Mathematica Aeterna, Vol. 4, 2014, no. 8, 905 - 908

Hardy Inequality for $L^{\theta,\infty)}$ Space

Gao Hongya

College of Mathematics and Computer Science, Hebei University, Baoding, 071002, China

Liang Shuang

College of Mathematics and Computer Science, Hebei University, Baoding, 071002, China

Cui Yi

College of Mathematics and Computer Science, Hebei University, Baoding, 071002, China

Abstract

Hardy inequality for $L^{\theta,\infty)}(I)$ space is proved. As a generalization, boundedness for Hardy-Littlewood maximal operator in $L^{\theta,\infty)}(I)$ is derived.

Mathematics Subject Classification: 42B25

Keywords: Hardy inequality, $L^{\theta,\infty)}(I)$, Hardy-Littlewood maximal operator.

Let $I = (0, 1), \theta \ge 0$. The grand L^{∞} space, $L^{\theta, \infty)}(I)$, was introduced in [1] by

$$L^{\theta,\infty)}(I) = \left\{ f(x) \in \bigcap_{1 \le p < \infty} L^p(I) : \sup_{1 \le p < \infty} \frac{1}{p^\theta} \left(\oint_I f^p dx \right)^{\frac{1}{p}} < \infty \right\},$$

where $f_J = \frac{1}{|J|} \int_J$ stands for integral mean over J, and |J| denote the Lebesgue measure of J. It is known from [1] that $L^{0,\infty}(I) = L^{\infty}(I)$, $L^{\theta,\infty}(I)$ is a generalization of the classical exponential class, and the following embedding holds

$$L^{\infty}(I) \subset L^{\theta,\infty)}(I) \subset L^{p}(I)$$

for any $\theta \ge 0$ and $1 . For <math>f \in L^{\theta,\infty}(I)$, define

$$\|f\|_{L^{\theta,\infty)}(I)} = \sup_{1 \le p < \infty} \frac{1}{p^{\theta}} \left(\oint_I f^p dx \right)^{\frac{1}{p}}.$$
(1)

It is known that $(L^{\theta,\infty)}(I), \|\cdot\|_{L^{\theta,\infty}(I)})$ is a Banach space. The classical Hardy inequality states that

Theorem 1. Let p > 1 and f be a measurable, nonnegative function in I. Then

$$\left(\int_0^1 \left(\int_0^x f dt\right)^p dx\right)^{\frac{1}{p}} \le \frac{p}{p-1} \left(\int_0^1 f^p dx\right)^{\frac{1}{p}}.$$
(2)

In other words, (2) is equivalent to

$$\left\| \int_0^x f dt \right\|_{L^p(I)} \le \frac{p}{p-1} \, \|f\|_{L^p(I)} \,. \tag{2}$$

The main result of this paper is the Hardy inequality in the $L^{\theta,\infty)}(I)$ space. **Theorem 2.** Let $0 < \theta < \infty$. Then

$$\left\| \int_0^x f dt \right\|_{L^{\theta,\infty}(I)} \le \frac{(1+\theta)^{1+\theta}}{\theta^{\theta}} \left\| f \right\|_{L^{\theta,\infty}(I)}.$$
(3)

Proof. For any $p_0 \in (1, \infty)$, one has

$$\begin{split} & \left\| \int_{0}^{x} f dt \right\|_{L^{\theta,\infty}(I)} \\ &= \max \left\{ \sup_{1 \le p < p_{0}} \frac{1}{p^{\theta}} \left(\int_{0}^{1} \left(\int_{0}^{x} f dt \right)^{p} dx \right)^{\frac{1}{p}}, \sup_{p_{0} \le p < \infty} \frac{1}{p^{\theta}} \left(\int_{0}^{1} \left(\int_{0}^{x} f dt \right)^{p} dx \right)^{\frac{1}{p}} \right\} \\ &\leq \max \left\{ \sup_{1 \le p < p_{0}} \frac{p_{0}^{\theta}}{(pp_{0})^{\theta}} \left(\int_{0}^{1} \left(\int_{0}^{x} f dt \right)^{p_{0}} dx \right)^{\frac{1}{p_{0}}}, \sup_{p_{0} \le p < \infty} \frac{1}{p^{\theta}} \left(\int_{0}^{1} \left(\int_{0}^{x} f dt \right)^{p} dx \right)^{\frac{1}{p}} \right\} \\ &\leq \max \left\{ \sup_{1 \le p < p_{0}} \frac{p_{0}^{\theta}}{p^{\theta}} \sup_{p_{0} \le p < \infty} \frac{1}{p^{\theta}} \left(\int_{0}^{1} \left(\int_{0}^{x} f dt \right)^{p} dx \right)^{\frac{1}{p}}, \sup_{p_{0} \le p < \infty} \frac{1}{p^{\theta}} \left(\int_{0}^{1} \left(\int_{0}^{x} f dt \right)^{p} dx \right)^{\frac{1}{p}} \right\} \\ &= p_{0}^{\theta} \sup_{p_{0} \le p < \infty} \frac{1}{p^{\theta}} \left(\int_{0}^{1} \left(\int_{0}^{x} f dt \right)^{p} dx \right)^{\frac{1}{p}} \\ &\leq p_{0}^{\theta} \sup_{p_{0} \le p < \infty} \frac{p}{p^{\theta}(p-1)} \left(\int_{0}^{1} f^{p} dx \right)^{\frac{1}{p}} \\ &\leq \frac{p_{0}^{1+\theta}}{p_{0}-1} \cdot \sup_{1 \le p < \infty} \frac{1}{p^{\theta}} \left(\int_{0}^{1} f^{p} dx \right)^{\frac{1}{p}}, \end{split}$$

where we have used Theorem 1. Since $\frac{p_0^{1+\theta}}{p_0-1}$ takes its minimum value $\frac{(1+\theta)^{1+\theta}}{\theta^{\theta}}$ at $p_0 = \frac{1+\theta}{\theta}$, then we set $p_0 = \frac{1+\theta}{\theta}$ getting the inequality (3).

