Global well-posedness for Gross-Pitaevskii hierarchies

Chuangye Liu
School of Mathematics and Statistics, Central China Normal University, Luo-Yu Road 152,
Wuhan 430079, China

Minmin Liu
School of science, Wuhan Institute of Technology, Wuhan 430073, China

Abstract

The purpose of this paper is to establish the global well-posedness of solutions to Gross-Pitaevskii (GP) infinite linear hierarchy of equations on $\mathbb{R}^{n}, n \geq 1$. More precisely, by introducing a suitable solution space $\mathscr{H}_{\xi}^{\alpha}$ with $\xi>1$ we prove that there exists a unique global solution to the GP hierarchy. In particular, the solution can belong to the space that of the initial data. In this respect, it is new.

Mathematics Subject Classification: 35Q55, 81V70.
Keywords: Gross-Pitaevskii hierarchy, global solutions.

1 Introduction

In the present paper, we investigate the global well-posedness of solutions to Gross-Pitaevskii (GP) infinite linear hierarchy of equations on $\mathbb{R}^{n}, n \geq 1$, with focusing and defocusing interaction. Motivated by recent experimental realizations of Bose-Einstein condensation the theory of dilute, inhomogeneous Bose systems is currently a subject of intensive studies in physics (see [6, 16, 17, 18]). It is well known that the dynamics of Bose-Einstein condensates are well described by the Gross-Pitaevskii equation (see [13, 14, 19]). On a rigorous derivation of this equation from the basic many-body Schrödinger equation we refer to $[4,7,8,9,10,11,12]$ and the reference therein. In their
program an important step is to prove uniqueness to the GP hierarchy(see $[9,15])$. Recently, T.Chen and N.Pavlović started to investigate the Cauchy problem for the GP hierarchy, using a Picard-type fixed point argument(see [2]). Later, They presented a new proof in which the approximate solution sequence are produced by truncating the initial data, for detail we refer to [3]. By careful verifying, we find that the contraction mapping in [2] seems wrong. In order to use the Banach fixed-point theorem, we must modify the solution space which was introduced in [2]. In the modified solution space, $\mathscr{H}_{\xi}^{\alpha}$, we will prove global existence and uniqueness of solutions in spaces $\mathscr{H}_{\xi}^{\alpha}$ by the Banach fixed point theorem. We note that the initial data and solutions given by the local theory don't belong to the same space(see $[2,3,5])$. But, the GP hierarchy can be solved in the modified space such that the solution and initial data belong to the same space. Incidentally, for a very recent work on the global analysis of GP hierarchy we refer to [20].

As follows, we denote by x a general variable in \mathbb{R}^{n} and by $\mathbf{x}=\left(x_{1}, \cdots, x_{N}\right)$ a point in $\mathbb{R}^{N n}$. We will also use the notation $\mathbf{x}_{k}=\left(x_{1}, \ldots, x_{k}\right) \in \mathbb{R}^{k n}$. For a function f on $\mathbb{R}^{k n}$ we let

$$
\left(\Theta_{\sigma} f\right)\left(x_{1}, \ldots, x_{k}\right)=f\left(x_{\sigma(1)}, \ldots, x_{\sigma(k)}\right)
$$

for any permutation $\sigma \in \Pi_{k}$ (Π_{k} denotes the set of permutations on k elements). Then, each Θ_{σ} is a unitary operator on $L^{2}\left(\mathbb{R}^{k n}\right)$. A bounded operator A on $L^{2}\left(\mathbb{R}^{k n}\right)$ is called k-partite symmetric or simply symmetric if

$$
\begin{equation*}
\Theta_{\sigma} A \Theta_{\sigma^{-1}}=A \tag{1}
\end{equation*}
$$

for every $\sigma \in \Pi_{k}$. Evidently, a density operator $\gamma^{(k)}$ on $L^{2}\left(\mathbb{R}^{k n}\right)$ (i.e., $\gamma^{(k)} \geq 0$ and $\operatorname{tr} \gamma^{(k)}=1$) with the kernel function $\gamma^{(k)}\left(\mathbf{x}_{k} ; \mathbf{x}_{k}^{\prime}\right)$ is k-partite symmetric if and only if

$$
\gamma^{(k)}\left(x_{1}, \ldots, x_{k} ; x_{1}^{\prime}, \ldots, x_{k}^{\prime}\right)=\gamma^{(k)}\left(x_{\sigma(1)}, \ldots, x_{\sigma(k)} ; x_{\sigma(1)}^{\prime}, \ldots, x_{\sigma(k)}^{\prime}\right)
$$

for any $\sigma \in \Pi_{k}$.
Also, we set

$$
L_{s}^{2}\left(\mathbb{R}^{k n}\right)=\left\{f \in L^{2}\left(\mathbb{R}^{k n}\right): \Theta_{\sigma} f=f, \forall \sigma \in \Pi_{k}\right\}
$$

equipped with the inner product of $L^{2}\left(\mathbb{R}^{k n}\right)$. Clearly, $L_{s}^{2}\left(\mathbb{R}^{k n}\right)$ is a Hilbert subspace of $L^{2}\left(\mathbb{R}^{k n}\right)$. It is easy to check that any k-partite symmetric operator on $L^{2}\left(\mathbb{R}^{k n}\right)$ preserves $L_{s}^{2}\left(\mathbb{R}^{k n}\right)$.

Definition 1.1. Given $n \geq 1$, the n-dimensional Gross-Pitaevskii (GP) hierarchy refers to a sequence $\left\{\gamma^{(k)}(t)\right\}_{k \geq 1}$ of k-partite symmetric density operators on $L^{2}\left(\mathbb{R}^{k n}\right)$, where $t \geq 0$, which satisfy the Gross-Pitaevskii infinite
linear hierarchy of equations,

$$
\begin{equation*}
i \partial_{t} \gamma^{(k)}(t)=\left[-\Delta^{(k)}, \gamma^{(k)}(t)\right]+\mu B_{k+1} \gamma^{(k+1)}(t), \quad \Delta^{(k)}=\sum_{j=1}^{k} \Delta_{x_{j}}, \mu= \pm 1 \tag{2}
\end{equation*}
$$

with initial conditions

$$
\gamma^{(k)}(0)=\gamma_{0}^{(k)}, \quad k=1,2, \ldots
$$

Here, $\Delta_{x_{j}}$ refers to the usual Laplace operator with respect to the variables $x_{j} \in \mathbb{R}^{n}$ and the operator B_{k+1} is defined by

$$
B_{k+1} \gamma^{(k+1)}=\sum_{j=1}^{k} \operatorname{tr}_{k+1}\left[\delta\left(x_{j}-x_{k+1}\right), \gamma^{(k+1)}\right]
$$

where the notation tr_{k+1} indicates that the trace is taken over the $(k+1)$-th variable.

