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Abstract

The purpose of this paper is to establish the global well-posedness of
solutions to Gross-Pitaevskii (GP) infinite linear hierarchy of equations
on R™ n > 1. More precisely, by introducing a suitable solution space
J6% with € > 1 we prove that there exists a unique global solution to
the GP hierarchy. In particular, the solution can belong to the space
that of the initial data. In this respect, it is new.
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1 Introduction

In the present paper, we investigate the global well-posedness of solutions to
Gross-Pitaevskii (GP) infinite linear hierarchy of equations on R™, n > 1,
with focusing and defocusing interaction. Motivated by recent experimental
realizations of Bose-Einstein condensation the theory of dilute, inhomogeneous
Bose systems is currently a subject of intensive studies in physics (see [6, 16,
17, 18]). It is well known that the dynamics of Bose-Einstein condensates
are well described by the Gross-Pitaevskii equation (see [13, 14, 19]). On a
rigorous derivation of this equation from the basic many-body Schrédinger
equation we refer to [4, 7, 8, 9, 10, 11, 12] and the reference therein. In their
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program an important step is to prove uniqueness to the GP hierarchy(see
[9, 15]). Recently, T.Chen and N.Pavlovi¢ started to investigate the Cauchy
problem for the GP hierarchy, using a Picard-type fixed point argument(see
[2]). Later, They presented a new proof in which the approximate solution
sequence are produced by truncating the initial data, for detail we refer to [3].
By careful verifying, we find that the contraction mapping in [2] seems wrong.
In order to use the Banach fixed-point theorem, we must modify the solution
space which was introduced in [2]. In the modified solution space, S, we
will prove global existence and uniqueness of solutions in spaces ;" by the
Banach fixed point theorem. We note that the initial data and solutions given
by the local theory don’t belong to the same space(see [2, 3, 5]). But, the
GP hierarchy can be solved in the modified space such that the solution and
initial data belong to the same space. Incidentally, for a very recent work on
the global analysis of GP hierarchy we refer to [20].

As follows, we denote by x a general variable in R” and by x = (21, -+, zn)
a point in RY". We will also use the notation x;, = (x1,...,z;) € R*. For a
function f on R*" we let

(Ocf) (@1, 21) = f(To1), - Togr))

for any permutation o € Il (II; denotes the set of permutations on k ele-
ments). Then, each O, is a unitary operator on L?(R*"). A bounded operator
A on L*(R*) is called k-partite symmetric or simply symmetric if

0,40,1 = A (1)

for every o € II;. Evidently, a density operator y*) on L?(R*") (i.e., v¥) >0
and try® = 1) with the kernel function v (x;;x}) is k-partite symmetric if
and only if

(k) (

y(k)(xl, e T X xy) =Y (T, ,xo.(k);x;(l), . ,x;(k))

for any o € Il.
Also, we set

LIR™) = {f € L*(R™): ©,f = [, Vo € I},

equipped with the inner product of L*(R*"). Clearly, L?(R**) is a Hilbert
subspace of L?(R¥"). It is easy to check that any k-partite symmetric operator
on L?(R*") preserves L?(RF").

Definition 1.1. Given n > 1, the n-dimensional Gross-Pitaevskii (GP)
hierarchy refers to a sequence {Y®)(t)}r>1 of k-partite symmetric density op-
erators on L?(R*"), where t > 0, which satisfy the Gross-Pitacvskii infinite
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linear hierarchy of equations,
0y (t) = [=AW, /B (1)] + pBraay ™ ZAW p==1, (2)

with initial conditions
k

Here, A, refers to the usual Laplace operator with respect to the variables
x; € R" and the operator By is defined by

Byt Z trpr1 [0(z; — @pr), VY]

where the notation try,, indicates that the trace is taken over the (k + 1)-th
variable.

As in [2], we refer to (2) as the cubic GP hierarchy. For =1 or p = —1
we refer to the corresponding GP hierarchies as being defocusing or focusing,
respectively. We note that the cubic GP hierarchy accounts for two-body
interactions between the Bose particles (e.g., see [6, 11] and references therein
for details).

