣

∣

∣

∣

∣

∣

g′(z)
h′(z)

− b1(1−ABr2)
1−B2r2

∣

∣

∣
≤ |b1|(A−B)r

1−B2r2

}

, B 6= 0,
{

g′(z)
h′(z)

∣

∣

∣

∣

∣

∣

g′(z)
h′(z)

− b1

∣

∣

∣
≤ |b1|Ar

}

, B = 0.

Now we define a function φ(z) by

g(z)

h(z)
= b1

1 + Aφ(z)

1 +Bφ(z)
.

Then φ(z) is analytic in D, φ(0) = 0. On the other hand since h(z) ∈ S∗(A,B)
then

Dr =







∣

∣

∣
z h′(z)

h(z)
− 1−ABr2

1−B2r2

∣

∣

∣
≤ (A−B)r

1−B2r2
, B 6= 0,

∣

∣

∣
z h′(z)

h(z)
− 1

∣

∣

∣
≤ Ar, B = 0

for all |z| = r < 1. Thus, for a point z1 on the bound of this disc we have

z1
h′(z1)

h(z1)
−

1−ABr2

1−B2r2
=

(A− B)r

1− B2r2
eiθ, B 6= 0,

z1
h′(z1)

h(z1)
− 1 = Areiθ, B 6= 0,

or

h(z1)

z1h(z1)
=

1− B2r2

[1− ABr2] + (A− B)reiθ
∈ ∂Dr, B 6= 0,

h(z1)

z1h(z1)
=

1

1 + Areiθ
∈ ∂Dr, B 6= 0,
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where ∂Dr is the boundary of the disc Dr. Therefore, by Jack’s lemma,
z1φ

′(z1) = kφ(z1) and k ≥ 1, we have that

w(z1) =
g′(z1)

b1h′(z1)
=

{

1+Aφ(z1)
1+Bφ(z1)

+ (A−B)kφ(z1)
(1+Bφ(z1))2

1−B2r2

(1−ABr2)+(A−B)reiθ
/∈ w(Dr(b1)), B 6= 0,

1 + Aφ(z1) + Akφ(z1)
1

1+Areiθ
/∈ w(Dr(b1)), B = 0,

(9)
because |φ(z1)| = 1 and k ≥ 1. But this is a contradiction to the condition
g′(z)
h′(z)

≺ b1
1+Az
1+Bz

and so we have |φ(z)| < 1 for all z ∈ D.

Lemma 2.2 Let f = h(z) + g(z) ∈ SH, then for a function defined by

ω(z) = g′(z)
h′(z)

we have

|b1| − r

1− |b1|r
≤ |ω(z)| ≤

|b1|+ r

1 + |b1|r
, (10)

(1− r2)(1− |b1|
2)

(1 + |b1|r)2
≤ 1− |ω(z)|2 ≤

(1− r2)(1− |b1|
2)

(1− |b1|r)2
, (11)

and
(1− r)(1 + |b1|)

1− |b1|r
≤ 1 + |ω(z)| ≤

(1 + r)(1 + |b1|)

1 + |b1|r
(12)

for all |z| = r < 1.

Proof. Since f = h(z) + g(z) ∈ SH, it follows that

ω(z) =
g′(z)

h′(z)
=

b1 + 2b2z + · · ·

1 + 2a2z + · · ·
⇒ ω(0) = b1 ⇒ |ω(z)| < 1 ⇒ |ω(0)| = |b1| < 1.

So the function

φ(z) =
ω(z)− ω(0)

1− ω(0)ω(z)
=

ω(z)− b1

1− b1ω(z)

satisfies the conditions of Schwarz lemma. Therefore we have

ω(z) =
b1 + φ(z)

1 + b1φ(z)
if and only if ω(z) ≺

b1 + z

1 + b1z
(z ∈ D). (13)

On the other hand, the linear transformation
(

b1+z

1+b1z

)

maps |z| = r onto the

disc with the center C(r) =
(

(1−r2)Re(b1)
1−|b1|2r2

, (1−r2)Im(b1)
1−|b1|2r2

)

with the radius ρ(r) =

(1−|b1|2)r
1−|b1|2r2

. Then, we have

∣

∣

∣

∣

ω(z)−
b1(1− r2)

1− |b1|2

∣

∣

∣

∣

≤
(1− |b1|

2)r

1− |b1|2r2
, (14)

which gives (10), (11) and (13).



