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Abstract

Under the weak gravitational field approximation, and, for the 00-component of
the stress-energy tensor, Einstein’s field equations reduce to Newton’s model for a
gravitational field which is compounded in the Poisson equation for the gravitational
potential. By considering Newton’s field equation to be the result of an ultra-low
frequency scattering effect (in the limiting case), this work introduce a model where
a gravitational field is taken to be the result of an ultra-low frequency gravitational
wave (propagating in a near-Cartesian Minkowski space) scattering from an object
(a mass). Further, by using a scalar wave-field model for the propagation of an
electromagnetic wave, the effect of a light wave with wavelength λ scattering from
a gravitational potential is investigated from which a scaling relation for the inten-
sity of the resulting diffraction pattern is derived. It is shown that the intensity
associated with the diffraction pattern is proportional to λ−6 which may provide an
explanation as to why Einstein rings observed in the optical spectrum appear to be
blue.
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1 Introduction

Just as an accelerated charge particle radiates electromagnetic waves, so gravitational
waves are generated by accelerating masses which, like electromagnetic waves, propagate
with an upper limit of the velocity of light speed. Under the ‘weak field approxima-
tion’ which linearises Einstein’s field equations, where it is assumed that a ‘flat-space’ is
weakly perturbed by a gravitational wave, the wave function is determined by a solution
to the wave equation. In this context, although there are some important differences
between electromagnetic and gravitational wave propagation (which are briefly discussed
in this paper) there are also many similarities. We assume that one of these similarities is
that, like electromagnetic waves, gravitational waves can be scattered by massive objects
(composed of ‘matter waves’), a scattering effect which is induced by a change in the
characteristic velocity of the waves (a velocity that is strictly less than light speed).

This paper briefly reviews the Newtonian and Einsteinian field equations and then
develops a case in which the Newtonian field equation may be considered to be a special
case in regard to the scattering of ultra-low frequency (scalar) waves. The purpose of this
is to investigate a possible association (on a phenomenological basis) between a Newtonian
gravitational field and the scattering of ultra-low frequency (scalar) waves. In this context,
we consider the ‘Diffraction’ of a scalar electromagnetic wave-field from an ultra-low
frequency scalar wave-field based on Helmholtz scattering theory. A scaling relationship
is derived which may provide an explanation as to why Einstein rings (e.g. [1], [2]) appear
to be blue in the visible spectrum [3], thereby providing an experimental verification for
the approach and the model considered.

2 Newtonian and Einsteinian Field Equations: A Brief

Overview

2.1 Newton’s Field Equation

For a single body with a point mass m, a Newtonian gravitational field is given by

g(r) = −n̂
Gm

r2
, n̂ ≡ r

r
, r ≡| r |

where G is the Gravitational Constant (= 6.6738×10−11 m3 kg−1 s−2) and r = x̂x+ŷy+ẑz
is the three-dimensional vector so that r ≡| r |=

√
x2 + y2 + z2. This field generates a

force F that is experienced by some other point mass m′ according to Newton’s second
law of motion, i.e.

F(r) = m′g(r)

Because gravitational fields are conservative (i.e. the work done by gravity from one
position to another is path-independent) we can consider the gravitational field to have a
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potential φ(r) defined by the equation

∇φ(r) = g(r)

where

∇ ≡ x̂
∂

∂x
+ ŷ

∂

∂y
+ ẑ

∂

∂z

from which it follows that
φ(r) = G

m

r

Further, if we consider a body to have mass density ρ(r) (inhomogeneous mass per unit
volume with units of kg m−3) over a finite region of space r ∈ R3, then the above equation
can be considered to be a (Green’s function) solution to Poisson’s equation

∇2φ(r) = 4πGρ(r), r ∈ R3 7→ ρ(r) (1)

where ∇2 is the Laplcian operator

∇2 ≡ ∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

given that, for a point mass defined by the Dirac delta function, i.e. ρ(r) = mδ3(r),

φ(r) = 4πG
1

4πr
⊗r ρ(r) ≡ G

∫
r′∈R3

ρ(r′)

| r− r′ |
d3r′ = Gm

∫
r′∈R3

δ(r′)

| r− r′ |
d3r′ =

Gm

r

Equation (1) is the Newtonian (gravitational) field equation for a mass density source
function ρ(r) and scalar gravitational potential φ(r) which has units of energy per unit
mass and dimensions of [L]2[T]−2 where L and T are taken to denote length and time,
respectively.