Remark 1.1. In terms of the kernel functions Y% (t, x;;x,), we can rewrite
(2) as follows:

(190 + 8) 1Ot xi) = e (B 0] o), (8)

where A = Z?Zl(ij — Ayr), with initial conditions

’y(k)(O,xk;x;) = ék)(xk;x;), k=1,2,....

In particular, the action of Bry1 on density operators with smooth kernel func-
tions, ! )(XkJrlek-i-l)
€ S(RFHDn » REHD™ s given by

k
Bk+1 = Z Bj,k+1 (4)
j=1
and

k+1 A / k+1 Ll /
Bj,kH’Y( )(mek)—/dxkﬂdfmﬂ( )<Xkaxk+1vxk7xk+l)

()

X 0Ty — @) [0(25 — @pn) — 0(2f — )] -

The action of Bry1 can be extended to generic density operators.
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Remark 1.2. Let ¢y € HY(R™), then one can easily verify that a particular
solution to (3) with initial conditions

k
k
W eenixg) = [ [ eolz)eo(@), k=1.2,...,
j=1
s given by
k ——
V(k)(nxk;xk) - ng<t7$])§0(t7$§)7 k= 1727"'7
j=1

where p(t, z) satisfies the cubic non-linear Schrédinger equation
i0p = —Ap+ plel*e,  ©(0,-) = o, (6)
which is defocusing if p =1, and focusing if p = —1.
The GP hierarchy (2) can be written in the integral form

t
A () . (k)
%Ww=amf%“—w/7“¢“W*Bﬂwwm@»k:LGn (7)
0
is given by
k —
YOt xixp) = [ [t )t o)), k=12,
7j=1

where (¢, ) satisfies the cubic non-linear Schrédinger equation

i0wp = —Dp + plel*e,  ©(0,) = o, (8)
which is defocusing if 4 = 1, and focusing if u = —1.
The GP hierarchy (2) can be written in the integral form

t
%Wﬂ=am?%“—w/7“awmﬁﬁﬂwwmwxk:Lz”u (9)
0

2 Main Results

These are the main results of the paper.

In order to state our main results, we require some more notation. We will
use 7*) p*) for denoting either (density) operators or kernel functions. For
k> 1 and a > 0, we denote by HY = H*(R* x R*") the space of measurable
functions y*) = y®)(x;, x}) in L2(R*™ x R*") such that

IV g = 1S® 9D 2 n giny < 00,
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where i
st =T [(1 —AL)E(1— Ay )*} .
j=1

Evidently, Hf is a Hilbert space with the inner product

<7(k) = <S k a ) S(k7a)p(k)>L2(RanRkn) .
Moreover, the norm || - [|ge is invariance under the action of eital , that is,
(k)
€785 P = || ®]|ge

A () . .
because e+ commutates with A, for any j.
Given ¢ > 0 and a > 0, we define

e = {r = {1 her € PHE: Tl =D 1P g < oo} - (10)
k=1 k=1

Evidently, 7 is a Banach space equipped with the norm || - ||%c§a We remark
that the following space

He = {r = (1}io1 € DHZ ¢ [Tllg = 3 7™y < oo} o
k=1 k=1

is introduced in [2]. And spaces which are similar to (11) are used in the

isospectral renormalization group analysis of spectral problems in quantum
field theory (see [1]).

Definition 2.1. For T > 0, T'(t) = {y®(t)}s>1 € C([0,T)], 7 ) is said to
be a local (mild) solution to the GP hierarchy (2) if for every k 1,2,...,

t
A1) = A / ds 3 By (), it e [0, T,
0

holds in Hj!.

In order to write the equations above in a more compact form, we introduce
the notation below [2]. Set

ALT = {Agfwk}lm (12)

and R
BT := { B} (13)
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Then, the GP hierarchy can be rewritten as
(i@t + Ai) I = uBr. (14)
Also, it can be rewritten as in the integral form
I'(t) = S ) /t dsei(t_s)AiBF(s). (15)
0

Following [2], in order to solve the equation (15) we also deal with the auxiliary
equation

) ¢
2(t) = BTy — i,u/ dsBe't=925 (). (16)
0
Let #Z(n) denote the set below
(%7 OO)) n=1,
A(n) =1 (%5,00), n=2,n>4, (17)
1,00), n=3

where the set Z(n) was first introduced in [2]. And let

Ce = sup{k&' %} < oo, (18)
k>1

for any £ > 1. It is time to state our main results. They are the following two
theorems.

