Mathematica Aeterna, Vol. 1, 2011, no. 05, 305-311

Gülicher' theorem in the Poincaré disc model of Hyperbolic Geometry

Cătălin Barbu
"Vasile Alecsandri" National College Vasile Alecsandri 37, 600011, Bacău, Romania
kafka_mate@yahoo.com
Laurian-Ioan Pişcoran
North University of Baia Mare Department of Mathematics and Computer Science
Victoriei 76, 430122, Baia Mare, Romania
plaurian@yahoo.com

Abstract

In this note, we present the hyperbolic Gülicher theorem in the Poincaré disc model of hyperbolic geometry.

Mathematics Subject Classification: 51K05, 51M10, 30F45, 20N99, 51B10

Keywords: hyperbolic geometry, hyperbolic triangle, transversal theorem, gyrovector, Gülicher's theorem.

1 Introduction

Hyperbolic geometry appeared in the first half of the $19^{\text {th }}$ century as an attempt to understand Euclid's axiomatic basis of geometry. It is also known as a type of non-euclidean geometry, being in many respects similar to euclidean geometry. Hyperbolic geometry includes similar concepts as distance and angle. Both these geometries have many results in common but many are different. Several useful models of hyperbolic geometry are studied in the literature as, for instance, the Poincaré disk and ball models, the Poincaré half-plane model, and the Beltrami-Klein disk and ball models, etc. Following [4] and [5] and earlier discoveries, the Beltrami-Klein model is also known
as the Einstein relativistic velocity model. Here, in this study, we present a Proof of Gülicher's theorem in the Poincaré disk model of hyperbolic geometry. Gülicher's theorem states that if $Q_{1} Q_{2} Q_{3}$ is the cevian triangle of point Q with respect to the triangle $P_{1} P_{2} P_{3}$, and $R_{1} R_{2} R_{3}$ is the cevian triangle of point R with respect to the triangle $Q_{1} Q_{2} Q_{3}$, then the lines $P_{1} R_{1}, P_{2} R_{2}$, and $P_{3} R_{3}$ are concurrent [3].

Let D denote the complex unit disk in complex z - plane, i.e.

$$
D=\{z \in \mathbb{C}:|z|<1\} .
$$

The most general Möbius transformation of D is

$$
z \rightarrow e^{i \theta} \frac{z_{0}+z}{1+\overline{z_{0}} z}=e^{i \theta}\left(z_{0} \oplus z\right),
$$

which induces the Möbius addition \oplus in D, allowing the Möbius transformation of the disk to be viewed as a Möbius left gyrotranslation

$$
z \rightarrow z_{0} \oplus z=\frac{z_{0}+z}{1+\overline{z_{0}} z}
$$

followed by a rotation. Here $\theta \in \mathbb{R}$ is a real number, $z, z_{0} \in D$, and $\overline{z_{0}}$ is the complex conjugate of z_{0}. Let $\operatorname{Aut}(D, \oplus)$ be the automorphism group of the $\operatorname{grupoid}(D, \oplus)$. If we define

$$
\text { gyr }: D \times D \rightarrow \operatorname{Aut}(D, \oplus), g y r[a, b]=\frac{a \oplus b}{b \oplus a}=\frac{1+a \bar{b}}{1+\bar{a} b}
$$

then is true gyrocommutative law

$$
a \oplus b=g y r[a, b](b \oplus a) .
$$

A gyrovector space (G, \oplus, \otimes) is a gyrocommutative gyrogroup (G, \oplus) that obeys the following axioms:
(1) $\operatorname{gyr}[\mathbf{u}, \mathbf{v}] \mathbf{a} \cdot \operatorname{gyr}[\mathbf{u}, \mathbf{v}] \mathbf{b}=\mathbf{a} \cdot \mathbf{b}$ for all points $\mathbf{a}, \mathbf{b}, \mathbf{u}, \mathbf{v} \in G$.
(2) G admits a scalar multiplication, \otimes, possessing the following properties. For all real numbers $r, r_{1}, r_{2} \in \mathbb{R}$ and all points $\mathbf{a} \in G$:
(G1) $1 \otimes \mathbf{a}=\mathbf{a}$
(G2) $\left(r_{1}+r_{2}\right) \otimes \mathbf{a}=r_{1} \otimes \mathbf{a} \oplus r_{2} \otimes \mathbf{a}$
(G3) $\left(r_{1} r_{2}\right) \otimes \mathbf{a}=r_{1} \otimes\left(r_{2} \otimes \mathbf{a}\right)$
(G4) $\frac{|r| \otimes \mathbf{a}}{\|r \otimes \mathbf{a}\|}=\frac{\mathbf{a}}{\|\mathbf{a}\|}$
(G5) $\operatorname{gyr}[\mathbf{u}, \mathbf{v}](r \otimes \mathbf{a})=r \otimes g y r[\mathbf{u}, \mathbf{v}] \mathbf{a}$
(G6) $\operatorname{gyr}\left[r_{1} \otimes \mathbf{v}, r_{1} \otimes \mathbf{v}\right]=1$
(3) Real vector space structure $(\|G\|, \oplus, \otimes)$ for the set $\|G\|$ of one dimensional "vectors"

