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Abstract

The purpose of this paper is to establish the global well-posedness of
solutions to Gross-Pitaevskii (GP) infinite linear hierarchy of equations
on Rn, n ≥ 1. More precisely, by introducing a suitable solution space
H α
ξ with ξ > 1 we prove that there exists a unique global solution to

the GP hierarchy. In particular, the solution can belong to the space
that of the initial data. In this respect, it is new.
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1 Introduction

In the present paper, we investigate the global well-posedness of solutions to
Gross-Pitaevskii (GP) infinite linear hierarchy of equations on Rn, n ≥ 1,
with focusing and defocusing interaction. Motivated by recent experimental
realizations of Bose-Einstein condensation the theory of dilute, inhomogeneous
Bose systems is currently a subject of intensive studies in physics (see [6, 16,
17, 18]). It is well known that the dynamics of Bose-Einstein condensates
are well described by the Gross-Pitaevskii equation (see [13, 14, 19]). On a
rigorous derivation of this equation from the basic many-body Schrödinger
equation we refer to [4, 7, 8, 9, 10, 11, 12] and the reference therein. In their
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program an important step is to prove uniqueness to the GP hierarchy(see
[9, 15]). Recently, T.Chen and N.Pavlović started to investigate the Cauchy
problem for the GP hierarchy, using a Picard-type fixed point argument(see
[2]). Later, They presented a new proof in which the approximate solution
sequence are produced by truncating the initial data, for detail we refer to [3].
By careful verifying, we find that the contraction mapping in [2] seems wrong.
In order to use the Banach fixed-point theorem, we must modify the solution
space which was introduced in [2]. In the modified solution space, H α

ξ , we
will prove global existence and uniqueness of solutions in spaces H α

ξ by the
Banach fixed point theorem. We note that the initial data and solutions given
by the local theory don’t belong to the same space(see [2, 3, 5]). But, the
GP hierarchy can be solved in the modified space such that the solution and
initial data belong to the same space. Incidentally, for a very recent work on
the global analysis of GP hierarchy we refer to [20].

As follows, we denote by x a general variable in Rn and by x = (x1, · · · , xN)
a point in RNn. We will also use the notation xk = (x1, . . . , xk) ∈ Rkn. For a
function f on Rkn we let

(Θσf)(x1, . . . , xk) = f(xσ(1), . . . , xσ(k))

for any permutation σ ∈ Πk (Πk denotes the set of permutations on k ele-
ments). Then, each Θσ is a unitary operator on L2(Rkn). A bounded operator
A on L2(Rkn) is called k-partite symmetric or simply symmetric if

ΘσAΘσ−1 = A (1)

for every σ ∈ Πk. Evidently, a density operator γ(k) on L2(Rkn) (i.e., γ(k) ≥ 0
and trγ(k) = 1) with the kernel function γ(k)(xk; x

′
k) is k-partite symmetric if

and only if

γ(k)(x1, . . . , xk;x
′
1, . . . , x

′
k) = γ(k)(xσ(1), . . . , xσ(k);x

′
σ(1), . . . , x

′
σ(k))

for any σ ∈ Πk.
Also, we set

L2
s(Rkn) =

{
f ∈ L2(Rkn) : Θσf = f, ∀σ ∈ Πk

}
,

equipped with the inner product of L2(Rkn). Clearly, L2
s(Rkn) is a Hilbert

subspace of L2(Rkn). It is easy to check that any k-partite symmetric operator
on L2(Rkn) preserves L2

s(Rkn).

Definition 1.1. Given n ≥ 1, the n-dimensional Gross-Pitaevskii (GP)
hierarchy refers to a sequence {γ(k)(t)}k≥1 of k-partite symmetric density op-
erators on L2(Rkn), where t ≥ 0, which satisfy the Gross-Pitaevskii infinite
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linear hierarchy of equations,

i∂tγ
(k)(t) =

[
−∆(k), γ(k)(t)

]
+ µBk+1γ

(k+1)(t), ∆(k) =
k∑
j=1

∆xj , µ = ±1, (2)

with initial conditions

γ(k)(0) = γ
(k)
0 , k = 1, 2, . . . .