Theorem 2.2 (local solution). Assume that o € Z(n) and & > 1. Let
T = (AC TAC? and I = [0,T]. Suppose Ty = {%()k)}kzl € ;. Then, the
following hold.

(i) There exists a unique solution Z(t) € Lic; /%) to the system(16). More-
over, the following estimate

IEO Iz, 0 < I Toll e (19)

tel

holds.

(ii) There exists a solution I'(t) € C(I, ) to the system(15) with the initial
data T'y. In particular, this solution has the property that

IP@ e, 7o) < 2[Tollze (20)

and )
IBY()lzs_, 20 < [IToll g (21)
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(iii) For any interval J with 0 € J, in the space
We(d) = {T() € CULAL)  BU(1) € Lig o}, (22)

there exists a unique solution to the system(15) with the initial data Ty.

Remark 2.1. Here and there, the constant A = A(n,«) is fivzed and from the
lemma 3.1.

Remark 2.2. Let A € (0, 7) be a constant, and set

0 xk,xk Hcpkx] k=1,2,...,

with [|¢x|lug = A*. Then, it is easy to verify that Ty = {”y(()k)}kzl € JH.

Theorem 2.3 (global solution). Aussem that « € Z(n) and & > 1. And

suppose I'y = {’y(()k)}kzl € ;. Then, there existence a global solution I' €
C(R, L) to the system(15) with the initial data T'g. Moreover, the following
estimates

IT o, ey < 27Tl 0 (23)
and

IBL(®)ly,, e < (20 = DIITollge (24)

hold, where T was defined in theorem 2.2 and I; = [(j —1)T,jT], 7 =1,2,....
In addition, if two solutions to (15) with the same initial data belong to
%Q(J) for all finite interval J > 0, then the two solutions are equal.

3 Proof of Theorem 2.2

In order to prove the Theorem 2.2, we need the following estimate.

3.1 Preliminary estimate

Lemma 3.1. Suppose that o € Z(n). Let Y¥)(t) be the unique solution of
(i@t + Ag?) B (1) =0 (25)

with initial condition
Y9(0,) =" € HY. (26)
Then, there ezists a constant A = A(n,«) such that
k+1)
1Bty V2 me < Ally§ ||Hz+1
foralll=1,2,... k.

Proof. The lemma was proved in [2]. O

(27)
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3.2 The proof of Theorem 2.2

Proof. (i) Let I =1[0,7] and T > 0 to be choosed later. We defined
A A t ~ . ~
O(Z)(t) := Be" T — i,u/ dsBe'=92+ 2 (5) (28)
0
for any = € Ly, 174 In terms of components, we can rewrite it as

t
B(Z) (1) = Bryre™E D iy / ds By ER D (6) > 1
0

(29)
if 2(t) = {E®(t)}y>1 and Ty = {’y(()k)}kzl. In order to apply Banach fixed point
theorem, we prove firstly that ®(Z) € Lj ;74 when E € Ly ;2. In fact, for
any k > 1, we have

A (k+1)
| BisreE 0D

fe
tEIHk

k
A (k1)
<3 B A

tel
=1

k
o (k41)
< VT Briare™ s AVl g
=1

< ARV e

k+1

where we used the Cauchy-Schwarz inequality and the lemma 3.1. Then, we
obtain the following estimate

|Bet*2+T HL%E,,%?

o0
2 AR+ (1
=3 Bryre™E T e

tel

k=1
2 k+1
<N P ARVTI Y g, (30)
k=1

< AVT sup{ke' =}y " € " g
k>1

k=1

= ACeVT Dol e

where the notation C¢ was defined in (18).
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Similarly, for the second term in the right hand of equation (29), we have