$$
\|G\|=\{ \pm\|\mathbf{a}\|: \mathbf{a} \in G\} \subset \mathbb{R}
$$

with vector addition \oplus and scalar multiplication \otimes, such that for all $r \in \mathbb{R}$ and $\mathbf{a}, \mathbf{b} \in G$,

$$
\begin{aligned}
& \text { (G7) }\|r \otimes \mathbf{a}\|=|r| \otimes\|\mathbf{a}\| \\
& \text { (G8) }\|\mathbf{a} \oplus \mathbf{b}\| \leq\|\mathbf{a}\| \oplus\|\mathbf{b}\|
\end{aligned}
$$

Definition 1.1 The hyperbolic distance function in D is defined by the equation

$$
d(a, b)=|a \ominus b|=\left|\frac{a-b}{1-\bar{a} b}\right| .
$$

Here, $a \ominus b=a \oplus(-b)$, for $a, b \in D$.
Theorem 1.2 (The law of gyrosines in Möbius gyrovector spaces). Let $A B C$ be a gyrotriangle in a Möbius gyrovector space $\left(V_{s}, \oplus, \otimes\right)$ with vertices $A, B, C \in V_{s}$, sides $\mathbf{a}, \mathbf{b}, \mathbf{c} \in \mathbf{V}_{s}$, and side gyrolengths $a, b, c \in(-s, s)$, $\mathbf{a}=\ominus B \oplus C, \mathbf{b}=\ominus C \oplus A, \mathbf{c}=\ominus A \oplus B, a=\|\mathbf{a}\|, b=\|\mathbf{b}\|, c=\|\mathbf{c}\|$, and with gyroangles α, β, and γ at the vertices A, B, and C. Then $\frac{a_{\gamma}}{\sin \alpha}=\frac{b_{\gamma}}{\sin \beta}=\frac{c_{\gamma}}{\sin \gamma}$, where $v_{\gamma}=\frac{v}{1-\frac{v^{2}}{s^{2}}}$.
(see [4], p. 294)
For further details we refer to the recent book of A.Ungar [4].
Theorem 1.3 (Transversal Theorem for Gyrotriangles). Let D be on gyroside $B C$, and l is a gyroline not through any vertex of a gyrotriangle $A B C$ such that l meets $A B$ in $M, A C$ in N, and $A D$ in P, then

$$
\frac{(B D)_{\gamma}}{(C D)_{\gamma}} \cdot \frac{(C A)_{\gamma}}{(N A)_{\gamma}} \cdot \frac{(N P)_{\gamma}}{(M P)_{\gamma}} \cdot \frac{(M A)_{\gamma}}{(B A)_{\gamma}}=1 .
$$

(see [2])
Theorem 1.4 (The Ceva's Theorem for Hyperbolic Gyrotriangle). If M is a point not on any side of an gyrotriangle $A_{1} A_{2} A_{3}$ such that $A_{3} M$ and $A_{1} A_{2}$ meet in $P, A_{2} M$ and $A_{3} A_{1}$ in Q, and $A_{1} M$ and $A_{2} A_{3}$ meet in R, then

$$
\frac{\left(A_{1} P\right)_{\gamma}}{\left(A_{2} P\right)_{\gamma}} \cdot \frac{\left(A_{2} R\right)_{\gamma}}{\left(A_{3} R_{1}\right)_{\gamma}} \cdot \frac{\left(A_{3} Q\right)_{\gamma}}{\left(A_{1} Q\right)_{\gamma}}=1
$$

(see [1])
Theorem 1.5 (Converse of Ceva's Theorem for Hyperbolic Gyrotriangle). If P lies on the gyroline $A_{1} A_{2}, R$ on $A_{2} A_{3}$, and Q on $A_{3} A_{1}$ such that

$$
\frac{\left(A_{1} P\right)_{\gamma}}{\left(A_{2} P\right)_{\gamma}} \cdot \frac{\left(A_{2} R\right)_{\gamma}}{\left(A_{3} R_{1}\right)_{\gamma}} \cdot \frac{\left(A_{3} Q\right)_{\gamma}}{\left(A_{1} Q\right)_{\gamma}}=1,
$$

and two of the gyrolines $A_{1} R, A_{2} Q$ and $A_{3} P$ meet, then all three are concurrent.
(see [1])

2 Main Results

In this section, we prove the Gülicher's theorem in the Poincaré disk model of hyperbolic geometry.