Here, ∆xj refers to the usual Laplace operator with respect to the variables
xj ∈ Rn and the operator Bk+1 is defined by

Bk+1γ
(k+1) =

k∑
j=1

trk+1

[
δ(xj − xk+1), γ(k+1)

]
where the notation trk+1 indicates that the trace is taken over the (k + 1)-th
variable.

As in [2], we refer to (2) as the cubic GP hierarchy. For µ = 1 or µ = −1
we refer to the corresponding GP hierarchies as being defocusing or focusing,
respectively. We note that the cubic GP hierarchy accounts for two-body
interactions between the Bose particles (e.g., see [6, 11] and references therein
for details).

Remark 1.1. In terms of the kernel functions γ(k)(t,xk; x
′
k), we can rewrite

(2) as follows:(
i∂t +4(k)

±

)
γ(k)(t,xk; x

′
k) = µ

[
Bk+1γ

(k+1)(t)
]

(xk; x
′
k), (3)

where 4(k)
± =

∑k
j=1(∆xj −∆x′j

), with initial conditions

γ(k)(0,xk; x
′
k) = γ

(k)
0 (xk; x

′
k), k = 1, 2, . . . .

In particular, the action of Bk+1 on density operators with smooth kernel func-
tions, γ(k+1)(xk+1; x′k+1)
∈ S(R(k+1)n × R(k+1)n), is given by

Bk+1 :=
k∑
j=1

Bj,k+1 (4)

and

Bj,k+1γ
(k+1)(xk; x

′
k) =

∫
dxk+1dx

′
k+1γ

(k+1)(xk, xk+1; x′k, x
′
k+1)

× δ(x′k+1 − xk+1)
[
δ(xj − xk+1)− δ(x′j − xk+1)

]
.

(5)

The action of Bk+1 can be extended to generic density operators.
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Remark 1.2. Let ϕ0 ∈ H1(Rn), then one can easily verify that a particular
solution to (3) with initial conditions

γ
(k)
0 (xk; x

′
k) =

k∏
j=1

ϕ0(xj)ϕ0(x′j), k = 1, 2, . . . ,

is given by

γ(k)(t,xk; x
′
k) =

k∏
j=1

ϕ(t, xj)ϕ(t, x′j), k = 1, 2, . . . ,

where ϕ(t, x) satisfies the cubic non-linear Schrödinger equation

i∂tϕ = −∆ϕ+ µ|ϕ|2ϕ, ϕ(0, ·) = ϕ0, (6)

which is defocusing if µ = 1, and focusing if µ = −1.

The GP hierarchy (2) can be written in the integral form

γ(k)(t) = eit∆
(k)
± γ

(k)
0 − iµ

∫ t

0

ds ei(t−s)∆
(k)
± Bk+1γ

(k+1)(s), k = 1, 2, . . . . (7)

is given by

γ(k)(t,xk; x
′
k) =

k∏
j=1

ϕ(t, xj)ϕ(t, x′j), k = 1, 2, . . . ,

where ϕ(t, x) satisfies the cubic non-linear Schrödinger equation

i∂tϕ = −∆ϕ+ µ|ϕ|2ϕ, ϕ(0, ·) = ϕ0, (8)

which is defocusing if µ = 1, and focusing if µ = −1.
The GP hierarchy (2) can be written in the integral form

γ(k)(t) = eit∆
(k)
± γ

(k)
0 − iµ

∫ t

0

ds ei(t−s)∆
(k)
± Bk+1γ

(k+1)(s), k = 1, 2, . . . . (9)

2 Main Results

These are the main results of the paper.
In order to state our main results, we require some more notation. We will

use γ(k), ρ(k) for denoting either (density) operators or kernel functions. For
k ≥ 1 and α > 0, we denote by Hα

k = Hα(Rkn × Rkn) the space of measurable
functions γ(k) = γ(k)(xk,x

′
k) in L2(Rkn × Rkn) such that

‖γ(k)‖Hαk
:= ‖S(k,α)γ(k)‖L2(Rkn×Rkn) <∞,
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where

S(k,α) :=
k∏
j=1

[
(1−∆xj)

α
2 (1−∆x′j

)
α
2

]
.