Therefore,

t
A (RD)
I [ B3 D ) g
0

t A
|| / ds B985 ()|
0

tel

tel

k T
< Z/ ds|| By 92 EED (5] HY
1=1 70

[1]

(k+1)
(s)llzz,,

k T
. (k+1)
S E dS\/T”Bl’k_HeZ(tis)Ai*—
=1 V0

k T

<> / dsVTA|Z*H)(s)||ne_,
1=1 70

= ARVT|Z® D)1 e -

tel  k+1

ter e

o0 t
=3 [ asBae =
k=1 0

tel

tel k41

<3 ARVTIESD (1) 11w
k=1

tel "k+1

< AVT sup{ke' =} 3 €M IIECD (@)1 g
k1 k=1

— AC&ﬁHE”L%eI‘)ng

Combing (30) with (31), we deduce that

1®@)lzs, e < ACVT [ITolloge + 2 ls, 7|

where 1 = £1 was used. It implies that the mapping

P Lieff%ﬂga = L%EI%OC

is well defined. And by the inequality (31), we obtain

1B(E1) — @(Z2) 110 < ACVT|E1 = Zallpy_ e

tel

HE

(31)

(34)

for any T > 0. Now We choose T' = —~=~3, then by (34) the following inequal-

1ty

A(ACe)? "

[B(E1) — (Z2) |1y

I _
e < 2 lE = Salliz e

te1”le

(35)
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holds for all 21,2, € Lj, (24" 1t concludes that @ is a contraction mapping
on Li ;7. By Banach fixed point theorem there exists a unique = € Ly, /"
such that

==9(=5). (36)

Consequently, there exists a unique solution Z of (16) in Lj. (2" In addition,
the following estimate

120t e < ACVT [ITolloe + 12 2z, e (37)

ter’le

holds because of (32) and (36). By the choice of T, (37) implies that the
inequality (19) holds.

(ii) Following (2], we define
A t . A
[(t) == "+T — iu/ dse' =92+ = (5) (38)
0
where Z is the unique solution of (16) in Lj.; . Then,

t
POl < Tl + | dslZ(6)]ry
0

< Tolle + IE@ 2y,
< 2||Tol|re

(39)

where we used the unitary of operator eitAt with respect to z%”g"‘ in the first
inequality and the estimate (19) in last inequality. Hence, I' € C(I, %) and
satisfies the estimate (20). The continuity with respect to ¢t € I follows from
the fact {e“Ai Her is a strongly continuous one-parameter unitary group. In
fact, the first term in the right hand of equation (38) is continuous. And for
the second term, we have

t+7 ) R t ) R
/ dse! =985 () —/ dse't=9)2+ =2 (s)
0 0
t+71 R R
_ / ds [ei(t—&-T—s)Ai _ ei(t—s)Ai} =(s) (40)
0
t+7 ) .
+/ dsez(t_s)AiE(s)
t

for fixed t € I and any 7 such that ¢ + 7 € I. Then, the Lebesgue Domi-
nated Convergence theorem implies that the second term in the right hand of
equation (38) is continuous at t.
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We note that
A ¢
BT = BT — ip / dsBell=)2+2 () (41)
0
by the definition (38). Since = is the solution of the equation (16), we obtain

~ t A . ~
BT = Be™ Ty —ip / dsBelt=98+5(5) = 2. (42)
0

That is .
Bl ==. (43)

Then, inserting the equation (43) into the equation (38), we deduce
A t . A A
[(t) = "+ — i,u/ dse''=5)2+ BT (s). (44)
0

It implies that I'(¢) is a solution of the equation (15). Then the estimate (21)
follows from (43) and (19).