As in [2], we refer to (2) as the cubic GP hierarchy. For $\mu=1$ or $\mu=-1$ we refer to the corresponding GP hierarchies as being defocusing or focusing, respectively. We note that the cubic GP hierarchy accounts for two-body interactions between the Bose particles (e.g., see $[6,11]$ and references therein for details).

Remark 1.1. In terms of the kernel functions $\gamma^{(k)}\left(t, \mathbf{x}_{k} ; \mathbf{x}_{k}^{\prime}\right)$, we can rewrite (2) as follows:

$$
\begin{equation*}
\left(i \partial_{t}+\triangle_{ \pm}^{(k)}\right) \gamma^{(k)}\left(t, \mathbf{x}_{k} ; \mathbf{x}_{k}^{\prime}\right)=\mu\left[B_{k+1} \gamma^{(k+1)}(t)\right]\left(\mathbf{x}_{k} ; \mathbf{x}_{k}^{\prime}\right) \tag{3}
\end{equation*}
$$

where $\triangle_{ \pm}^{(k)}=\sum_{j=1}^{k}\left(\Delta_{x_{j}}-\Delta_{x_{j}^{\prime}}\right)$, with initial conditions

$$
\gamma^{(k)}\left(0, \mathbf{x}_{k} ; \mathbf{x}_{k}^{\prime}\right)=\gamma_{0}^{(k)}\left(\mathbf{x}_{k} ; \mathbf{x}_{k}^{\prime}\right), \quad k=1,2, \ldots
$$

In particular, the action of B_{k+1} on density operators with smooth kernel functions, $\gamma^{(k+1)}\left(\mathbf{x}_{k+1} ; \mathbf{x}_{k+1}^{\prime}\right)$
$\in \mathcal{S}\left(\mathbb{R}^{(k+1) n} \times \mathbb{R}^{(k+1) n}\right)$, is given by

$$
\begin{equation*}
B_{k+1}:=\sum_{j=1}^{k} B_{j, k+1} \tag{4}
\end{equation*}
$$

and

$$
\begin{align*}
B_{j, k+1} \gamma^{(k+1)}\left(\mathbf{x}_{k} ; \mathbf{x}_{k}^{\prime}\right) & =\int d x_{k+1} d x_{k+1}^{\prime} \gamma^{(k+1)}\left(\mathbf{x}_{k}, x_{k+1} ; \mathbf{x}_{k}^{\prime}, x_{k+1}^{\prime}\right) \tag{5}\\
& \times \delta\left(x_{k+1}^{\prime}-x_{k+1}\right)\left[\delta\left(x_{j}-x_{k+1}\right)-\delta\left(x_{j}^{\prime}-x_{k+1}\right)\right]
\end{align*}
$$

The action of B_{k+1} can be extended to generic density operators.

Remark 1.2. Let $\varphi_{0} \in \mathrm{H}^{1}\left(\mathbb{R}^{n}\right)$, then one can easily verify that a particular solution to (3) with initial conditions

$$
\gamma_{0}^{(k)}\left(\mathbf{x}_{k} ; \mathbf{x}_{k}^{\prime}\right)=\prod_{j=1}^{k} \varphi_{0}\left(x_{j}\right) \overline{\varphi_{0}\left(x_{j}^{\prime}\right)}, \quad k=1,2, \ldots
$$

is given by

$$
\gamma^{(k)}\left(t, \mathbf{x}_{k} ; \mathbf{x}_{k}^{\prime}\right)=\prod_{j=1}^{k} \varphi\left(t, x_{j}\right) \overline{\varphi\left(t, x_{j}^{\prime}\right)}, \quad k=1,2, \ldots
$$

where $\varphi(t, x)$ satisfies the cubic non-linear Schrödinger equation

$$
\begin{equation*}
i \partial_{t} \varphi=-\Delta \varphi+\mu|\varphi|^{2} \varphi, \quad \varphi(0, \cdot)=\varphi_{0} \tag{6}
\end{equation*}
$$

which is defocusing if $\mu=1$, and focusing if $\mu=-1$.
The GP hierarchy (2) can be written in the integral form

$$
\begin{equation*}
\gamma^{(k)}(t)=e^{i t \Delta_{ \pm}^{(k)}} \gamma_{0}^{(k)}-i \mu \int_{0}^{t} d s e^{i(t-s) \Delta_{ \pm}^{(k)}} B_{k+1} \gamma^{(k+1)}(s), k=1,2, \ldots \tag{7}
\end{equation*}
$$

is given by

$$
\gamma^{(k)}\left(t, \mathbf{x}_{k} ; \mathbf{x}_{k}^{\prime}\right)=\prod_{j=1}^{k} \varphi\left(t, x_{j}\right) \overline{\varphi\left(t, x_{j}^{\prime}\right)}, \quad k=1,2, \ldots
$$

where $\varphi(t, x)$ satisfies the cubic non-linear Schrödinger equation

$$
\begin{equation*}
i \partial_{t} \varphi=-\Delta \varphi+\mu|\varphi|^{2} \varphi, \quad \varphi(0, \cdot)=\varphi_{0} \tag{8}
\end{equation*}
$$

which is defocusing if $\mu=1$, and focusing if $\mu=-1$.
The GP hierarchy (2) can be written in the integral form

$$
\begin{equation*}
\gamma^{(k)}(t)=e^{i t \Delta_{ \pm}^{(k)}} \gamma_{0}^{(k)}-i \mu \int_{0}^{t} d s e^{i(t-s) \Delta_{ \pm}^{(k)}} B_{k+1} \gamma^{(k+1)}(s), k=1,2, \ldots \tag{9}
\end{equation*}
$$

2 Main Results

These are the main results of the paper.
In order to state our main results, we require some more notation. We will use $\gamma^{(k)}, \rho^{(k)}$ for denoting either (density) operators or kernel functions. For $k \geq 1$ and $\alpha>0$, we denote by $\mathrm{H}_{k}^{\alpha}=\mathrm{H}^{\alpha}\left(\mathbb{R}^{k n} \times \mathbb{R}^{k n}\right)$ the space of measurable functions $\gamma^{(k)}=\gamma^{(k)}\left(\mathbf{x}_{k}, \mathbf{x}_{k}^{\prime}\right)$ in $L^{2}\left(\mathbb{R}^{k n} \times \mathbb{R}^{k n}\right)$ such that

$$
\left\|\gamma^{(k)}\right\|_{H_{k}^{\alpha}}:=\left\|S^{(k, \alpha)} \gamma^{(k)}\right\|_{L^{2}\left(\mathbb{R}^{k n} \times \mathbb{R}^{k n}\right)}<\infty,
$$

where

$$
S^{(k, \alpha)}:=\prod_{j=1}^{k}\left[\left(1-\Delta_{x_{j}}\right)^{\frac{\alpha}{2}}\left(1-\Delta_{x_{j}^{\prime}}\right)^{\frac{\alpha}{2}}\right]
$$