Evidently, Hα
k is a Hilbert space with the inner product

〈γ(k), ρ(k)〉 :=
〈
S(k,α)γ(k), S(k,α)ρ(k)

〉
L2(Rkn×Rkn)

.

Moreover, the norm ‖ · ‖Hαk
is invariance under the action of eit∆

(k)
± , that is,

‖eit∆
(k)
± γ(k)‖Hαk

= ‖γ(k)‖Hαk

because eit∆
(k)
± commutates with ∆xj for any j.

Given ξ > 0 and α > 0, we define

H α
ξ =

{
Γ = {γ(k)}k≥1 ∈

∞⊕
k=1

Hα
k : ‖Γ‖H α

ξ
:=

∞∑
k=1

ξk
2‖γ(k)‖Hαk

<∞

}
. (10)

Evidently, H α
ξ is a Banach space equipped with the norm ‖ · ‖H α

ξ
. We remark

that the following space

Hα
ξ =

{
Γ = {γ(k)}k≥1 ∈

∞⊕
k=1

Hα
k : ‖Γ‖Hαξ :=

∞∑
k=1

ξk‖γ(k)‖Hαk
<∞

}
. (11)

is introduced in [2]. And spaces which are similar to (11) are used in the
isospectral renormalization group analysis of spectral problems in quantum
field theory (see [1]).

Definition 2.1. For T > 0, Γ(t) = {γ(k)(t)}k≥1 ∈ C([0, T ],H α
ξ ) is said to

be a local (mild) solution to the GP hierarchy (2) if for every k = 1, 2, . . . ,

γ(k)(t) = eit∆
(k)
± γ

(k)
0 − iµ

∫ t

0

ds ei(t−s)∆
(k)
± Bk+1γ

(k+1)(s), ∀t ∈ [0, T ],

holds in Hα
k .

In order to write the equations above in a more compact form, we introduce
the notation below [2]. Set

∆̂±Γ :=
{

∆
(k)
± γk

}
k≥1

(12)

and
B̂Γ :=

{
Bk+1γ

k+1
}
k≥1

. (13)
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Then, the GP hierarchy can be rewritten as(
i∂t + ∆̂±

)
Γ = µB̂Γ. (14)

Also, it can be rewritten as in the integral form

Γ(t) = eit∆̂±Γ0 − iµ
∫ t

0

dsei(t−s)∆̂±B̂Γ(s). (15)

Following [2], in order to solve the equation (15) we also deal with the auxiliary
equation

Ξ(t) = B̂eit∆̂±Γ0 − iµ
∫ t

0

dsB̂ei(t−s)∆̂±Ξ(s). (16)

Let R(n) denote the set below

R(n) =


(1

2
,∞), n = 1,

(n−1
2
,∞), n = 2, n > 4,

[1,∞), n = 3,
(17)

where the set R(n) was first introduced in [2]. And let

Cξ := sup
k≥1
{kξ1−2k} <∞, (18)

for any ξ > 1. It is time to state our main results. They are the following two
theorems.

Theorem 2.2 (local solution). Assume that α ∈ R(n) and ξ > 1. Let

T = 1
4(ACξ)2

and I = [0, T ]. Suppose Γ0 = {γ(k)
0 }k≥1 ∈ H α

ξ . Then, the

following hold.

(i) There exists a unique solution Ξ(t) ∈ L1
t∈IH

α
ξ ) to the system(16). More-

over, the following estimate

‖Ξ(t)‖L1
t∈IH

α
ξ
≤ ‖Γ0‖H α

ξ
(19)

holds.

(ii) There exists a solution Γ(t) ∈ C(I,H α
ξ ) to the system(15) with the initial

data Γ0. In particular, this solution has the property that

‖Γ(t)‖C(I,H α
ξ ) ≤ 2‖Γ0‖H α

ξ
(20)

and
‖B̂Γ(t)‖L1

t∈IH
α
ξ
≤ ‖Γ0‖H α

ξ
. (21)
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(iii) For any interval J with 0 ∈ J , in the space

W α
ξ (J) :=

{
Γ(t) ∈ C(J,H α

ξ ) : B̂Γ(t) ∈ L1
t∈JH

α
ξ

}
, (22)

there exists a unique solution to the system(15) with the initial data Γ0.