Theorem 2.1 (The Gülicher's Theorem for Hyperbolic Gyrotriangle). Let $Q_{1} Q_{2} Q_{3}$ be the cevian gyrotriangle of gyropoint Q with respect to the gyrotriangle $P_{1} P_{2} P_{3}$, and Q is located inside the gyrotriangle $P_{1} P_{2} P_{3}$. Let $R_{1} R_{2} R_{3}$ be the cevian gyrotriangle of gyropoint R with respect to the gyrotriangle $Q_{1} Q_{2} Q_{3}$, and R is located inside the gyrotriangle $Q_{1} Q_{2} Q_{3}$. Then the gyrolines $P_{1} R_{1}, P_{2} R_{2}$, and $P_{3} R_{3}$ are concurrent.

Proof. Let X, Y, Z be the intersection points of the gyrolines $P_{1} R_{1}, P_{2} R_{2}$, and $P_{3} R_{3}$ with gyroline $P_{2} P_{3}, P_{3} P_{1}$, and $P_{1} P_{2}$, respectively (See Figure 1).

If we use a Theorem 1.3 in the gyrotriangle $P_{1} P_{2} P_{3}$ for the gyrolines $P_{1} R_{1} X, P_{2} R_{2} Y$, and $P_{3} R_{3} Z$, we have

$$
\begin{equation*}
\frac{\left(P_{2} X\right)_{\gamma}}{\left(P_{3} X\right)_{\gamma}}=\frac{\left(P_{1} Q_{2}\right)_{\gamma}}{\left(P_{1} Q_{3}\right)_{\gamma}} \cdot \frac{\left(R_{1} Q_{3}\right)_{\gamma}}{\left(R_{1} Q_{2}\right)_{\gamma}} \cdot \frac{\left(P_{1} P_{2}\right)_{\gamma}}{\left(P_{1} P_{3}\right)_{\gamma}} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\left(P_{3} Y\right)_{\gamma}}{\left(P_{1} Y\right)_{\gamma}}=\frac{\left(P_{2} Q_{3}\right)_{\gamma}}{\left(P_{2} Q_{1}\right)_{\gamma}} \cdot \frac{\left(R_{2} Q_{1}\right)_{\gamma}}{\left(R_{2} Q_{3}\right)_{\gamma}} \cdot \frac{\left(P_{2} P_{3}\right)_{\gamma}}{\left(P_{2} P_{1}\right)_{\gamma}}, \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\left(P_{1} Z\right)_{\gamma}}{\left(P_{2} Z\right)_{\gamma}}=\frac{\left(P_{3} Q_{1}\right)_{\gamma}}{\left(P_{3} Q_{2}\right)_{\gamma}} \cdot \frac{\left(R_{3} Q_{2}\right)_{\gamma}}{\left(R_{3} Q_{1}\right)_{\gamma}} \cdot \frac{\left(P_{3} P_{1}\right)_{\gamma}}{\left(P_{3} P_{2}\right)_{\gamma}} . \tag{3}
\end{equation*}
$$

Multiplying relations (1), (2), and (3) member by member, we obtain

$$
\frac{\left(P_{2} X\right)_{\gamma}}{\left(P_{3} X\right)_{\gamma}} \cdot \frac{\left(P_{3} Y\right)_{\gamma}}{\left(P_{1} Y\right)_{\gamma}} \cdot \frac{\left(P_{1} Z\right)_{\gamma}}{\left(P_{2} Z\right)_{\gamma}}
$$

$$
\begin{equation*}
=\left[\frac{\left(P_{1} Q_{2}\right)_{\gamma}}{\left(P_{1} Q_{3}\right)_{\gamma}} \cdot \frac{\left(P_{2} Q_{3}\right)_{\gamma}}{\left(P_{2} Q_{1}\right)_{\gamma}} \cdot \frac{\left(P_{3} Q_{1}\right)_{\gamma}}{\left(P_{3} Q_{2}\right)_{\gamma}}\right] \cdot\left[\frac{\left(R_{1} Q_{3}\right)_{\gamma}}{\left(R_{1} Q_{2}\right)_{\gamma}} \cdot \frac{\left(R_{2} Q_{1}\right)_{\gamma}}{\left(R_{2} Q_{3}\right)_{\gamma}} \cdot \frac{\left(R_{3} Q_{2}\right)_{\gamma}}{\left(R_{3} Q_{1}\right)_{\gamma}}\right] . \tag{4}
\end{equation*}
$$