Evidently, H_{k}^{α} is a Hilbert space with the inner product

$$
\left\langle\gamma^{(k)}, \rho^{(k)}\right\rangle:=\left\langle S^{(k, \alpha)} \gamma^{(k)}, S^{(k, \alpha)} \rho^{(k)}\right\rangle_{L^{2}\left(\mathbb{R}^{k n} \times \mathbb{R}^{k n}\right)}
$$

Moreover, the norm $\|\cdot\|_{H_{k}^{\alpha}}$ is invariance under the action of $e^{i t \Delta_{ \pm}^{(k)}}$, that is,

$$
\left\|e^{i t \Delta_{ \pm}^{(k)}} \gamma^{(k)}\right\|_{\mathrm{H}_{k}^{\alpha}}=\left\|\gamma^{(k)}\right\|_{\mathrm{H}_{k}^{\alpha}}
$$

because $e^{i t \Delta_{ \pm}^{(k)}}$ commutates with $\Delta_{x_{j}}$ for any j.
Given $\xi>0$ and $\alpha>0$, we define

$$
\begin{equation*}
\mathscr{H}_{\xi}^{\alpha}=\left\{\Gamma=\left\{\gamma^{(k)}\right\}_{k \geq 1} \in \bigoplus_{k=1}^{\infty} \mathrm{H}_{k}^{\alpha}:\|\Gamma\|_{\mathscr{H}_{\xi}^{\alpha}}:=\sum_{k=1}^{\infty} \xi^{k^{2}}\left\|\gamma^{(k)}\right\|_{\mathrm{H}_{k}^{\alpha}}<\infty\right\} \tag{10}
\end{equation*}
$$

Evidently, $\mathscr{H}_{\xi}^{\alpha}$ is a Banach space equipped with the norm $\|\cdot\|_{\mathscr{H}_{\xi}^{\alpha}}$. We remark that the following space

$$
\begin{equation*}
\mathcal{H}_{\xi}^{\alpha}=\left\{\Gamma=\left\{\gamma^{(k)}\right\}_{k \geq 1} \in \bigoplus_{k=1}^{\infty} \mathrm{H}_{k}^{\alpha}:\|\Gamma\|_{\mathcal{H}_{\xi}^{\alpha}}:=\sum_{k=1}^{\infty} \xi^{k}\left\|\gamma^{(k)}\right\|_{\mathrm{H}_{k}^{\alpha}}<\infty\right\} \tag{11}
\end{equation*}
$$

is introduced in [2]. And spaces which are similar to (11) are used in the isospectral renormalization group analysis of spectral problems in quantum field theory (see [1]).

Definition 2.1. For $T>0, \Gamma(t)=\left\{\gamma^{(k)}(t)\right\}_{k \geq 1} \in C\left([0, T], \mathscr{H}_{\xi}^{\alpha}\right)$ is said to be a local (mild) solution to the GP hierarchy (2) if for every $k=1,2, \ldots$,

$$
\gamma^{(k)}(t)=e^{i t \Delta_{ \pm}^{(k)}} \gamma_{0}^{(k)}-i \mu \int_{0}^{t} d s e^{i(t-s) \Delta_{ \pm}^{(k)}} B_{k+1} \gamma^{(k+1)}(s), \quad \forall t \in[0, T]
$$

holds in H_{k}^{α}.
In order to write the equations above in a more compact form, we introduce the notation below [2]. Set

$$
\begin{equation*}
\hat{\Delta}_{ \pm} \Gamma:=\left\{\Delta_{ \pm}^{(k)} \gamma^{k}\right\}_{k \geq 1} \tag{12}
\end{equation*}
$$

and

$$
\begin{equation*}
\hat{B} \Gamma:=\left\{B_{k+1} \gamma^{k+1}\right\}_{k \geq 1} \tag{13}
\end{equation*}
$$

Then, the GP hierarchy can be rewritten as

$$
\begin{equation*}
\left(i \partial_{t}+\hat{\Delta}_{ \pm}\right) \Gamma=\mu \hat{B} \Gamma \tag{14}
\end{equation*}
$$

Also, it can be rewritten as in the integral form

$$
\begin{equation*}
\Gamma(t)=e^{i t \hat{\Delta}_{ \pm}} \Gamma_{0}-i \mu \int_{0}^{t} d s e^{i(t-s) \hat{\Delta}_{ \pm}} \hat{B} \Gamma(s) \tag{15}
\end{equation*}
$$

Following [2], in order to solve the equation (15) we also deal with the auxiliary equation

$$
\begin{equation*}
\Xi(t)=\hat{B} e^{i t \hat{\Delta}_{ \pm}} \Gamma_{0}-i \mu \int_{0}^{t} d s \hat{B} e^{i(t-s) \hat{\Delta}_{ \pm}} \Xi(s) . \tag{16}
\end{equation*}
$$

Let $\mathscr{R}(n)$ denote the set below

$$
\mathscr{R}(n)=\left\{\begin{array}{cl}
\left(\frac{1}{2}, \infty\right), & n=1 \tag{17}\\
\left(\frac{n-1}{2}, \infty\right), & n=2, n>4 \\
{[1, \infty),} & n=3
\end{array}\right.
$$

where the set $\mathscr{R}(n)$ was first introduced in [2]. And let

$$
\begin{equation*}
C_{\xi}:=\sup _{k \geq 1}\left\{k \xi^{1-2 k}\right\}<\infty, \tag{18}
\end{equation*}
$$

for any $\xi>1$. It is time to state our main results. They are the following two theorems.