Remark 2.1. Here and there, the constant A = A(n, α) is fixed and from the
lemma 3.1.

Remark 2.2. Let λ ∈ (0, 1√
ξ
) be a constant, and set

γ
(k)
0 (xk; x

′
k) :=

k∏
j=1

ϕk(xj)ϕk(x′j), k = 1, 2, . . . ,

with ‖ϕk‖Hαk
= λk. Then, it is easy to verify that Γ0 = {γ(k)

0 }k≥1 ∈H α
ξ .

Theorem 2.3 (global solution). Aussem that α ∈ R(n) and ξ > 1. And

suppose Γ0 = {γ(k)
0 }k≥1 ∈ H α

ξ . Then, there existence a global solution Γ ∈
C(R,H α

ξ ) to the system(15) with the initial data Γ0. Moreover, the following
estimates

‖Γ‖C(Ij ,H α
ξ ) ≤ 2jΓ0‖H α

ξ
(23)

and
‖B̂Γ(t)‖L1

t∈[0,jT ]
H α
ξ
≤ (2j − 1)‖Γ0‖H α

ξ
(24)

hold, where T was defined in theorem 2.2 and Ij = [(j− 1)T, jT ], j = 1, 2, . . . .
In addition, if two solutions to (15) with the same initial data belong to

W α
ξ (J) for all finite interval J 3 0, then the two solutions are equal.

3 Proof of Theorem 2.2

In order to prove the Theorem 2.2, we need the following estimate.

3.1 Preliminary estimate

Lemma 3.1. Suppose that α ∈ R(n). Let γ(k)(t) be the unique solution of(
i∂t + ∆

(k)
±

)
γ(k)(t) = 0 (25)

with initial condition
γ(k)(0, ·) = γ

(k)
0 ∈ Hα

k . (26)

Then, there exists a constant A = A(n, α) such that

‖Bl,k+1γ
(k+1)‖L2

t∈RHαk
≤ A‖γ(k+1)

0 ‖Hαk+1
(27)

for all l = 1, 2, . . . , k.

Proof. The lemma was proved in [2].
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3.2 The proof of Theorem 2.2

Proof. (i) Let I = [0, T ] and T > 0 to be choosed later. We defined

Φ(Ξ)(t) := B̂eit∆̂±Γ0 − iµ
∫ t

0

dsB̂ei(t−s)∆̂±Ξ(s) (28)

for any Ξ ∈ L1
t∈IH

α
ξ . In terms of components, we can rewrite it as

Φ(Ξ)(k)(t) = Bk+1e
it∆

(k+1)
± γ

(k+1)
0 − iµ

∫ t

0

dsBk+1e
i(t−s)∆(k+1)

± Ξ(k+1)(s), k ≥ 1

(29)

if Ξ(t) = {Ξ(k)(t)}k≥1 and Γ0 = {γ(k)
0 }k≥1. In order to apply Banach fixed point

theorem, we prove firstly that Φ(Ξ) ∈ L1
t∈IH

α
ξ when Ξ ∈ L1

t∈IH
α
ξ . In fact, for

any k ≥ 1, we have

‖Bk+1e
it∆

(k+1)
± γ

(k+1)
0 ‖L1

t∈IHαk

≤
k∑
l=1

‖Bl,k+1e
it∆

(k+1)
± γ

(k+1)
0 ‖L1

t∈IHαk

≤
k∑
l=1

√
T‖Bl,k+1e

it∆
(k+1)
± γ

(k+1)
0 ‖L2

t∈IHαk

≤ Ak
√
T‖γ(k+1)

0 ‖Hαk+1

where we used the Cauchy-Schwarz inequality and the lemma 3.1. Then, we
obtain the following estimate

