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Hardy Inequality for Lθ,∞) Space
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Abstract

Hardy inequality for Lθ,∞)(I) space is proved. As a generalization,
boundedness for Hardy-Littlewood maximal operator in L

θ,∞)(I) is de-
rived.
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Let I = (0, 1), θ ≥ 0. The grand L∞ space, Lθ,∞)(I), was introduced in [1]
by

Lθ,∞)(I) =







f(x) ∈
⋂

1≤p<∞

Lp(I) : sup
1≤p<∞

1

pθ

(

−
∫

I
f pdx

)
1
p

< ∞







,

where −
∫

J = 1
|J |

∫

J stands for integral mean over J , and |J | denote the Lebesgue

measure of J . It is known from [1] that L0,∞)(I) = L∞(I), Lθ,∞)(I) is a
generalization of the classical exponential class, and the following embedding
holds

L∞(I) ⊂ Lθ,∞)(I) ⊂ Lp(I)
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for any θ ≥ 0 and 1 < p < ∞. For f ∈ Lθ,∞)(I), define

‖f‖Lθ,∞)(I) = sup
1≤p<∞

1

pθ

(

−
∫

I
f pdx

)
1
p

. (1)

It is known that
(

Lθ,∞)(I), ‖ · ‖Lθ,∞)(I)

)

is a Banach space.
The classical Hardy inequality states that
Theorem 1. Let p > 1 and f be a measurable, nonnegative function in I.

Then
(
∫ 1

0

(

−
∫ x

0
fdt

)p

dx

)

1
p

≤
p

p− 1

(
∫ 1

0
f pdx

)

1
p

. (2)

In other words, (2) is equivalent to

∥

∥

∥

∥

−
∫ x

0
fdt

∥

∥

∥

∥

Lp(I)
≤

p

p− 1
‖f‖Lp(I) . (2)′

The main result of this paper is the Hardy inequality in the Lθ,∞)(I) space.
Theorem 2. Let 0 < θ < ∞. Then

∥

∥

∥

∥

−
∫ x

0
fdt

∥

∥

∥

∥

Lθ,∞)(I)
≤

(1 + θ)1+θ

θθ
‖f‖Lθ,∞)(I) . (3)

Proof. For any p0 ∈ (1,∞), one has

∥

∥

∥

∥

−
∫ x

0
fdt

∥

∥

∥

∥

Lθ,∞)(I)

= max







sup
1≤p<p0

1

pθ

(
∫ 1

0

(

−
∫ x

0
fdt

)p

dx

)

1
p

, sup
p0≤p<∞

1

pθ

(
∫ 1

0

(

−
∫ x

0
fdt

)p

dx

)

1
p







≤ max







sup
1≤p<p0

pθ0
(pp0)θ

(
∫ 1

0

(

−
∫ x

0
fdt

)p0

dx

)

1
p0

, sup
p0≤p<∞

1

pθ

(
∫ 1

0

(

−
∫ x

0
fdt

)p

dx

)

1
p







≤ max







sup
1≤p<p0

pθ0
pθ

sup
p0≤p<∞

1

pθ

(
∫ 1

0

(

−
∫ x

0
fdt

)p

dx

)

1
p

, sup
p0≤p<∞

1

pθ

(
∫ 1

0

(

−
∫ x

0
fdt

)p

dx

)

1
p







= pθ0 sup
p0≤p<∞

1

pθ

(
∫ 1

0

(

−
∫ x

0
fdt

)p

dx

)

1
p

≤ pθ0 sup
p0≤p<∞

p

pθ(p− 1)

(
∫ 1

0
f pdx

)

1
p

≤
p1+θ
0

p0 − 1
· sup
1≤p<∞

1

pθ

(
∫ 1

0
f pdx

)

1
p

,

where we have used Theorem 1. Since
p1+θ
0

p0−1
takes its minimum value (1+θ)1+θ

θθ

at p0 =
1+θ
θ
, then we set p0 =

1+θ
θ

getting the inequality (3).
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As a corollary of Theorem 2, we derive the Hardy-Littlewood inequality
for Lθ,∞)(I) space. The classical Hardy-Littlewood maximal operator M is
defined by

Mf(x) = sup
I⊃J∋x

−
∫

J
|f(t)|dt, x ∈ (0, 1),

where the supremum extends over all non-degenerate intervals, contained in I,
containing x.

For f a measurable, nonnegative function in I, the decreasing rearrange-
ment of f is defined by

f ∗(t) = sup
|E|=t

inf
E

f, t ∈ I,

where the supremum extends over all measurable set E ⊂ I. An important
relation between rearrangements and the maximal operator is given by the
following Herz’s Theorem (see [2]), which establishes the equivalence of the
function (Mf)∗ and the averaged rearrangement of f defined by

f ∗∗(t) =
1

t

∫ t

0
f ∗(s)ds, t ∈ (0, 1).

Theorem 3. There are absolute constants c and c′ such that the following

inequalities hold for all f ∈ L1(I)

c(Mf)∗(t) ≤ f ∗∗(t) ≤ c′(Mf)∗(t), t ∈ I.

Corollary 1. Let 0 < θ < ∞. Then

‖Mf‖Lθ,∞)(0,1) ≤ C‖f‖Lθ,∞)(0,1).

Proof. Since
‖f‖p = ‖f ∗‖p,

then from Theorem 2 and from Theorem 3 applied to f ∗ we get

‖Mf‖Lθ,∞)(I) = ‖(Mf)∗‖Lθ,∞)(I) ≤ C‖f ∗∗‖Lθ,∞)(I) ≤ C‖f ∗‖Lθ,∞)(I) ≤ C‖f‖Lθ,∞)(I)

from which the assertion of Corollary 1 follows.
From the proof of Theorem 1 we know that a useful property of the norm

(1) is in fact the supremum over [1,∞) in the norm of Lθ,∞(I) can be computed
also in any subinterval (p0,∞), p0 > 1. The result is an equivalent expression
of the norm (i.e., each expression can be majorized by the other, multiplied by
a constant not depending on f).

Theorem 4. Let 1 < p0 < ∞. Then

sup
p0≤p<∞

1

pθ

(
∫

I
f pdx

)
1
p

≤ ‖f‖Lθ,∞)(I) ≤ pθ0 sup
p0≤p<∞

1

pθ

(
∫

I
f pdx

)
1
p

.
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Proof. The left wing inequality is trivial, therefore we need to prove only
the right wing one. Since

sup
1≤p<p0

1

pθ

(
∫

I
f pdx

)
1
p

≤ sup
1≤p<p0

1

pθ

(
∫

I
f p0dx

)
1
p0

≤ sup
1≤p<p0

pθ0
pθ

· sup
p0≤p<∞

1

pθ

(
∫

I
f pdx

)
1
p

= pθ0 sup
p0≤p<∞

1

pθ

(
∫

I
f pdx

)
1
p

,

then

‖f‖Lθ,∞)(I) = max

{

sup
1≤p<p0

1

pθ

(
∫

I
f pdx

)
1
p

, sup
p0≤p<∞

1

pθ

(
∫

I
f pdx

)
1
p

}

≤ pθ0 sup
p0≤p<∞

1

pθ

(
∫

I
f pdx

)
1
p

,

as desired.
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