Theorem 2.2 (local solution). Assume that $\alpha \in \mathscr{R}(n)$ and $\xi>1$. Let $T=\frac{1}{4\left(A C_{\xi}\right)^{2}}$ and $I=[0, T]$. Suppose $\Gamma_{0}=\left\{\gamma_{0}^{(k)}\right\}_{k \geq 1} \in \mathscr{H}_{\xi}^{\alpha}$. Then, the following hold.
(i) There exists a unique solution $\left.\Xi(t) \in L_{t \in I}^{1} \mathscr{H}_{\xi}^{\alpha}\right)$ to the system(16). Moreover, the following estimate

$$
\begin{equation*}
\|\Xi(t)\|_{L_{t \in I}^{1}} \mathscr{H}_{\xi}^{\alpha} \leq\left\|\Gamma_{0}\right\|_{\mathscr{H}_{\xi}^{\alpha}} \tag{19}
\end{equation*}
$$

holds.
(ii) There exists a solution $\Gamma(t) \in C\left(I, \mathscr{H}_{\xi}^{\alpha}\right)$ to the system(15) with the initial data Γ_{0}. In particular, this solution has the property that

$$
\begin{equation*}
\|\Gamma(t)\|_{C\left(I, \mathscr{H}_{\xi}^{\alpha}\right)} \leq 2\left\|\Gamma_{0}\right\|_{\mathscr{H}_{\xi}^{\alpha}} \tag{20}
\end{equation*}
$$

and

$$
\begin{equation*}
\|\hat{B} \Gamma(t)\|_{L_{t \in I}^{1}} \mathscr{H}_{\xi}^{\alpha} \leq\left\|\Gamma_{0}\right\|_{\mathscr{H}_{\xi}^{\alpha}} . \tag{21}
\end{equation*}
$$

(iii) For any interval J with $0 \in J$, in the space

$$
\begin{equation*}
\mathscr{W}_{\xi}^{\alpha}(J):=\left\{\Gamma(t) \in C\left(J, \mathscr{H}_{\xi}^{\alpha}\right): \hat{B} \Gamma(t) \in L_{t \in J}^{1} \mathscr{H}_{\xi}^{\alpha}\right\} \tag{22}
\end{equation*}
$$

there exists a unique solution to the system(15) with the initial data Γ_{0}.
Remark 2.1. Here and there, the constant $A=A(n, \alpha)$ is fixed and from the lemma 3.1.
Remark 2.2. Let $\lambda \in\left(0, \frac{1}{\sqrt{\xi}}\right)$ be a constant, and set

$$
\gamma_{0}^{(k)}\left(\mathbf{x}_{k} ; \mathbf{x}_{k}^{\prime}\right):=\prod_{j=1}^{k} \varphi_{k}\left(x_{j}\right) \overline{\varphi_{k}\left(x_{j}^{\prime}\right)}, \quad k=1,2, \ldots
$$

with $\left\|\varphi_{k}\right\|_{\mathrm{H}_{k}^{\alpha}}=\lambda^{k}$. Then, it is easy to verify that $\Gamma_{0}=\left\{\gamma_{0}^{(k)}\right\}_{k \geq 1} \in \mathscr{H}_{\xi}^{\alpha}$.
Theorem 2.3 (global solution). Aussem that $\alpha \in \mathscr{R}(n)$ and $\xi>1$. And suppose $\Gamma_{0}=\left\{\gamma_{0}^{(k)}\right\}_{k \geq 1} \in \mathscr{H}_{\xi}^{\alpha}$. Then, there existence a global solution $\Gamma \in$ $C\left(\mathbb{R}, \mathscr{H}_{\xi}^{\alpha}\right)$ to the system(15) with the initial data Γ_{0}. Moreover, the following estimates

$$
\begin{equation*}
\|\Gamma\|_{C\left(I_{j}, \mathscr{H}_{\xi}^{\alpha}\right)} \leq 2^{j} \Gamma_{0} \|_{\mathscr{H}_{\xi}^{\alpha}} \tag{23}
\end{equation*}
$$

and

$$
\begin{equation*}
\|\hat{B} \Gamma(t)\|_{L_{t \in[0, j T]}^{1} \mathscr{H}_{\xi}^{\alpha}} \leq\left(2^{j}-1\right)\left\|\Gamma_{0}\right\|_{\mathscr{H}_{\xi}^{\alpha}} \tag{24}
\end{equation*}
$$

hold, where T was defined in theorem 2.2 and $I_{j}=[(j-1) T, j T], j=1,2, \ldots$.
In addition, if two solutions to (15) with the same initial data belong to $\mathscr{W}_{\xi}^{\alpha}(J)$ for all finite interval $J \ni 0$, then the two solutions are equal.

3 Proof of Theorem 2.2

In order to prove the Theorem 2.2, we need the following estimate.

3.1 Preliminary estimate

Lemma 3.1. Suppose that $\alpha \in \mathscr{R}(n)$. Let $\gamma^{(k)}(t)$ be the unique solution of

$$
\begin{equation*}
\left(i \partial_{t}+\Delta_{ \pm}^{(k)}\right) \gamma^{(k)}(t)=0 \tag{25}
\end{equation*}
$$

with initial condition

$$
\begin{equation*}
\gamma^{(k)}(0, \cdot)=\gamma_{0}^{(k)} \in \mathrm{H}_{k}^{\alpha} \tag{26}
\end{equation*}
$$

Then, there exists a constant $A=A(n, \alpha)$ such that

$$
\begin{equation*}
\left\|B_{l, k+1} \gamma^{(k+1)}\right\|_{L_{t \in \mathbb{R}}^{2} \mathrm{H}_{k}^{\alpha}} \leq A\left\|\gamma_{0}^{(k+1)}\right\|_{\mathrm{H}_{k+1}^{\alpha}} \tag{27}
\end{equation*}
$$

for all $l=1,2, \ldots, k$.
Proof. The lemma was proved in [2].

3.2 The proof of Theorem 2.2

Proof. (i) Let $I=[0, T]$ and $T>0$ to be choosed later. We defined

$$
\begin{equation*}
\Phi(\Xi)(t):=\hat{B} e^{i t \hat{\Delta}_{ \pm}} \Gamma_{0}-i \mu \int_{0}^{t} d s \hat{B} e^{i(t-s) \hat{\Delta}_{ \pm}} \Xi(s) \tag{28}
\end{equation*}
$$

for any $\Xi \in L_{t \in I}^{1} \mathscr{H}_{\xi}^{\alpha}$. In terms of components, we can rewrite it as

$$
\begin{equation*}
\Phi(\Xi)^{(k)}(t)=B_{k+1} e^{i t \Delta_{ \pm}^{(k+1)}} \gamma_{0}^{(k+1)}-i \mu \int_{0}^{t} d s B_{k+1} e^{i(t-s) \Delta_{ \pm}^{(k+1)}} \Xi^{(k+1)}(s), k \geq 1 \tag{29}
\end{equation*}
$$

if $\Xi(t)=\left\{\Xi^{(k)}(t)\right\}_{k \geq 1}$ and $\Gamma_{0}=\left\{\gamma_{0}^{(k)}\right\}_{k \geq 1}$. In order to apply Banach fixed point theorem, we prove firstly that $\Phi(\Xi) \in L_{t \in I}^{1} \mathscr{H}_{\xi}^{\alpha}$ when $\Xi \in L_{t \in I}^{1} \mathscr{H}_{\xi}^{\alpha}$. In fact, for any $k \geq 1$, we have