‖B̂eit∆̂±Γ0‖L1
t∈IH

α
ξ

=
∞∑
k=1

ξk
2‖Bk+1e

it∆
(k+1)
± γ

(k+1)
0 ‖L1

t∈IHαk

≤
∞∑
k=1

ξk
2

Ak
√
T‖γ(k+1)

0 ‖Hαk+1

≤ A
√
T sup

k≥1
{kξ1−2k}

∞∑
k=1

ξk
2‖γ(k)

0 ‖Hαk

= ACξ
√
T‖Γ0‖H α

ξ

(30)

where the notation Cξ was defined in (18).
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Similarly, for the second term in the right hand of equation (29), we have

‖
∫ t

0

dsBk+1e
i(t−s)∆(k+1)

± Ξ(k+1)(s)‖L1
t∈IHαk

≤
k∑
l=1

∫ T

0

ds‖Bl,k+1e
i(t−s)∆(k+1)

± Ξ(k+1)(s)‖L1
t∈IHαk

≤
k∑
l=1

∫ T

0

ds
√
T‖Bl,k+1e

i(t−s)∆(k+1)
± Ξ(k+1)(s)‖L2

t∈IHαk

≤
k∑
l=1

∫ T

0

ds
√
TA‖Ξ(k+1)(s)‖Hαk+1

= Ak
√
T‖Ξ(k+1)(t)‖L1

t∈IHαk+1
.

Therefore,

‖
∫ t

0

dsB̂ei(t−s)∆̂±Ξ(s)‖L1
t∈IH

α
ξ

=
∞∑
k=1

ξk
2‖
∫ t

0

dsBk+1e
i(t−s)∆(k+1)

± Ξ(k+1)(s)‖L1
t∈IHαk

≤
∞∑
k=1

ξk
2

Ak
√
T‖Ξ(k+1)(t)‖L1

t∈IHαk+1

≤ A
√
T sup

k≥1
{kξ1−2k}

∞∑
k=1

ξk
2‖Ξ(k+1)(t)‖L1

t∈IHαk+1

= ACξ
√
T‖Ξ‖L1

t∈IH
α
ξ
.

(31)

Combing (30) with (31), we deduce that

‖Φ(Ξ)‖L1
t∈IH

α
ξ
≤ ACξ

√
T
[
‖Γ0‖H α

ξ
+ ‖Ξ‖L1

t∈IH
α
ξ

]
, (32)

where µ = ±1 was used. It implies that the mapping

Φ : L1
t∈IH

α
ξ 7→ L1

t∈IH
α
ξ (33)

is well defined. And by the inequality (31), we obtain

‖Φ(Ξ1)− Φ(Ξ2)‖L1
t∈IH

α
ξ
≤ ACξ

√
T‖Ξ1 − Ξ2‖L1

t∈IH
α
ξ

(34)

for any T > 0. Now We choose T = 1
4(ACξ)2

, then by (34) the following inequal-

ity

‖Φ(Ξ1)− Φ(Ξ2)‖L1
t∈IH

α
ξ
≤ 1

2
‖Ξ1 − Ξ2‖L1

t∈IH
α
ξ

(35)
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holds for all Ξ1,Ξ2 ∈ L1
t∈IH

α
ξ . It concludes that Φ is a contraction mapping

on L1
t∈IH

α
ξ . By Banach fixed point theorem there exists a unique Ξ ∈ L1

t∈IH
α
ξ

such that

Ξ = Φ(Ξ). (36)

Consequently, there exists a unique solution Ξ of (16) in L1
t∈IH

α
ξ . In addition,

the following estimate

‖Ξ‖L1
t∈IH

α
ξ
≤ ACξ

√
T
[
‖Γ0‖H α

ξ
+ ‖Ξ‖L1

t∈IH
α
ξ

]
(37)

holds because of (32) and (36). By the choice of T , (37) implies that the
inequality (19) holds.