(iii) Suppose I'1(t), T'2(t) € #*(J) are two solutions to (15) with the same
initial datum I'y € J7*. Let [(t) = ['y(t) — Dy(t), then I'(t) satisfies that

t ~ ~ o~
I(t) = —iu/ e =92: BT (s)ds (45)
0

and

BI(t) € Li 0 (46)

Next, we will prove that f(t) = 0 in any compact interval [T7,T5] C J with
T, <0< T3 Set

T* = sup {0 <L<TT(s)=0, se [o,t]} . (47)

If T* < T3, then by translation s — 7% + s we obtain the equation

D(T* +7) = —ip / ¢TI BI(T" + 5)ds (48)
0

for any 7 € (0,72 — T). We note that

BL(T* +7) = —iu/ éei(T’s)AiBf(T* + s)ds (49)
0

and

~ o~

BU(T* 4+ 7) € Licjop, 1ot (50)
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Then, the uniqueness result in the part (i) of theorem 2.2 implies that

A~ ~

BI(T*+71)=0, ae 7€(0,7) (51)
where T' = min{m, Ty, — T*}. Inserting the equation (51) into (48) results
I'(t) = 0 for all ¢ € [0,7* 4 T]. It is contradictive to the definition of T*.
Thus, T* = Ty. It concludes that T'y(¢t) = ['y(t) for all ¢ € [0, T3]. Similarly,
we can prove that I'y(t) = Ia(t) for all ¢ € [T3,0]. Consequently, we prove
that T'y(t) = T's(¢) for any compact interval [Ty, Ts] C J with T} < 0 < Ty. Tt
implies that I';(¢) = I'y(¢) in the interval J. It completes the proof. O

3.3 The proof of theorem 2.3

Proof. We will construct a solution by using the theorem 2.2 again and again.
Let Z1(t) := Z(t) and I'y(t) := I'(t), t € [0,T], where =(¢),I'(t) are from the
theorem 2.2. And set I; = [(j — 1)1, 4T, j = 1,2,--- . Now we consider the
following equations:

) ¢ o
=) = BT () i [ asBet s
N

and

~ t . A A
T(t) = U2 (5 — 1)T) — i,u/ dse'**)2:BT(s)  (53)
-1

for ¢ € I;. We note that the equations above for j = 1 are exact the equations
(16) and (15). Applying the part (ii) of the theorem 2.2, T'y(t) = I'(t) €
C(Iy, 7). Then, I''(T) € " makes sense. Next, we solve the equation
(52) for j = 2 by using the theorem 2.2. Then, we can construct a solution
[y(t) € C(Iy, 7*) to the equation (53) for j = 2 just as do the part (ii) of the
theorem 2.2 . In addition, the following estimates

ITallo(, ey < 20(T) |l < 2%|Tol| e (54)

and R
| BL2(t) | 2

tel

e ST Lo < 2[|Tol| e (55)
hold. By the mathematical induction, we deduce that
[j(t) € O, ), Ti((G —1)T) = T;1((G = DT) (56)

and
15l ey < 22| To|l e (57)
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and

IBL; (s, s < 2 IToll e (58)

J

Now, we extend the domain of I'(¢) to (T, 00) such that

This definition makes sense because of (56). Then, I' € C([0, 0), ) is a
solution to the GP hierarchy (15). In fact, suppose that

~ t . N A
[(t) = e+ —ip / dse’*=92£BI(s), t € [0, (j — )T (60)
0

then (53) and (60) imply that for t € [;

~ t . A A
[(t) = et U-DDA:p((j — 1)T) — i,u/ dse'!=92+ BT ()

G-nT
L ; o G-nr A
_ ilt-G-DDAs | ilG-0TASp g / dse(G-DT-2)52 Bp ()
t ’ (61)
—i,u/ dsei(t_s)AiéI’(s)
(G-1nT

J

~ t . N ~
S - i,u/ dsez(t_S)AiBF(s).
0

Consequently, mathematical induction implies that I" is a solution to the GP
hierarchy (15) on [0, 00). Further more, the estimates (23) and (24) are from
(57) and (58). Similarly, we can deal with GP hierarchy (15) for t € (—o0,0).
Finally, the uniqueness property of the solution follows from the part (iii) of
the theorem 2.2 under the assumptions that the solutions belong to the spaces
W (J). Tt completes the proof. O

ACKNOWLEDGEMENTS. C.Liu is partially supported by NSFC grants
(11101171,11071095) and Hubei Key Laboratory of Mathematical Sciences.