$$
\begin{aligned}
& \left\|B_{k+1} e^{i t \Delta_{ \pm}^{(k+1)}} \gamma_{0}^{(k+1)}\right\|_{L_{t \in I}^{1} \mathrm{H}_{k}^{\alpha}} \\
& \quad \leq \sum_{l=1}^{k}\left\|B_{l, k+1} e^{i t \Delta_{ \pm}^{(k+1)}} \gamma_{0}^{(k+1)}\right\|_{L_{t \in I}^{1} \mathrm{H}_{k}^{\alpha}} \\
& \quad \leq \sum_{l=1}^{k} \sqrt{T}\left\|B_{l, k+1} e^{i t \Delta_{ \pm}^{(k+1)}} \gamma_{0}^{(k+1)}\right\|_{L_{t \in I}^{2} \mathrm{H}_{k}^{\alpha}} \\
& \quad \leq A k \sqrt{T}\left\|\gamma_{0}^{(k+1)}\right\|_{\mathrm{H}_{k+1}^{\alpha}}
\end{aligned}
$$

where we used the Cauchy-Schwarz inequality and the lemma 3.1. Then, we obtain the following estimate

$$
\begin{align*}
& \left\|\hat{B} e^{i t \hat{\Delta}_{ \pm}} \Gamma_{0}\right\|_{L_{t \in I}^{1} \mathscr{H}_{\xi}^{\alpha}} \\
& =\sum_{k=1}^{\infty} \xi^{k^{2}}\left\|B_{k+1} e^{i t \Delta_{ \pm}^{(k+1)}} \gamma_{0}^{(k+1)}\right\|_{L_{t \in I}^{1} \mathrm{H}_{k}^{\alpha}} \\
& \leq \sum_{k=1}^{\infty} \xi^{k^{2}} A k \sqrt{T}\left\|\gamma_{0}^{(k+1)}\right\|_{\mathrm{H}_{k+1}^{\alpha}} \tag{30}\\
& \quad \leq A \sqrt{T} \sup _{k \geq 1}\left\{k \xi^{1-2 k}\right\} \sum_{k=1}^{\infty} \xi^{k^{2}}\left\|\gamma_{0}^{(k)}\right\|_{\mathrm{H}_{k}^{\alpha}} \\
& \quad=A C_{\xi} \sqrt{T}\left\|\Gamma_{0}\right\|_{\mathscr{H}_{\xi}^{\alpha}}
\end{align*}
$$

where the notation C_{ξ} was defined in (18).

Similarly, for the second term in the right hand of equation (29), we have

$$
\begin{aligned}
& \left\|\int_{0}^{t} d s B_{k+1} e^{i(t-s) \Delta_{ \pm}^{(k+1)}} \Xi^{(k+1)}(s)\right\|_{L_{t \in I}^{1} \mathrm{H}_{k}^{\alpha}} \\
& \leq \sum_{l=1}^{k} \int_{0}^{T} d s \| B_{l, k+1} e^{i(t-s) \Delta_{ \pm}^{(k+1)} \Xi^{(k+1)}(s) \|_{L_{t \in I}^{1} \mathrm{H}_{k}^{\alpha}}} \\
& \leq \sum_{l=1}^{k} \int_{0}^{T} d s \sqrt{T} \| B_{l, k+1} e^{i(t-s) \Delta_{ \pm}^{(k+1)} \Xi^{(k+1)}(s) \|_{L_{t \in I}^{\alpha} H_{k}^{\alpha}}} \\
& \leq \sum_{l=1}^{k} \int_{0}^{T} d s \sqrt{T} A\left\|\Xi^{(k+1)}(s)\right\|_{H_{k+1}^{\alpha}} \\
& \quad=A k \sqrt{T}\left\|\Xi^{(k+1)}(t)\right\|_{L_{t \in I}^{1} \mathrm{I}_{k+1}^{\alpha}} .
\end{aligned}
$$

Therefore,

$$
\begin{align*}
& \left\|\int_{0}^{t} d s \hat{B} e^{i(t-s) \hat{\Delta}_{ \pm}} \Xi(s)\right\|_{L_{t \in I}^{1}} \mathscr{e}_{\xi}^{\alpha} \\
& \quad=\sum_{k=1}^{\infty} \xi^{k^{2}}\left\|\int_{0}^{t} d s B_{k+1} e^{i(t-s) \Delta_{ \pm}^{(k+1)}} \Xi^{(k+1)}(s)\right\|_{L_{t \in I}^{1} \mathrm{H}_{k}^{\alpha}} \\
& \quad \leq \sum_{k=1}^{\infty} \xi^{k^{2}} A k \sqrt{T}\left\|\Xi^{(k+1)}(t)\right\|_{L_{t \in I}^{1} \mathrm{H}_{k+1}^{\alpha}} \tag{31}\\
& \quad \leq A \sqrt{T} \sup _{k \geq 1}\left\{k \xi^{1-2 k}\right\} \sum_{k=1}^{\infty} \xi^{k^{2}}\left\|\Xi^{(k+1)}(t)\right\|_{L_{t \in I}^{1} \mathrm{H}_{k+1}^{\alpha}} \\
& \quad=A C_{\xi} \sqrt{T}\|\Xi\|_{L_{t \in I}^{1}} \mathscr{H}_{\xi}^{\alpha} .
\end{align*}
$$

Combing (30) with (31), we deduce that

$$
\begin{equation*}
\|\Phi(\Xi)\|_{L_{t \in I}^{1} \mathscr{H}_{\xi}^{\alpha}} \leq A C_{\xi} \sqrt{T}\left[\left\|\Gamma_{0}\right\|_{\mathscr{H}_{\xi}^{\alpha}}+\|\Xi\|_{L_{t \in I}^{1} \mathscr{H}_{\xi}^{\alpha}}\right] \tag{32}
\end{equation*}
$$

where $\mu= \pm 1$ was used. It implies that the mapping

$$
\begin{equation*}
\Phi: L_{t \in I}^{1} \mathscr{H}_{\xi}^{\alpha} \mapsto L_{t \in I}^{1} \mathscr{H}_{\xi}^{\alpha} \tag{33}
\end{equation*}
$$

is well defined. And by the inequality (31), we obtain

$$
\begin{equation*}
\left\|\Phi\left(\Xi_{1}\right)-\Phi\left(\Xi_{2}\right)\right\|_{L_{t \in I}^{1} \mathscr{\mathscr { H }}} \leq A C_{\xi} \sqrt{T}\left\|\Xi_{1}-\Xi_{2}\right\|_{L_{t \in I}^{1} \mathscr{\mathscr { H }} \mathscr{\xi}_{\xi}^{\alpha}} \tag{34}
\end{equation*}
$$