2.2 Einstein’s Field Equations

Einstein’s field equations (of General Relativity) are given by [4]

Gµν =
8πG

c40
Tµν (2)

where Gµν is the Einstein tensor, Tµν is the stress-energy tensor, G is Newton’s Grav-
itational Constant and c0 is the speed of light, the summation over the indices µ and
ν being implied with both indices ranging over 0, 1, 2, 3 corresponding to c0t, x, y, z, re-
spectively. Comparing Equation (2) with Equation (1) we see that the source function is
an energy-momentum tensor (which includes both mass-densities and currents) and the
gravitational potential is replaced with a metric tensor.
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When the gravitational field is weak and the sources are moving very slowly compared
to light-speed, General Relativity reduces to the Newtonian theory of gravity, and the met-
ric tensor can be expanded in terms of the gravitational potential. Equation (2) describes
wave behaviour which can be examined analytically by considering a flat (Minkowski)
space perturbed by a wave amplitude metric denoted by hαβ. This is the case when
a source taken to be generating gravitational waves (an accelerating mass) is far from
the point in space-time at which the gravitational waves are observed - the gravitational
field is very weak and the space-time approximates to that of a Minkowski space. Since
space-time is flat in the absence of a gravitational field, a weak gravitational field can be
defined as one in which space-time is ‘nearly’ flat which is the basis for the approximation
used. This approximation linearises the Einstein field equations of General Relativity,
and yields the inhomogeneous wave equation(

∇2 − 1

c20

∂2

∂t2

)
hαβ =

16πG

c40
Tαβ (3)

which for empty spacetime has the homogeneous form(
∇2 − 1

c20

∂2

∂t2

)
hαβ = 0 (4)

In both electromagnetism and gravitation the field equations are taken to be fun-
damental and in both cases, wave motion is a consequence of an analysis of these field
equations within the context of a Gauge Transformation. Thus, an accelerated charged
particle is a source of electromagnetic radiation (Maxwell’s equations) and an accelerated
mass is a source of gravitational waves (Einstein equations). In both cases, the waves
propagate at light speed (in free space) and the energy scales according to an inverse
square law over all frequencies where frequency shifts may occur. However, electromag-
netic waves are vector fields which interact over intermediate scales whereas gravitational
waves are metric tensor fields which interact over very large scales. Further, electromag-
netic waves originate from the small-scale incoherent acceleration of charged particles with
low electric field strengths whereas as gravitational waves are taken to be the ‘product’
of bodies with high mass densities undergoing coherent motion. The lowest ‘order’ of the
radiation field pattern for an electromagnetic wave is a dipole and that of a gravitational
wave is a quadrupole. In this paper we consider another similarity between the two fields,
namely, that like electromagnetic waves, gravitational waves can be scattered by a mass,
the object being taken to change the wave-velocity by an amount that is strictly less than
light speed.

2.3 On the Cosmological Constant

In 1917, Einstein considered Newton’s field equation - Equation (1). From this equation
it is clear that ρ(r) must tend to zero as the domain over which the equation applies
becomes infinite unless the gravitation field is infinite as well. But this is incompatible
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with there being no net gravitational force (as compounded in the equation ∇φ(r) = 0)
on matter in an extended uniformly dense universe. If the distribution of mass over a
region of space with radius R were uniform with constant mass density ρ0 say, then

φ = ρ0G

∫
r∈R3

1

r
d3r = 4πρ0G

R∫
0

rdr = 2πρ0GR2

showing that φ → ∞ as R → ∞. A resolution to this problem is possible if we consider
the following modification to Newton’s field equation:

∇2φ− Λφ = 4πGρ

whose Green’s function solution for uniform density ρ0 is

φ = ρ0G

∫
r∈R3

exp(−
√
Λr)

r
d3r = 4πρ0G

R∫
0

exp(−
√
Λr)rdr

= −4πρ0G

[
r exp(−

√
Λr)√

Λ
+

exp(−
√
Λr)

Λ

]R
0

=
4πρ0G

Λ
, R → ∞

giving a uniform constant potential so that ∇φ = 0.
The factor Λ is the Cosmological Constant and was originally considered by Einstein

to be erroneous when the universe was understood to be expanding and not static but has
more recently been reconsidered as a possible explanation for the force associated with
dark energy that appears to be counteracting gravity causing the universe to expand at
an increasing pace.