References

[1] V. Bach, T. Chen, J. Fréhlich, and I. M. Sigal, Smooth Feshbach map
and operator-theoretic renormalization group methods, J. Funct. Anal.
203 (1), 44-92 (2003).

[2] T.Chen and N.Pavlovié¢, On the Cauchy problem for focusing and defo-
cusing Gross-Pitaevskii hierarchies, Discrete Contin. Dyn. Syst. 27 (2),
715-739 (2010).



610

3]

[13]

[14]

[15]

Chuangye Liu and Minmin Liu

T.Chen and N.Pavlovi¢, A new proof of existence of solu-
tions for focusing and defocusing Groos-Pitaevskii hierarchies,
Pro.Amer.Math.Soc.,141,279-293,(2013).

T. Chen and N. Pavlovic, The quintic NLS as the mean field limit of a
Boson gas with three-body interactions, J. Funct. Anal. 260 (4), 959-997
(2011).

Z. Chen and C. Liu, On the Cauchy problem for Gross-Pitaevskii hierar-
chies, J. Math. Phys. 52, 032103 (2011).

F.Dalfovo, S.Giorgini, L.P.Pitaevskii, and S.Stringari, Theory of Bose-
Einstein condensation in trapped gases, Rev. Mod. Phys. 71, 463-512
(1999).

A Elgart, L.Erdos, B.Schlein, and H.T.Yau, Gross-Pitaevskii equation as
the mean field limit of weakly coupled bosons, Arch. Rat. Mech. Anal.
179(2), 265-283 (2006).

L.Erdos, B.Schlein, and H.T.Yau, Derivation of the Gross-Pitaevskii hier-
archy for the dynamics of Bose-Einstein condensate, Commun. Pure Appl.
Math. 59(12), 1659-1741 (2006).

L.Erdos, B.Schlein, and H.T.Yau, Derivation of the cubic non-linear
Schrodinger equation from quantum dynamics of many-body systems, In-
vent. Math. 167, 515-614 (2007).

L.Erdos, B.Schlein, and H.T.Yau, Derivation of the Gross-Pitaevskii equa-
tion for the dynamics of Bose-Einstein condensate, Ann. Math.,170,291-
370(2010).

L.Erdos, B.Schlein, and H.T.Yau, Rigorous derivation of the Gross-
Pitaevskii equation, Phys.Rev.Lett. 98, 040404 (2007).

L.Erdos and H.T.Yau, Derivation of the nonlinear Schrodinger equation
from a many body Coulomb system, Adv. Theor. Math. Phys. 5(6), 1169-
1205 (2001).

E.P.Gross, Structure of a quantized vortex in boson systems, Nuovo Ci-
mento 20, 454-466 (1961).

E.P.Gross, Hydrodynamics of a superfluid condensate, J.Math. Phys. 4,
195-207 (1963).

S.Klainerman and M.Machedon, On the uniqueness of solutions to the
Gross-Pitaevskii hierarchy, Commun.Math.Phys. 279, 169-185 (2008).



Global well-posedness G-P 611

[16] E.H.Lieb and R.Seiringer, Proof of Bose-Einstein condensation for dilute
trapped gases, Phys. Rev. Lett. 88, 170409 (2002).

[17] E.H.Lieb, R.Seiringer, and J.Yngvason, Bosons in a trap: A rigorous
derivation of the Gross-Pitaevskii energy functional, Phys. Rev. A 61,
043602 (2000).

[18] E.H.Lieb, R.Seiringer, and J.Yngvason, A rigorous derivation of the
Gross-Pitaevskii energy functional for a two-dimensional Bose gas, Com-
mun. Math. Phys. 224, 17-31 (2001).

[19] L.P.Pitaevskii, Vortex lines in an imperfect Bose gas, Sov. Phys. JETP
13, 451-454 (1961).

[20] K.Taliferro and T.Chen, Positive Semidefiniteness and Global
Well-Posedness of Solutions to the Gross-Pitaevskii Hierarchy,
http://arxiv.org/abs/1305.1404

Received: June, 2014