(ii) Following [2], we define

Γ(t) := eit∆̂±Γ0 − iµ
∫ t

0

dsei(t−s)∆̂±Ξ(s) (38)

where Ξ is the unique solution of (16) in L1
t∈IH

α
ξ . Then,

‖Γ(t)‖H α
ξ
≤ ‖Γ0‖H α

ξ
+

∫ t

0

ds‖Ξ(s)‖H α
ξ

≤ ‖Γ0‖H α
ξ

+ ‖Ξ(t)‖L1
t∈IH

α
ξ

≤ 2‖Γ0‖H α
ξ

(39)

where we used the unitary of operator eit∆̂± with respect to H α
ξ in the first

inequality and the estimate (19) in last inequality. Hence, Γ ∈ C(I,H α
ξ ) and

satisfies the estimate (20). The continuity with respect to t ∈ I follows from

the fact {eit∆̂±}t∈R is a strongly continuous one-parameter unitary group. In
fact, the first term in the right hand of equation (38) is continuous. And for
the second term, we have∫ t+τ

0

dsei(t+τ−s)∆̂±Ξ(s)−
∫ t

0

dsei(t−s)∆̂±Ξ(s)

=

∫ t+τ

0

ds
[
ei(t+τ−s)∆̂± − ei(t−s)∆̂±

]
Ξ(s)

+

∫ t+τ

t

dsei(t−s)∆̂±Ξ(s)

(40)

for fixed t ∈ I and any τ such that t + τ ∈ I. Then, the Lebesgue Domi-
nated Convergence theorem implies that the second term in the right hand of
equation (38) is continuous at t.
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We note that

B̂Γ = B̂eit∆̂±Γ0 − iµ
∫ t

0

dsB̂ei(t−s)∆̂±Ξ(s) (41)

by the definition (38). Since Ξ is the solution of the equation (16), we obtain

B̂Γ = B̂eit∆̂±Γ0 − iµ
∫ t

0

dsB̂ei(t−s)∆̂±Ξ(s) = Ξ. (42)

That is
B̂Γ = Ξ. (43)

Then, inserting the equation (43) into the equation (38), we deduce

Γ(t) = eit∆̂±Γ0 − iµ
∫ t

0

dsei(t−s)∆̂±B̂Γ(s). (44)

It implies that Γ(t) is a solution of the equation (15). Then the estimate (21)
follows from (43) and (19).

(iii) Suppose Γ1(t),Γ2(t) ∈ W α
ξ (J) are two solutions to (15) with the same

initial datum Γ0 ∈H α
ξ . Let Γ̃(t) = Γ1(t)− Γ2(t), then Γ̃(t) satisfies that

Γ̃(t) = −iµ
∫ t

0

ei(t−s)∆̂±B̂Γ̃(s)ds (45)

and
B̂Γ̃(t) ∈ L1

t∈JH
α
ξ (46)

Next, we will prove that Γ̃(t) = 0 in any compact interval [T1, T2] ⊂ J with
T1 < 0 < T2. Set

T ∗ = sup
{

0 ≤ t ≤ T2|Γ̃(s) = 0, s ∈ [0, t]
}
. (47)

If T ∗ < T2, then by translation s→ T ∗ + s we obtain the equation

Γ̃(T ∗ + τ) = −iµ
∫ τ

0

ei(τ−s)∆̂±B̂Γ̃(T ∗ + s)ds (48)

for any τ ∈ (0, T2 − T ∗). We note that

B̂Γ̃(T ∗ + τ) = −iµ
∫ τ

0

B̂ei(τ−s)∆̂±B̂Γ̃(T ∗ + s)ds (49)

and
B̂Γ̃(T ∗ + τ) ∈ L1

τ∈[0,T2−T ∗]H
α
ξ . (50)
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Then, the uniqueness result in the part (i) of theorem 2.2 implies that

B̂Γ̃(T ∗ + τ) = 0, a.e. τ ∈ (0, T̃ ) (51)

where T̃ = min{ 1
4(ACξ)2

, T2 − T ∗}. Inserting the equation (51) into (48) results

Γ̃(t) = 0 for all t ∈ [0, T ∗ + T̃ ]. It is contradictive to the definition of T ∗.
Thus, T ∗ = T2. It concludes that Γ1(t) = Γ2(t) for all t ∈ [0, T2]. Similarly,
we can prove that Γ1(t) = Γ2(t) for all t ∈ [T1, 0]. Consequently, we prove
that Γ1(t) = Γ2(t) for any compact interval [T1, T2] ⊂ J with T1 < 0 < T2. It
implies that Γ1(t) = Γ2(t) in the interval J . It completes the proof.