In terms of Einstein’s field equations the Cosmological Constant is introduce by mod-
ifying Equation (2) to the form

Gµν + Λgµν =
8πG

c40
Tµν

where gµν is the metric tensor.

3 Gravity as a Low Frequency Scattering Effect

Neither Equation (1) nor Equation (2) explain why Gravity exists only how it behaves.
Equation (1) requires that the gravitational force be transmitted instantaneously (in-
stantaneous action at a distance) which is incompatible with the concept of any field
‘radiating’ with a maximum velocity of light-speed. Equation (2) describes the local cur-
vature of space-time due to energy and momentum, other particles being taken to move
along trajectories determined by the geometry of space-time, or, paraphrasing a quotation
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from John Wheeler, ‘Space-time tells matter how to move, and matter tells space-time
how to curve’ [5]. However, in both cases, it is important to respect a statement from
Isaac Newton himself - ‘I have told how it works not why it works’.

Embodied in Equation (2) is the concept of a gravitational force ‘radiating’ at a finite
speed which eliminates the concept of instantaneous action at a distance. In this context,
and, on a strictly phenomenological basis, we consider Equation (1) in terms of a limiting
case in which φ(r) is taken to be an ultra-low frequency wave function scattering from
an inhomogeneity with wave velocity c(r) which is of compact support and is strictly less
than or equal to light speed.

3.1 Derivation of a Newtonian Gravitation Potential from the
Wave Equation

Consider Φ be a solution to the equation(
∇2 − 1

c2(r)

∂2

∂t2

)
Φ(r, t) = 0 (5)

Let
1

c2(r)
=

1

c20
[1 + γ(r)], c(r) ≤ c0∀r

where γ(r) ≥ 0 is a dimensionless function of compact support γ(r)∃∀r ∈ R3, so that we
can write (

∇2 − 1

c20

∂2

∂t2

)
Φ(r, t) = −γ(r)

c20

∂2

∂t2
Φ(r, t)

Let Φ(r, t) = φ(r, ω) exp(iωt) where ω is the angular temporal frequency. Then with
k = ω/c0 = 2π/λ (where λ is the wavelength),(

∇2 + k2
)
φ(r, k) = −k2γ(r)φ(r, k) (6)

whose Green’s function solution is

φ(r, k) = φi(r, k) + φs(r, k) (7)

where φs is the scattered wave function given by (Born series solution)

φs(r, k) = k2g(r, k)⊗r γ(r)φ(r, k) = k2g(r, k)⊗r γ(r)φi(r, k)

+k4g(r, k)⊗r γ(r) [g(r, k)⊗r γ(r)φi(r, k)] + ... (8)

φi(r, k) is the incident wave function which satisfies(
∇2 + k2

)
φi(r, k) = 0,

472 Jonathan Blackledge



g(r, k) is the out-going free-space Green’s

g(r, k) =
exp(ikr)

4πr

and ⊗r denotes the (three-dimensional) convolution integral for r ∈ R3.

For empty space, and, according to the Newtonian model of gravity, the gravitational
potential is a scalar and is taken to satisfy the Laplace equation ∇2φ(r) = 0 which might
be regarded - given Equation (6) - as the limit of a wave equation where the characteristic
speed of transmission tends to infinity, i.e. k = ω/c0 → 0. This leads to the principle
of instantaneous action at a distance when it becomes impossible to associate a wave-
length with a given frequency. Einstein’s model for gravity yields a wave equation for
the propagation of gravitational waves which are tensorial fields, compress and stretch
space-time, are time-varying and whose amplitude spectrum depends on the source that
is emitting the gravitational waves. In the following theorem, we consider the scattering
of an existing scalar wave-field in the limit as k → 0.