Hardy Inequality for $L^{\theta,\infty}$ Space

As a corollary of Theorem 2, we derive the Hardy-Littlewood inequality for $L^{\theta,\infty)}(I)$ space. The classical Hardy-Littlewood maximal operator M is defined by

$$Mf(x) = \sup_{I \supset J \ni x} \oint_J |f(t)| dt, \quad x \in (0, 1),$$

where the supremum extends over all non-degenerate intervals, contained in I, containing x.

For f a measurable, nonnegative function in I, the decreasing rearrangement of f is defined by

$$f^*(t) = \sup_{|E|=t} \inf_E f, \quad t \in I,$$

where the supremum extends over all measurable set $E \subset I$. An important relation between rearrangements and the maximal operator is given by the following Herz's Theorem (see [2]), which establishes the equivalence of the function $(Mf)^*$ and the averaged rearrangement of f defined by

$$f^{**}(t) = \frac{1}{t} \int_0^t f^*(s) ds, \ t \in (0, 1).$$

Theorem 3. There are absolute constants c and c' such that the following inequalities hold for all $f \in L^1(I)$

$$c(Mf)^*(t) \le f^{**}(t) \le c'(Mf)^*(t), \ t \in I.$$

Corollary 1. Let $0 < \theta < \infty$. Then

$$||Mf||_{L^{\theta,\infty}(0,1)} \le C ||f||_{L^{\theta,\infty}(0,1)}.$$

Proof. Since

$$||f||_p = ||f^*||_p,$$

then from Theorem 2 and from Theorem 3 applied to f^* we get

$$\|Mf\|_{L^{\theta,\infty}(I)} = \|(Mf)^*\|_{L^{\theta,\infty}(I)} \le C \|f^{**}\|_{L^{\theta,\infty}(I)} \le C \|f^*\|_{L^{\theta,\infty}(I)} \le C \|f\|_{L^{\theta,\infty}(I)} \le C \|f\|_{L^{\theta,\infty}(I)}$$

from which the assertion of Corollary 1 follows.

From the proof of Theorem 1 we know that a useful property of the norm (1) is in fact the supremum over $[1, \infty)$ in the norm of $L^{\theta,\infty}(I)$ can be computed also in any subinterval $(p_0, \infty), p_0 > 1$. The result is an equivalent expression of the norm (i.e., each expression can be majorized by the other, multiplied by a constant not depending on f).

Theorem 4. Let $1 < p_0 < \infty$. Then

$$\sup_{p_0 \le p < \infty} \frac{1}{p^{\theta}} \left(\int_I f^p dx \right)^{\frac{1}{p}} \le \|f\|_{L^{\theta,\infty}(I)} \le p_0^{\theta} \sup_{p_0 \le p < \infty} \frac{1}{p^{\theta}} \left(\int_I f^p dx \right)^{\frac{1}{p}}.$$

-

Proof. The left wing inequality is trivial, therefore we need to prove only the right wing one. Since

$$\begin{split} \sup_{1 \le p < p_0} \frac{1}{p^{\theta}} \left(\int_I f^p dx \right)^{\frac{1}{p}} \le \sup_{1 \le p < p_0} \frac{1}{p^{\theta}} \left(\int_I f^{p_0} dx \right)^{\frac{1}{p_0}} \\ \le \sup_{1 \le p < p_0} \frac{p_0^{\theta}}{p^{\theta}} \cdot \sup_{p_0 \le p < \infty} \frac{1}{p^{\theta}} \left(\int_I f^p dx \right)^{\frac{1}{p}} = p_0^{\theta} \sup_{p_0 \le p < \infty} \frac{1}{p^{\theta}} \left(\int_I f^p dx \right)^{\frac{1}{p}}, \end{split}$$

then

$$\begin{split} \|f\|_{L^{\theta,\infty)}(I)} &= \max\left\{\sup_{1 \le p < p_0} \frac{1}{p^{\theta}} \left(\int_I f^p dx\right)^{\frac{1}{p}}, \sup_{p_0 \le p < \infty} \frac{1}{p^{\theta}} \left(\int_I f^p dx\right)^{\frac{1}{p}}\right\} \\ &\leq p_0^{\theta} \sup_{p_0 \le p < \infty} \frac{1}{p^{\theta}} \left(\int_I f^p dx\right)^{\frac{1}{p}}, \end{split}$$

as desired.

ACKNOWLEDGEMENTS. Research supported by NSFC(11371050).

References

- [1] H.Y.Gao, C.Liu, H.Tian, A generalization of exponential class and its applications, Abstract Appl. Anal., 2013, Article ID: 476309.
- [2] A.Fiorenza, B.Gupta, P.Jain, The maximal theorem for weighted grand Lebesgue spaces, Studia Math., 188 (2008), 123-133.
- [3] V.Kokilashvill, A.Meskhi, A note on the boundedness of the Hilbert transform in weighted grand Lebesgue spaces, Georgian Math. J., 16 (2009), 547-551.

Received: October, 2014