for any $T>0$. Now We choose $T=\frac{1}{4\left(A C_{\xi}\right)^{2}}$, then by (34) the following inequality

$$
\begin{equation*}
\left\|\Phi\left(\Xi_{1}\right)-\Phi\left(\Xi_{2}\right)\right\|_{L_{t \in I}^{1} \mathscr{H} \mathscr{H}_{\xi}^{\alpha}} \leq \frac{1}{2}\left\|\Xi_{1}-\Xi_{2}\right\|_{L_{t \in I}^{1} \mathscr{H}_{\xi}^{\alpha}} \tag{35}
\end{equation*}
$$

holds for all $\Xi_{1}, \Xi_{2} \in L_{t \in I}^{1} \mathscr{H}_{\xi}^{\alpha}$. It concludes that Φ is a contraction mapping on $L_{t \in I}^{1} \mathscr{H}_{\xi}^{\alpha}$. By Banach fixed point theorem there exists a unique $\Xi \in L_{t \in I}^{1} \mathscr{H}_{\xi}^{\alpha}$ such that

$$
\begin{equation*}
\Xi=\Phi(\Xi) \tag{36}
\end{equation*}
$$

Consequently, there exists a unique solution Ξ of (16) in $L_{t \in I}^{1} \mathscr{H}_{\xi}^{\alpha}$. In addition, the following estimate

$$
\begin{equation*}
\|\Xi\|_{L_{t \in I}^{1} \mathscr{H}_{\xi}^{\alpha}} \leq A C_{\xi} \sqrt{T}\left[\left\|\Gamma_{0}\right\|_{\mathscr{H}_{\xi}^{\alpha}}+\|\Xi\|_{L_{t \in I}^{1} \mathscr{H}_{\xi}^{\alpha}}\right] \tag{37}
\end{equation*}
$$

holds because of (32) and (36). By the choice of T, (37) implies that the inequality (19) holds.
(ii) Following [2], we define

$$
\begin{equation*}
\Gamma(t):=e^{i t \hat{\Delta}_{ \pm}} \Gamma_{0}-i \mu \int_{0}^{t} d s e^{i(t-s) \hat{\Delta}_{ \pm}} \Xi(s) \tag{38}
\end{equation*}
$$

where Ξ is the unique solution of (16) in $L_{t \in I}^{1} \mathscr{H}_{\xi}^{\alpha}$. Then,

$$
\begin{align*}
\|\Gamma(t)\|_{\mathscr{H}_{\xi}^{\alpha}} & \leq\left\|\Gamma_{0}\right\|_{\mathscr{H}_{\xi}^{\alpha}}+\int_{0}^{t} d s\|\Xi(s)\|_{\mathscr{H}_{\xi}^{\alpha}} \\
& \leq\left\|\Gamma_{0}\right\|_{\mathscr{H}_{\xi}^{\alpha}}+\|\Xi(t)\|_{L_{t \in I}^{1}} \mathscr{H}_{\xi}^{\alpha} \tag{39}\\
& \leq 2\left\|\Gamma_{0}\right\|_{\mathscr{H}_{\xi}^{\alpha}}
\end{align*}
$$

where we used the unitary of operator $e^{i t \hat{\Delta}_{ \pm}}$with respect to $\mathscr{H}_{\xi}^{\alpha}$ in the first inequality and the estimate (19) in last inequality. Hence, $\Gamma \in C\left(I, \mathscr{H}_{\xi}^{\alpha}\right)$ and satisfies the estimate (20). The continuity with respect to $t \in I$ follows from the fact $\left\{e^{i t \hat{\Delta}_{ \pm}}\right\}_{t \in \mathbb{R}}$ is a strongly continuous one-parameter unitary group. In fact, the first term in the right hand of equation (38) is continuous. And for the second term, we have

$$
\begin{align*}
\int_{0}^{t+\tau} & d s e^{i(t+\tau-s) \hat{\Delta}_{ \pm}} \Xi(s)-\int_{0}^{t} d s e^{i(t-s) \hat{\Delta}_{ \pm}} \Xi(s) \\
& =\int_{0}^{t+\tau} d s\left[e^{i(t+\tau-s) \hat{\Delta}_{ \pm}}-e^{i(t-s) \hat{\Delta}_{ \pm}}\right] \Xi(s) \tag{40}\\
& +\int_{t}^{t+\tau} d s e^{i(t-s) \hat{\Delta}_{ \pm}} \Xi(s)
\end{align*}
$$

for fixed $t \in I$ and any τ such that $t+\tau \in I$. Then, the Lebesgue Dominated Convergence theorem implies that the second term in the right hand of equation (38) is continuous at t.

We note that

$$
\begin{equation*}
\hat{B} \Gamma=\hat{B} e^{i t \hat{\Delta}_{ \pm}} \Gamma_{0}-i \mu \int_{0}^{t} d s \hat{B} e^{i(t-s) \hat{\Delta}_{ \pm} \Xi(s)} \tag{41}
\end{equation*}
$$

by the definition (38). Since Ξ is the solution of the equation (16), we obtain

$$
\begin{equation*}
\hat{B} \Gamma=\hat{B} e^{i t \hat{\Delta}_{ \pm}} \Gamma_{0}-i \mu \int_{0}^{t} d s \hat{B} e^{i(t-s) \hat{\Delta}_{ \pm}} \Xi(s)=\Xi . \tag{42}
\end{equation*}
$$

That is

$$
\begin{equation*}
\hat{B} \Gamma=\Xi \tag{43}
\end{equation*}
$$

Then, inserting the equation (43) into the equation (38), we deduce

$$
\begin{equation*}
\Gamma(t)=e^{i t \hat{\Delta}_{ \pm}} \Gamma_{0}-i \mu \int_{0}^{t} d s e^{i(t-s) \hat{\Delta}_{ \pm}} \hat{B} \Gamma(s) \tag{44}
\end{equation*}
$$

It implies that $\Gamma(t)$ is a solution of the equation (15). Then the estimate (21) follows from (43) and (19).
(iii) Suppose $\Gamma_{1}(t), \Gamma_{2}(t) \in \mathscr{W}_{\xi}^{\alpha}(J)$ are two solutions to (15) with the same initial datum $\Gamma_{0} \in \mathscr{H}_{\xi}^{\alpha}$. Let $\widetilde{\Gamma}(t)=\Gamma_{1}(t)-\Gamma_{2}(t)$, then $\widetilde{\Gamma}(t)$ satisfies that

$$
\begin{equation*}
\widetilde{\Gamma}(t)=-i \mu \int_{0}^{t} e^{i(t-s) \hat{\Delta}_{ \pm}} \hat{B} \widetilde{\Gamma}(s) d s \tag{45}
\end{equation*}
$$

and

$$
\begin{equation*}
\hat{B} \widetilde{\Gamma}(t) \in L_{t \in J}^{1} \mathscr{H}_{\xi}^{\alpha} \tag{46}
\end{equation*}
$$