622 Emel Yavuz Duman,Yaşar Polatoğlu,Yasemin Kahramaner and Maslina Darus

Corollary 2.3 Let f = h(z) + g(z) be an element of S∗
HPST , then

|b1|(1−Ar)2(1− Br)
A−3B

B ≤ |g′(z)| ≤ |b1|(1 + Ar)2(1 +Br)
A−3B

B , B 6= 0,
|b1|(1− Ar)2e−Ar ≤ |g′(z)| ≤ |b1|(1 + Ar)2eAr, B = 0,

(15)
and

|b1|r(1−Ar)(1−Br)
A−2B

B ≤ |g(z)| ≤ |b1|r(1 + Ar)(1 +Br)
A−2B

B , B 6= 0,
|b1|(1−Ar)e−Ar ≤ |g(z)| ≤ |b1|(1 + Ar)eAr, B = 0,

(16)
for all |z| = r < 1.

Proof. Since h(z) ∈ S∗(A,B), then we have
∣

∣

∣
z h′(z)

h(z)
− 1−ABr2

1−B2r2

∣

∣

∣
≤ (A−B)r

1−B2r2
⇒ 1−Ar

1−Br
≤

∣

∣

∣
z h′(z)

h(z)

∣

∣

∣
≤ 1+Ar

1+Br
, B 6= 0,

∣

∣

∣
z h′(z)

h(z)
− 1

∣

∣

∣
≤ Ar ⇒ 1−Ar ≤

∣

∣

∣
z h′(z)

h(z)

∣

∣

∣
≤ 1 + Ar, B = 0,

(17)

for all z ∈ D. Using Theorem 1.1 and after simple calculations we get

(1− Ar)(1−Br)
A−2B

B ≤ |h′(z)| ≤ (1 + Ar)(1 +Br)
A−2B

B , B 6= 0,
(1−Ar)e−Ar ≤ |h′(z)| ≤ (1 + Ar)eAr, B = 0.

(18)

On the other hand, if we use Theorem 2.1, then we can write

F (r,−A,−B, |b1|) ≤
∣

∣

∣

g(z)
h(z)

∣

∣

∣
≤ F (r, A,B, |b1|), B 6= 0,

F (r,−A, |b1|) ≤
∣

∣

∣

g(z)
h(z)

∣

∣

∣
≤ F (r, A, |b1|), B = 0,

(19)

and
F (r,−A,−B) ≤

∣

∣

∣

g′(z)
h′(z)

∣

∣

∣
≤ F (r, A,B), B 6= 0,

F (r,−A) ≤
∣

∣

∣

g′(z)
h′(z)

∣

∣

∣
≤ F (r, A), B = 0,

(20)

for all |z| = r < 1, where F (r, A,B, |b1|) = |b1|(1+Ar)
1+Br

and F1(r, A, |b1|) =
|b1|(1 + Ar). Considering Theorem 1.1, and equations (18), (19) and (20), we
get (15) and (16).

Corollary 2.4 Let f = h(z) + g(z) be an element of S∗
HPST (A,B), then

|b1|(1− Ar)2(1− Br)
2(A−2B)

B

(1− r2)(1− |b1|
2)

(1 + |b1|r)2
≤ Jf(z)

≤ |b1|(1 + Ar)2(1−Br)
2(A−2B)

B

(1− r2)(1− |b1|
2)

(1− |b1|r)2
, B 6= 0,

|b1|(1−Ar)2e−2Ar (1− r2)(1− |b1|
2)

(1 + |b1|r)2
≤ Jf(z)

≤ |b1|(1 + Ar)2e2Ar (1− r2)(1− |b1|
2)

(1− |b1|r)2
, B = 0,

(21)
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for all |z| = r < 1, where

Proof. This is a consequence of Lemma 2.2 and the inequalities in (18).