Theorem 3.1 Equation (7) yields an exact solution for the scattered field in the limit as
k → 0, i.e.

φs(r) = lim
k→0

φ(r, k)− φi(r, k)

k2
= g(r, k)⊗r γ(r)φi(r, k)

Proof of Theorem 3.1 From Equations (7) and (8) it is clear that we can write

φ(r, k)−φi(r, k) = k2g(r, k)⊗r γ(r)φi(r, k)+ k4g(r, k)⊗r γ(r) [g(r, k)⊗r γ(r)φi(r, k)] + ...

so that

φ(r, k)− φi(r, k)

k2
= g(r, k)⊗r γ(r)φi(r, k) + k2g(r, k)⊗r γ(r) [g(r, k)⊗r γ(r)φi(r, k)] + ...

and thus, since

lim
k→0

[
k2g(r, k)⊗r γ(r) [g(r, k)⊗r γ(r)φi(r, k)] + ...

]
= 0

the result is obtained.

Corollary 3.1 If the support of γ(r) is finite, we can consider an exact solution for
the scattered field given by (in the asymptotic sense as k → 0 but where, for notational
convenience, we replace k with k0 to denote the ultra-low frequency case where k0 << 1)

φs(r, k0) =
k2
0

4πr
⊗r γ(r), k0 << 1 (9)

which is the solution of
∇2φs(r, k0) = −k2

0γ(r) (10)
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Equation (10) is Poisson’s equation for low value coefficient k2
0 given that the Green’s

function solution to this equation is

φs(r, k0) =
k2
0

4πr
⊗r γ(r)

Thus, in a phenomenological context, we consider a Newtonian gravitation potential to
be the scattered wave function when the wavelength approaches infinity, the origin of a
(Newtonian) gravitational field then being taken to be due to the scattering of ultra-long
wavelength scalar waves incident upon an inhomogeneous object that changes the wave
velocity to a velocity strictly less than light speed. Note that the asymptotic limit k0 → 0
used, implies that φs(r, k0) will be a relatively weak field.

Remark 3.1 The Newtonian theory of gravity is conventionally taken to be a static
model for gravity whereas Einstein’s theory of gravity implies wave properties as defined
by Equation (3) under the weak field approximation. In the context of a Newtonian gravi-
tational field being the ‘product’ of a low frequency scattering effect of a scalar wave-field,
Equation (4) can be cast in the form(

∇2 − 1

c20

∂2

∂t2

)
hαβ(r, t) = −γ(r)

c20

∂2

∂t2
hαβ(r, t)

to which a tensorial Green’s function solution may be applied to evaluate the tensorial
scattered field hαβ

s (r, t) under the Born approximation, giving, for an out-going wave

hαβ
s (r, t) =

1

c20

∂2

∂t2

∫
r′∈R3

Γαβ(r′, t− | r− r′ | /c0)
4π | r− r′ |

d3r′

∼ 1

4πc20r

∂2

∂t2

∫
r′∈R3

Γαβ(r′, t− | r− r′ | /c0)d3r′ (11)

as r → ∞ where, for an incident tensorial wave-field hαβ
i (r, t), Γαβ(r, t) = γ(r)hαβ

i (r, t).

Remark 3.2 Poisson’s equation for the gravitational potential can be recovered from
Einstein’s equation under the weak field approximation by considering the 00-component
of the stress-energy tensor. In this sense, the low-frequency scattering theory presented
here, which allows the scattered field φs(r, k0) to be cast in terms of Poisson’s equation
with coefficient k2

0 - Equation (10) - can, on a strictly phenomenological basis, be inter-
preted in terms of the scattering of a gravitational wave propagating in a near-Cartesian
coordinate (flat-space) system.