Next, we will prove that $\widetilde{\Gamma}(t)=0$ in any compact interval $\left[T_{1}, T_{2}\right] \subset J$ with $T_{1}<0<T_{2}$. Set

$$
\begin{equation*}
T^{*}=\sup \left\{0 \leq t \leq T_{2} \mid \widetilde{\Gamma}(s)=0, s \in[0, t]\right\} \tag{47}
\end{equation*}
$$

If $T^{*}<T_{2}$, then by translation $s \rightarrow T^{*}+s$ we obtain the equation

$$
\begin{equation*}
\widetilde{\Gamma}\left(T^{*}+\tau\right)=-i \mu \int_{0}^{\tau} e^{i(\tau-s) \hat{\Delta}_{ \pm}} \hat{B} \widetilde{\Gamma}\left(T^{*}+s\right) d s \tag{48}
\end{equation*}
$$

for any $\tau \in\left(0, T_{2}-T^{*}\right)$. We note that

$$
\begin{equation*}
\hat{B} \widetilde{\Gamma}\left(T^{*}+\tau\right)=-i \mu \int_{0}^{\tau} \hat{B} e^{i(\tau-s) \hat{\Delta}_{ \pm}} \hat{B} \widetilde{\Gamma}\left(T^{*}+s\right) d s \tag{49}
\end{equation*}
$$

and

$$
\begin{equation*}
\hat{B} \widetilde{\Gamma}\left(T^{*}+\tau\right) \in L_{\tau \in\left[0, T_{2}-T^{*}\right]}^{1} \mathscr{H}_{\xi}^{\alpha} \tag{50}
\end{equation*}
$$

Then, the uniqueness result in the part (i) of theorem 2.2 implies that

$$
\begin{equation*}
\hat{B} \widetilde{\Gamma}\left(T^{*}+\tau\right)=0, \quad \text { a.e. } \tau \in(0, \tilde{T}) \tag{51}
\end{equation*}
$$

where $\tilde{T}=\min \left\{\frac{1}{4\left(A C_{\xi}\right)^{2}}, T_{2}-T^{*}\right\}$. Inserting the equation (51) into (48) results $\widetilde{\Gamma}(t)=0$ for all $t \in\left[0, T^{*}+\tilde{T}\right]$. It is contradictive to the definition of T^{*}. Thus, $T^{*}=T_{2}$. It concludes that $\Gamma_{1}(t)=\Gamma_{2}(t)$ for all $t \in\left[0, T_{2}\right]$. Similarly, we can prove that $\Gamma_{1}(t)=\Gamma_{2}(t)$ for all $t \in\left[T_{1}, 0\right]$. Consequently, we prove that $\Gamma_{1}(t)=\Gamma_{2}(t)$ for any compact interval $\left[T_{1}, T_{2}\right] \subset J$ with $T_{1}<0<T_{2}$. It implies that $\Gamma_{1}(t)=\Gamma_{2}(t)$ in the interval J. It completes the proof.

3.3 The proof of theorem 2.3

Proof. We will construct a solution by using the theorem 2.2 again and again. Let $\Xi_{1}(t):=\Xi(t)$ and $\Gamma_{1}(t):=\Gamma(t), t \in[0, T]$, where $\Xi(t), \Gamma(t)$ are from the theorem 2.2. And set $I_{j}=[(j-1) T, j T], j=1,2, \cdots$. Now we consider the following equations:

$$
\begin{equation*}
\Xi_{j}(t)=\hat{B} e^{i(t-(j-1) T) \hat{\Delta}_{ \pm}} \Gamma_{j-1}((j-1) T)-i \mu \int_{(j-1) T}^{t} d s \hat{B} e^{i(t-s) \hat{\Delta}_{ \pm}} \Xi_{j}(s) \tag{52}
\end{equation*}
$$

and

$$
\begin{equation*}
\Gamma_{j}(t)=e^{i(t-(j-1) T) \hat{\Delta}_{ \pm}} \Gamma_{j-1}((j-1) T)-i \mu \int_{(j-1) T}^{t} d s e^{i(t-s) \hat{\Delta}_{ \pm}} \hat{B} \Gamma_{j}(s) \tag{53}
\end{equation*}
$$

for $t \in I_{j}$. We note that the equations above for $j=1$ are exact the equations (16) and (15). Applying the part (ii) of the theorem 2.2, $\Gamma_{1}(t)=\Gamma(t) \in$ $C\left(I_{1}, \mathscr{H}_{\xi}^{\alpha}\right)$. Then, $\Gamma_{1}(T) \in \mathscr{H}_{\xi}^{\alpha}$ makes sense. Next, we solve the equation (52) for $j=2$ by using the theorem 2.2. Then, we can construct a solution $\Gamma_{2}(t) \in C\left(I_{2}, \mathscr{H}_{\xi}^{\alpha}\right)$ to the equation (53) for $j=2$ just as do the part (ii) of the theorem 2.2. In addition, the following estimates

$$
\begin{equation*}
\left\|\Gamma_{2}\right\|_{C\left(I_{2}, \mathscr{H}_{\xi}^{\alpha}\right)} \leq 2 \Gamma(T)\left\|_{\mathscr{H}_{\xi}^{\alpha}} \leq 2^{2}\right\| \Gamma_{0} \|_{\mathscr{H}_{\xi}^{\alpha}} \tag{54}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|\hat{B} \Gamma_{2}(t)\right\|_{L_{t \in I_{2}}^{1} \mathscr{H}_{\xi}^{\alpha}} \leq\|\Gamma(T)\|_{\mathscr{H}_{\xi}^{\alpha}} \leq 2\left\|\Gamma_{0}\right\|_{\mathscr{H}_{\xi}^{\alpha}} \tag{55}
\end{equation*}
$$

hold. By the mathematical induction, we deduce that

$$
\begin{equation*}
\Gamma_{j}(t) \in C\left(I_{j}, \mathscr{H}_{\xi}^{\alpha}\right), \Gamma_{j}((j-1) T)=\Gamma_{j-1}((j-1) T) \tag{56}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|\Gamma_{j}\right\|_{C\left(I_{j}, \mathscr{H}_{\xi}^{\alpha}\right)} \leq 2^{j}\left\|\Gamma_{0}\right\|_{\mathscr{H}_{\xi}^{\alpha}} \tag{57}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|\hat{B} \Gamma_{j}(t)\right\|_{L_{t \in I_{j}}^{1} \mathscr{H}_{\xi}^{\alpha}} \leq 2^{j-1}\left\|\Gamma_{0}\right\|_{\mathscr{H}_{\xi}^{\alpha}} . \tag{58}
\end{equation*}
$$