If we use a Theorem 1.4 for the gyrotriangles $P_{1} P_{2} P_{3}$ and $Q_{1} Q_{2} Q_{3}$ with concurrent cevians $P_{1} Q_{1}, P_{2} Q_{2}, P_{3} Q_{3}$ and $Q_{1} R_{1}, Q_{2} R_{2}, Q_{3} R_{3}$ respectively, we get

$$
\begin{equation*}
\frac{\left(P_{1} Q_{2}\right)_{\gamma}}{\left(P_{3} Q_{2}\right)_{\gamma}} \cdot \frac{\left(P_{2} Q_{3}\right)_{\gamma}}{\left(P_{1} Q_{3}\right)_{\gamma}} \cdot \frac{\left(P_{3} Q_{1}\right)_{\gamma}}{\left(P_{2} Q_{1}\right)_{\gamma}}=1 \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\left(R_{1} Q_{3}\right)_{\gamma}}{\left(R_{1} Q_{2}\right)_{\gamma}} \cdot \frac{\left(R_{2} Q_{1}\right)_{\gamma}}{\left(R_{2} Q_{3}\right)_{\gamma}} \cdot \frac{\left(R_{3} Q_{2}\right)_{\gamma}}{\left(R_{3} Q_{1}\right)_{\gamma}}=1 \tag{6}
\end{equation*}
$$

From (4), (5), and (6) we obtain

$$
\begin{equation*}
\frac{\left(P_{2} X\right)_{\gamma}}{\left(P_{3} X\right)_{\gamma}} \cdot \frac{\left(P_{3} Y\right)_{\gamma}}{\left(P_{1} Y\right)_{\gamma}} \cdot \frac{\left(P_{1} Z\right)_{\gamma}}{\left(P_{2} Z\right)_{\gamma}}=1 \tag{7}
\end{equation*}
$$

since, from theorem 1.5, that the gyrolines $P_{1} R_{1}, P_{2} R_{2}$, and $P_{3} R_{3}$ are concurrent.

Lemma 2.2 (The Gyrotriangle Bisector Theorem). Let $A B C$ be a gyrotriangle in a Möbius gyrovector space $\left(V_{s}, \oplus, \otimes\right)$ with vertices $A, B, C \in V_{s}$, sides $\mathbf{a}, \mathbf{b}, \mathbf{c} \in \mathbf{V}_{s}$, and side gyrolengths $a, b, c \in(-s, s), \mathbf{a}=\ominus B \oplus C, \mathbf{b}=\ominus C \oplus$ $A, \mathbf{c}=\ominus A \oplus B, a=\|\mathbf{a}\|, b=\|\mathbf{b}\|, c=\|\mathbf{c}\|$, and let D be a point lying on side $B C$ of the gyrotriangle such that $A D$ is a bisector of gyroangle $\angle B A C$. Then

$$
\frac{(D B)_{\gamma}}{(D C)_{\gamma}}=\frac{(A B)_{\gamma}}{(A C)_{\gamma}}
$$

where $v_{\gamma}=\frac{v}{1-\frac{v^{2}}{s^{2}}}$.
Proof. Denote by $\alpha_{1}=\angle B A D$, and $\alpha_{2}=\angle C A D$. Because $A D$ is a bisector of gyroangle $\angle B A C$, we get that $\sin \alpha_{1}=\sin \alpha_{2}$ (see Figure 2).

Figure 2

If we use a Theorem 1.2 in the gyrotriangles $A B C, A B D$, and $A C D$ we have

$$
\begin{equation*}
\frac{\sin C}{\sin B}=\frac{(A B)_{\gamma}}{(A C)_{\gamma}} \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\sin \alpha_{1}}{\sin B}=\frac{(D B)_{\gamma}}{(D A)_{\gamma}}, \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\sin \alpha_{2}}{\sin C}=\frac{(D C)_{\gamma}}{(D A)_{\gamma}} \tag{10}
\end{equation*}
$$

If ratios the equations (9) and (10) among themselves, respectively, then

$$
\begin{equation*}
\frac{\sin C}{\sin B}=\frac{(D B)_{\gamma}}{(D C)_{\gamma}} \tag{11}
\end{equation*}
$$

From the relations (8) and (11) the conclusion follows.
Theorem 2.3 Let $Q_{1} Q_{2} Q_{3}$ be the cevian gyrotriangle of gyropoint Q with respect to the gyrotriangle $P_{1} P_{2} P_{3}$, and Q is located inside the gyrotriangle $P_{1} P_{2} P_{3}$. If the bisectors of gyroangles of gyrotriangle $P_{1} P_{2} P_{3}$ meet the gyrosides $Q_{2} Q_{3}, Q_{3} Q_{1}$, and $Q_{1} Q_{3}$ at the gyropoints R_{1}, R_{2}, and R_{3}, respectively, then the gyrolines $Q_{1} R_{1}, Q_{2} R_{2}$, and $Q_{3} R_{3}$ are concurrent.