3.2 Dimensional Analysis

In Equation (10), φs(r, k0) is dimensionless whereas in Equation (1) the dimensions of
φ(r) are [L]2[T]−2. We can evaluate the wavelength associated with a Newtonian gravi-
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tational scattering model from the equation k2 = 4πG/c20 given that, on the grounds of a
dimensional analysis, we can write

G

[
1

r
⊗r ρ(r)

]
:=

k2
0c

2
0

4π

[
1

r
⊗r γ(r)

]
[L]2[T]−2

This is equivalent to considering the case where the two potentials are related by φ(r) :=
c20φs(r, k0) and yields a wavelength (with c0 = 2.9979× 108) of λ = 6.5× 1013 metres and
a corresponding frequency of 4.6 × 10−6Hz. Given that one light year is 9.4605 × 1015

metres this equates to a wavelength of approximately 0.007 of a light year. In this respect,
we are attempting to explain the generation of a (Newtonian) gravitational field in terms
of the scattering of an ultra-long wavelength scalar wave, an approach that represents a
‘paradigm shift’ in regard to the origins of a field with respect to the a priori existence of
a wave-field. Here the scattering of scalar gravitational waves (in the Newtonian sense)
is taken to generate a gravitational field.

4 Diffraction of an Ultra-low Frequency Scattered

Wave-field

For notational convenience, let the potential φ
(0)
s (r, k0 := φs(r, k0) be taken to be the

solution to

∇2φ(0)
s (r, k0) = −k2

0γ(r), k0 << 1 (12)

and consider the wave function φs(r, k) for k >> 1 given by

φs(r, k) = k2g(r, k)⊗r γ(r)φi(r, k) (13)

which is the solution to Equation (6) under the Born approximation when k2‖γ(r)‖ << 1.
This solution for φs(r, k) provides a solution for the (near-field) diffraction pattern

generated by a scattering function γ(r)∃∀r ∈ R3. However, it is important to note that

the potential φ
(0)
s (r, k0) exists both within the scatterer and beyond the (compact) support

of the scatterer. In this context, the question then arises as to what the effect will be
of φs(r, k) scattering from φ

(0)
s (r, k0), ∀r /∈ R3 rather than from the scatterer itself given

that the field φ
(0)
s (r, k0) is taken to exist within and beyond the finite spatial extent of the

scatterer, noting that φ
(0)
s (r, k0) is not of compact support as it is given by the convolution

of a function of compact support with the inverse function r−1, r → ∞.
Thus, since, from Equation (15), we can write

γ(r) = − 1

k2
0

∇2φ(0)
s (r, k0), k0 << 1

we study an equation for φs(r, k) - Equation (13) - given by

φs(r, k) = −k2

k2
0

g(r, k)⊗r [φi(r, k)∇2φ(0)
s (r, k0)] (14)
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where

φ(0)
s (r, k0) =

k2
0

4πr
⊗r γ(r) (15)

and the convolution over r in Equation (14) is taken to be over all space whereas the
convolution over r in Equation (15) is over R3.

4.1 Far-field Analysis for an Infinitely Thin Scattering Function

Consider the case where the function γ(r) is taken to be infinitely thin (in dimension z)
so that we can write γ(r) = γ(x, y)δ(z) and where a simple plane wave-field travelling in
the z-direction is incident on this ‘infinitely thin’ scattering function so that we can write
φi(r, k) = exp(ikz).

In this case, given that, from Equation (15)

∇2φ(0)
s (r, k0) = ∇2

[
k2
0

4πr
⊗r γ(x, y)δ(z)

]
= ∇2

[
k2
0

4πr
⊗x ⊗yγ(x, y)

]
where ⊗x and ⊗y denote the covolution integrals over x and y, respectively, the scattered
field φs(r, k) can be written in the form

φs(r, k) = −k2g(r, k)⊗r exp(ikz)∇2

[
1

4πr
⊗x ⊗yγ(x, y)

]
(16)

Theorem 4.1 In the far-field Equation (16) becomes

φs(r, k) =
exp(ikr)

16π2r
As(u, v, z, k)

where

As(u, v, z, k) = −k2F2

[(
∂2

∂x2
+

∂2

∂y2

)∫
dz√

x2 + y2 + z2
⊗x ⊗yγ(x, y)

]

+k2F2

[
z

(x2 + y2 + z2)
3
2

⊗x ⊗yγ(x, y)