Now, we extend the domain of $\Gamma(t)$ to (T, ∞) such that

$$
\begin{equation*}
\Gamma(t)=\Gamma_{j}(t), t \in I_{j}, j=2, \ldots \tag{59}
\end{equation*}
$$

This definition makes sense because of (56). Then, $\Gamma \in C\left([0, \infty), \mathscr{H}_{\xi}^{\alpha}\right)$ is a solution to the GP hierarchy (15). In fact, suppose that

$$
\begin{equation*}
\Gamma(t)=e^{i t \hat{\Delta}_{ \pm}} \Gamma_{0}-i \mu \int_{0}^{t} d s e^{i(t-s) \hat{\Delta}_{ \pm}} \hat{B} \Gamma(s), t \in[0,(j-1) T] \tag{60}
\end{equation*}
$$

then (53) and (60) imply that for $t \in I_{j}$

$$
\begin{align*}
\Gamma(t)= & e^{i(t-(j-1) T) \hat{\Delta}_{ \pm}} \Gamma((j-1) T)-i \mu \int_{(j-1) T}^{t} d s e^{i(t-s) \hat{\Delta}_{ \pm}} \hat{B} \Gamma(s) \\
= & e^{i(t-(j-1) T) \hat{\Delta}_{ \pm}}\left[e^{i(j-1) T \hat{\Delta}_{ \pm}} \Gamma_{0}-i \mu \int_{0}^{(j-1) T} d s e^{i((j-1) T-s) \hat{\Delta}_{ \pm}} \hat{B} \Gamma(s)\right] \tag{61}\\
& -i \mu \int_{(j-1) T}^{t} d s e^{i(t-s) \hat{\Delta}_{ \pm}} \hat{B} \Gamma(s) \\
= & e^{i t \hat{\Delta}_{ \pm}} \Gamma_{0}-i \mu \int_{0}^{t} d s e^{i(t-s) \hat{\Delta}_{ \pm}} \hat{B} \Gamma(s) .
\end{align*}
$$

Consequently, mathematical induction implies that Γ is a solution to the GP hierarchy (15) on $[0, \infty)$. Further more, the estimates (23) and (24) are from (57) and (58). Similarly, we can deal with GP hierarchy (15) for $t \in(-\infty, 0)$. Finally, the uniqueness property of the solution follows from the part (iii) of the theorem 2.2 under the assumptions that the solutions belong to the spaces $\mathscr{W}_{\xi}^{\alpha}(J)$. It completes the proof.

ACKNOWLEDGEMENTS. C.Liu is partially supported by NSFC grants (11101171,11071095) and Hubei Key Laboratory of Mathematical Sciences.

References

[1] V. Bach, T. Chen, J. Fröhlich, and I. M. Sigal, Smooth Feshbach map and operator-theoretic renormalization group methods, J. Funct. Anal. 203 (1), 44-92 (2003).
[2] T.Chen and N.Pavlović, On the Cauchy problem for focusing and defocusing Gross-Pitaevskii hierarchies, Discrete Contin. Dyn. Syst. 27 (2), 715-739 (2010).
[3] T.Chen and N.Pavlović, A new proof of existence of solutions for focusing and defocusing Groos-Pitaevskii hierarchies, Pro.Amer.Math.Soc.,141,279-293,(2013).
[4] T. Chen and N. Pavlovic, The quintic NLS as the mean field limit of a Boson gas with three-body interactions, J. Funct. Anal. 260 (4), 959-997 (2011).
[5] Z. Chen and C. Liu, On the Cauchy problem for Gross-Pitaevskii hierarchies, J. Math. Phys. 52, 032103 (2011).
[6] F.Dalfovo, S.Giorgini, L.P.Pitaevskii, and S.Stringari, Theory of BoseEinstein condensation in trapped gases, Rev. Mod. Phys. 71, 463-512 (1999).
[7] A.Elgart, L.Erdös, B.Schlein, and H.T.Yau, Gross-Pitaevskii equation as the mean field limit of weakly coupled bosons, Arch. Rat. Mech. Anal. 179(2), 265-283 (2006).
[8] L.Erdös, B.Schlein, and H.T.Yau, Derivation of the Gross-Pitaevskii hierarchy for the dynamics of Bose-Einstein condensate, Commun. Pure Appl. Math. 59(12), 1659-1741 (2006).
[9] L.Erdös, B.Schlein, and H.T.Yau, Derivation of the cubic non-linear Schrödinger equation from quantum dynamics of many-body systems, Invent. Math. 167, 515-614 (2007).
[10] L.Erdös, B.Schlein, and H.T.Yau, Derivation of the Gross-Pitaevskii equation for the dynamics of Bose-Einstein condensate, Ann. Math.,170,291370(2010).
[11] L.Erdös, B.Schlein, and H.T.Yau, Rigorous derivation of the GrossPitaevskii equation, Phys.Rev.Lett. 98, 040404 (2007).
[12] L.Erdös and H.T.Yau, Derivation of the nonlinear Schrödinger equation from a many body Coulomb system, Adv. Theor. Math. Phys. 5(6), 11691205 (2001).
[13] E.P.Gross, Structure of a quantized vortex in boson systems, Nuovo Cimento 20, 454-466 (1961).
[14] E.P.Gross, Hydrodynamics of a superfluid condensate, J.Math. Phys. 4, 195-207 (1963).
[15] S.Klainerman and M.Machedon, On the uniqueness of solutions to the Gross-Pitaevskii hierarchy, Commun.Math.Phys. 279, 169-185 (2008).
[16] E.H.Lieb and R.Seiringer, Proof of Bose-Einstein condensation for dilute trapped gases, Phys. Rev. Lett. 88, 170409 (2002).
[17] E.H.Lieb, R.Seiringer, and J.Yngvason, Bosons in a trap: A rigorous derivation of the Gross-Pitaevskii energy functional, Phys. Rev. A 61, 043602 (2000).
[18] E.H.Lieb, R.Seiringer, and J.Yngvason, A rigorous derivation of the Gross-Pitaevskii energy functional for a two-dimensional Bose gas, Commun. Math. Phys. 224, 17-31 (2001).
[19] L.P.Pitaevskii, Vortex lines in an imperfect Bose gas, Sov. Phys. JETP 13, 451-454 (1961).
[20] K.Taliferro and T.Chen, Positive Semidefiniteness and Global Well-Posedness of Solutions to the Gross-Pitaevskii Hierarchy, http://arxiv.org/abs/1305.1404

Received: June, 2014