Corollary 2.5 Let f = h(z) + g(z) be an element of S∗
HPST (A,B), then

|b1|

(

− |b1|
B

)1−A

B

2F1

[

2− A
B
, 2− A

B
, 3− A

B
, B+|b1|

B

]

A− 2B

− |b1|
1

2
(1 + A)r2F1

[

2, 2−
A

B
, 1, 3, Br,−|b1|r

]

+ |b1|
1

3
Ar3F1

[

3, 2−
A

B
, 1, 4, Br,−|b1|r

]

+ |b1|
|b1|(1− Br)

A

B

(

|b1|(−1+Br)
B(1+|b1|r)

)−A

B

2F1

[

2− A
B
, 2− A

B
, 3− A

B
, B+|b1|
B(1+|b1|r)

]

B(A− 2B)(1 + |b1|r)2
≤ |f |

≤ −|b1|

(

|b1|
B

)1−A

B

2F1

[

2− A
B
, 2− A

B
, 3− A

B
, 1− |b1|

B

]

A− 2B

+ |b1|
1

2
(1 + A)r2F1

[

2, 2−
A

B
, 1, 3,−Br,−|b1|r

]

+ |b1|
1

3
Ar3F1

[

3, 2−
A

B
, 1, 4,−Br,−|b1|r

]

+ |b1|
|b1|(1− Br)

A

B

(

|b1|(1+Br)
B(1+|b1|r)

)−A

B

2F1

[

2− A
B
, 2− A

B
, 3− A

B
, B−|b1|
B(1+|b1|r)

]

B(A− 2B)(1 + |b1|r)2
,

(22)

for all |z| = r < 1, where 2F1 and F1 are denote the Gauss and Appel hyper-
geometric functions, respectively [1].

Proof. Using Lemma 2.2 and the inequalities in (18), after the simple calcula-
tions, we get

(|h′(z)| − |g′(z)|)|dz| ≤ |df | ≤ (|h′(z)| + |g′(z)|)|dz| ⇒

|h′(z)|(1− w(z))|dz| ≤ |df | ≤ |h′(z)|(1 + w(z))|dz|

|b1|(1− Ar)(1−Br)
A−2B

B

(1− |b1|)(1− r)

1 + |b1|r
dr ≤ |df |

≤ |b1|(1 + Ar)(1 +Br)
A−2B

B

(1 + |b1|)(1 + r)

1 + |b1|r
dr

(23)

for all |z| = r < 1. Integrating the inequality (23), we obtain (22).



624 Emel Yavuz Duman,Yaşar Polatoğlu,Yasemin Kahramaner and Maslina Darus

Theorem 2.6 Let f = h(z) + g(z) be an element of S∗
HPST (A,B), then

|bn+1| ≤
|b1|

n + 1

n+1
∑

k=1

k(A− B)

k−2
∏

m=0

(A−B) +mB

m+ 1
. (24)

Proof. Since f = h(z) + g(z) ∈ S∗
HPST (A,B), then we have

p(z) =
g′(z)

b1h′(z)
, p(z) ∈ P(A,B).

Therefore, we can write

1 + p1z + p2z
2 + · · ·+ pnz

n + · · · =
b1 + 2b2z + · · ·

b1(1 + 2a2z + · · · )
⇒

(1 + p1z + p2z
2 + · · ·+ pnz

n + · · · )(b1(1 + 2a2z + · · · )) = b1 + 2b2z + · · · ⇒

bn+1 =
b1

n+ 1

n+1
∑

k=1

kakpn−k+1 (25)

where a1 ≡ 1, p0 ≡ 1. Using Theorem 1.2 in (25) we obtain (24).
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