]
(17)

is the (foward) scattering amplitude and F2 is the two-dimensional Fourier operator:

F2[f(x, y)] =

∫ ∫
f(x′, y′) exp(−iux′) exp(−ivy′)dx′dy′, u =

kx

z
, v =

ky

z

Proof of Theorem 4.1 From Equation (16), let

f(r, k) = exp(ikz)

(
∂2

∂x2
+

∂2

∂y2

)(
1

4πr
⊗x ⊗yγ(x, y)

)
+exp(ikz)

∂2

∂z2

(
1

4πr
⊗x ⊗yγ(x, y)

)
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so that

φs(r, k) = −k2g(r, k)⊗r f(r, k) = −k2

∫
exp(ik | r− r′ |)

4π | r− r′ |
f(r′, k)d3r′

= −k2 exp(ikr)

4πr

∫
exp(−ikn̂ · r′)f(r′, k)d3r′

in the far field, given that, for | r′ | / | r |<< 1,

| r− r′ |∼ r − n̂ · r′, n̂ =
r

r
, r ≡| r |

Further, if both x2/z2 << 1 and y2/z2 << 1 then n̂ ' r/z so that with u = kx/z and
v = ky/z we can write

φs(r, k) = −k2 exp(ikr)

4πr

∫ ∫ ∫
exp(−iux′) exp(−ivx′) exp(−ikz′)f(r′, k)dx′dy′dz′

Interchanging the independent vectors r and r′ (for notational convenience alone) we can
then write

φs(r
′, k) = −k2 exp(ikr

′)

4πr′

∫ ∫ ∫
exp(−iux) exp(−ivx) exp(−ikz)f(x, y, z, k)dxdydz

= k2 exp(ikr
′)

16π2r′
As(u, v, z, k)

where
As(u, v, z, k) =

−k2

∫ ∫
dxdy exp(−iux) exp(−ivy)

(
∂2

∂x2
+

∂2

∂y2

)(∫
dz√

x2 + y2 + z2
⊗x ⊗yγ(x, y)

)

−k2

∫ ∫
dxdy exp(−iux) exp(−ivy)

∂

∂z

(
1√

x2 + y2 + z2
⊗x ⊗yγ(x, y)

)

= −k2

∫ ∫
dxdy exp(−iux) exp(−ivy)

(
∂2

∂x2
+

∂2

∂y2

)(∫
dz√

x2 + y2 + z2
⊗x ⊗yγ(x, y)

)

+k2

∫ ∫
dxdy exp(−iux) exp(−ivy)

(
z√

(x2 + y2 + z2)3
⊗x ⊗yγ(x, y)

)
and the result is obtained.

Theorem 4.2 In the limit z → 0, Equation (17) can be written as

As(u, v, k) ∼ −2πk2
√
u2 + v2γ̃(u, v) (18)
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where (with ↔ denoting the two-dimensional Fourier transformation)

γ̃(u, v) ↔ γ(x, y)

Proof of Thoerem 4.2 Noting that [6]∫
dz√

x2 + y2 + z2
= ln | z +

√
z2 + x2 + y2 |

and using the approximation1

ln | z +
√

z2 + x2 + y2 |∼ 1− 1

| z +
√
z2 + x2 + y2 |

we obtain

As(u, v, k) ∼ k2F2

[(
∂2

∂x2
+

∂2

∂y2

)
1√

x2 + y2
⊗x ⊗yγ(x, y)

]

= k2F2

[
1√

x2 + y2
⊗x ⊗y

(
∂2

∂x2
+

∂2

∂y2

)
γ(x, y)

]
, z → 0

Finally, using the convolution theorem, and, noting that(
∂2

∂x2
+

∂2

∂y2

)
γ(x, y) ↔ −(u2 + v2)γ̃(u, v)

where
γ̃(u, v) = F2[γ(x, y)]

and that [9]
1√

x2 + y2
↔ 2π√

u2 + v2

the result is obtained.