3.3 The proof of theorem 2.3

Proof. We will construct a solution by using the theorem 2.2 again and again.
Let Ξ1(t) := Ξ(t) and Γ1(t) := Γ(t), t ∈ [0, T ], where Ξ(t),Γ(t) are from the
theorem 2.2. And set Ij = [(j − 1)T, jT ], j = 1, 2, · · · . Now we consider the
following equations:

Ξj(t) = B̂ei(t−(j−1)T )∆̂±Γj−1((j − 1)T )− iµ
∫ t

(j−1)T

dsB̂ei(t−s)∆̂±Ξj(s) (52)

and

Γj(t) = ei(t−(j−1)T )∆̂±Γj−1((j − 1)T )− iµ
∫ t

(j−1)T

dsei(t−s)∆̂±B̂Γj(s) (53)

for t ∈ Ij. We note that the equations above for j = 1 are exact the equations
(16) and (15). Applying the part (ii) of the theorem 2.2, Γ1(t) = Γ(t) ∈
C(I1,H α

ξ ). Then, Γ1(T ) ∈ H α
ξ makes sense. Next, we solve the equation

(52) for j = 2 by using the theorem 2.2. Then, we can construct a solution
Γ2(t) ∈ C(I2,H α

ξ ) to the equation (53) for j = 2 just as do the part (ii) of the
theorem 2.2 . In addition, the following estimates

‖Γ2‖C(I2,H α
ξ ) ≤ 2Γ(T )‖H α

ξ
≤ 22‖Γ0‖H α

ξ
(54)

and
‖B̂Γ2(t)‖L1

t∈I2
H α
ξ
≤ ‖Γ(T )‖H α

ξ
≤ 2‖Γ0‖H α

ξ
(55)

hold. By the mathematical induction, we deduce that

Γj(t) ∈ C(Ij,H
α
ξ ), Γj((j − 1)T ) = Γj−1((j − 1)T ) (56)

and
‖Γj‖C(Ij ,H α

ξ ) ≤ 2j‖Γ0‖H α
ξ

(57)
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and
‖B̂Γj(t)‖L1

t∈Ij
H α
ξ
≤ 2j−1‖Γ0‖H α

ξ
. (58)

Now, we extend the domain of Γ(t) to (T,∞) such that

Γ(t) = Γj(t), t ∈ Ij, j = 2, . . . . (59)

This definition makes sense because of (56). Then, Γ ∈ C([0,∞),H α
ξ ) is a

solution to the GP hierarchy (15). In fact, suppose that

Γ(t) = eit∆̂±Γ0 − iµ
∫ t

0

dsei(t−s)∆̂±B̂Γ(s), t ∈ [0, (j − 1)T ] (60)

then (53) and (60) imply that for t ∈ Ij

Γ(t) = ei(t−(j−1)T )∆̂±Γ((j − 1)T )− iµ
∫ t

(j−1)T

dsei(t−s)∆̂±B̂Γ(s)

= ei(t−(j−1)T )∆̂±

[
ei(j−1)T ∆̂±Γ0 − iµ

∫ (j−1)T

0

dsei((j−1)T−s)∆̂±B̂Γ(s)

]

− iµ
∫ t

(j−1)T

dsei(t−s)∆̂±B̂Γ(s)

= eit∆̂±Γ0 − iµ
∫ t

0

dsei(t−s)∆̂±B̂Γ(s).

(61)

Consequently, mathematical induction implies that Γ is a solution to the GP
hierarchy (15) on [0,∞). Further more, the estimates (23) and (24) are from
(57) and (58). Similarly, we can deal with GP hierarchy (15) for t ∈ (−∞, 0).
Finally, the uniqueness property of the solution follows from the part (iii) of
the theorem 2.2 under the assumptions that the solutions belong to the spaces
W α
ξ (J). It completes the proof.
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