Proof. If we use a Theorem 1.4 in the gyrotriangle $P_{1} P_{2} P_{3}$ for concurrent cevians $P_{1} Q_{1}, P_{2} Q_{2}, P_{3} Q_{3}$ (see Figure 1), we get

$$
\begin{equation*}
\frac{\left(P_{1} Q_{2}\right)_{\gamma}}{\left(P_{3} Q_{2}\right)_{\gamma}} \cdot \frac{\left(P_{2} Q_{3}\right)_{\gamma}}{\left(P_{1} Q_{3}\right)_{\gamma}} \cdot \frac{\left(P_{3} Q_{1}\right)_{\gamma}}{\left(P_{2} Q_{1}\right)_{\gamma}}=1 \tag{12}
\end{equation*}
$$

Now, we use Lemma 2.2 in the gyrotriangles $P_{1} Q_{2} Q_{3}, P_{2} Q_{3} Q_{1}$, and $P_{3} Q_{1} Q_{2}$ we have

$$
\begin{equation*}
\frac{\left(P_{1} Q_{2}\right)_{\gamma}}{\left(P_{1} Q_{3}\right)_{\gamma}}=\frac{\left(R_{1} Q_{2}\right)_{\gamma}}{\left(R_{1} Q_{3}\right)_{\gamma}} \tag{13}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\left(P_{2} Q_{3}\right)_{\gamma}}{\left(P_{2} Q_{1}\right)_{\gamma}}=\frac{\left(R_{2} Q_{3}\right)_{\gamma}}{\left(R_{2} Q_{1}\right)_{\gamma}}, \tag{14}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\left(P_{3} Q_{1}\right)_{\gamma}}{\left(P_{3} Q_{2}\right)_{\gamma}}=\frac{\left(R_{3} Q_{1}\right)_{\gamma}}{\left(R_{3} Q_{2}\right)_{\gamma}} . \tag{15}
\end{equation*}
$$

Multiplying the relations (13), (14), and (15), and we use the relation (12) we obtain

$$
\begin{equation*}
\frac{\left(R_{1} Q_{2}\right)_{\gamma}}{\left(R_{1} Q_{3}\right)_{\gamma}} \cdot \frac{\left(R_{2} Q_{3}\right)_{\gamma}}{\left(R_{2} Q_{1}\right)_{\gamma}} \cdot \frac{\left(R_{3} Q_{1}\right)_{\gamma}}{\left(R_{3} Q_{2}\right)_{\gamma}}=1, \tag{16}
\end{equation*}
$$

and by Theorem 1.5, we get that the gyrolines $Q_{1} R_{1}, Q_{2} R_{2}$, and $Q_{3} R_{3}$ are concurrent.

Many of the theorems of Euclidean geometry are relatively similar form in the Poincaré model of hyperbolic geometry, Gülicher's theorem is an example in this respect. In the Euclidean limit of large $s, s \rightarrow \infty, v_{\gamma}$ reduces to v, so Gülicher's theorem for hyperbolic triangle reduces to the Gülicher's theorem of euclidian geometry.

References

[1] Andrica, D., Barbu, C., The Hyperbolic Ceva Theorem in The Poincaré Disk Model of Hyperbolic Geometry, Automation Computers Applied Mathematics, (to appear).
[2] Barbu, C., A new proof of Menelaus's Theorem of Hyperbolic Quadrilaterals in the Poincaré Model of Hyperbolic Geometry, General Mathematics, (submitted).
[3] Gülicher, H., Mathematics Magazine,Vol. 72, No. 4, October 1999, \#1581.
[4] Ungar, A.A., Analytic Hyperbolic Geometry and Albert Einstein's Special Theory of Relativity, Hackensack, NJ:World Scientific Publishing Co.Pte. Ltd., 2008.
[5] Ungar, A.A., Analytic Hyperbolic Geometry Mathematical Foundations and Applications, Hackensack, NJ:World Scientific Publishing Co.Pte. Ltd, 2005.

Received: August, 2011