Remark 4.1 The scattering amplitude generated by γ(x, y)δ(z) itself is given by

As(u, v, k) ∼ k2γ̃(u, v) (19)

which is the result of applying a far-field analysis to Equation (13). Thus, Equation (18)
differs from the usual far field diffraction pattern - Equation (19) - for an infinitely thin
scatterer, the difference being compounded in the extra spatial frequency factor

√
u2 + v2.

Remark 4.2 For a point scatterer when γ(x, y) = δ(x)δ(y) and γ̃(u, v) = 1 Equa-
tion (19), shows that the intensity | As(u, v, k) |2 is proportional to λ−4 (Rayleigh scat-
tering) whereas in regard to Equation (18), the intensity is proportional to λ−6.

1Using the series representation for an independent (real) variable s: ln s =
∞∑

n=1

1
n

(
s−1
s

)n
, s ≥ 1

2 [7]
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4.2 Case Study: Diffraction from a Gaussian Scatterer

Consider a Gaussian scatterer (a unit amplitude Gaussian function with a real constant
a) given by

γ(r) = exp(−ar2), r =
√
x2 + y2

the idea being to model a spiral galaxy in plane as a ‘Gaussian mass object’.
In terms of the wavelength λ, the analytical solutions for the intensity | As(u, v, k) |2

generated by the diffraction from an infinitely thin scatterer γ(x, y) - Equation (19) - and
the diffraction from the field ∇2φ0

s(r, k0) - Equation (18) - are given by (evaluating the
two-dimensional Fourier transforms)

| As(r, λ) |2=
16π6

a2λ4
exp

(
−2π2r2

aλ2z2

)
and | As(r, λ) |2=

44π12r2

a2z2λ6
exp

(
−2π2r2

aλ2z2

)
respectively.

Note that the diffraction for a scattering function produces a pattern whose intensity
peaks at the centre for r = 0 but that diffraction from a low frequency scattered field
∇2φ0

s(r, k0) has an intensity that is zero at r = 0 and produces a pattern characterised by a
ring which has maximum intensity when r =

√
azλ/

√
2π, i.e. when ∂ | As(r, λ) |2 /∂r = 0.

Further, with regard to the principal remit of this section, we note that the intensity
generated by the scatterer γ scales as λ−4 whereas that generated by the field ∇2φ0

s(r, k0)
scales as λ−6.

5 Conclusion

In the context of the λ−6 scaling law derived in the previous section, it is noted that,
in the optical spectrum, Einstein rings appear to be blue [3], [8]. In this respect,
the scaling law derived may be a validation to the (low-frequency) scattering model for
gravity considered in this paper. However, it should be noted that this ‘evidence’ must be
considered in terms of the scaler wave-field model used where a light wave is taken to be
a scalar wave function (no polarisation effects) and a gravitational wave is based on the
weak-field approximation for the 00-component of the stress-energy tensor. This allows
a Newtonian scalar gravitational field model to be recovered which, in turn, is taken to
be the limit of a scattering effect for the case when k → 0, i.e. Equation (9). By way
of an analogy, the approach taken is similar to that used in optics to model diffraction
phenomena.

In geometric optics, rays of light are taken to be ‘bent’ or refracted by a dielectric
and no wavelength dispersive effects can be modelled. By modelling light as a wave-field
and computing the scattered field (diffraction under the Born approximation), dispersive
effects are obtained. Einstein’s field equations represent a geometric model for gravity in
which light is ‘bent’ by the curvature of space-time and consequently wavelength disper-
sion is not an embodiment of the approach used. In this context, the model developed
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here considers the diffraction of light from a gravitational field, a field which is, itself, a
‘by-product’ of a ultra-low frequency scattering effect.

Given the recent detection of gravitational waves [10], an investigation into the scatter-
ing characteristics of such waves and a theoretical develop thereof is timely. This requires
a full tensorial method to be developed starting with the weak (far-field) scattering con-
dition under the Born approximation compounded in Equation (11). While gravitational
wave source theory has and continuous to be developed, there appears to have been a
rather limited amount of work undertaken on gravitational wave scattering theory when
compared to the scattering theories developed for non-relativistic and relativistic quan-
tum mechanics and (non-relativistic) electromagnetism, for example, a full investigation of
such a theory lying beyond the scope of this paper and being left for future consideration.
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