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Abstract

This paper deals with minimizers u ∈ K
(pi)
ψ,θ (Ω) of K

(pi)
ψ,θ -obstacle

problems of anisotropic functionals whose prototype is
∫

Ω
(|D1u|

p1 + |D2u|
p2 + · · ·+ |Dnu|

pn) dx.

We show that higher integrability of θ∗ = max{θ, ψ} forces minimizers
u to have higher integrability as well.
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1 Introduction and Statement of Result

Let Ω be a bounded open subset of Rn, n ≥ 2. For numbers pi > 1, i =
1, 2, · · · , n, we denote by pm and p the maximum value and the harmonic
mean of pi(i = 1, 2, · · · , n), respectively, that is,

pm = max
1≤i≤n

{pi}, p :
1

p
=

1

n

n
∑

i=1

1

pi
.
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The anisotropic Sobolev spaces W 1,(pi)(Ω) and W
1,(pi)
0 (Ω) are defined, respec-

tively, by

W 1,(pi)(Ω) =
{

v ∈ W 1,1(Ω) : Div ∈ Lpi(Ω) for every i = 1, 2, · · · , n
}

and

W
1,(pi)
0 (Ω) =

{

v ∈ W
1,1
0 (Ω) : Div ∈ Lpi(Ω) for every i = 1, 2, · · · , n

}

.

Let f : Ω× Rn → [0,+∞) be a Carathéodory function and satisfies

n
∑

i=1

|zi|
pi ≤ f(x, z) ≤ c0

n
∑

i=1

(ϕi(x) + |zi|)
pi (1.1)

for almost all x ∈ Ω and all z ∈ Rn. The conditions on the functions ϕi(x)(i =
1, 2, · · · , n) in (1.1) will be given later. Consider the integral functional

I(u; Ω) =
∫

Ω
f(x,Du(x))dx (1.2)

with the integrand f satisfies (1.1). The prototype of the integral (1.2) with
f satisfies (1.1) is

∫

Ω
(|D1u|

p1 + |D2u|
p2 + · · ·+ |Dnu|

pn) dx,

where the derivative Diu has the exponent pi that might be different from the
exponent pj of the derivative Djv when j 6= i.

Let ψ be any function in Ω with values in R ∪ {±∞}, and θ ∈ W 1,(pi)(Ω).
We introduce

K
(pi)
ψ,θ (Ω) =

{

v ∈ W 1,(pi)(Ω) : v ≥ ψ, a.e., and v − θ ∈ W
1,(pi)
0 (Ω)

}

.

Definition 1.1 By a solution to the anisotropic obstacle problem for the

functional I, we mean a function u ∈ K
(pi)
ψ,θ (Ω) such that

I(u; Ω) ≤ I(w; Ω) (1.3)

whenever w ∈ K
(pi)
ψ,θ (Ω).

Minimizers of anisotropic integral functionals seem to be useful when deal-
ing with some reinforced materials. Leonetti and Siepe obtained a global
integrability result for minimizers of anisotropic functionals in [1]. Some other
related results can be found in [2-4]. In the present paper, we consider ob-
stacle problems of anisotropic functionals, the main result of this paper is the
following theorem.
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Theorem 1.2 Let u ∈ K
(pi)
ψ,θ (Ω) be a solution to the anisotropic obstacle

problem for the functional I, θ∗ = max{θ, ψ} ∈ θ +W
1,(qi)
0 (Ω), 0 ≤ ϕi(x) ∈

Lqi(Ω) with qi > pi, i = 1, 2, · · · , n. Moreover p < n. Then

u ∈ θ∗ + Ltweak(Ω),

where

t =
p p∗

p− bp∗
> p∗

and b is any number such that

0 < b ≤ min
i=1,2,···,n

{

1−
pi

qi

}

and b <
p

p∗
. (1.4)

2 Proof of the Main Theorem

It is no loss of generality to assume θ ≥ ψ almost everywhere on ∂Ω since oth-
erwise K

(pi)
ψ,θ (Ω) will be empty. Let u ∈ K

(pi)
ψ,θ (Ω) be a solution to the anisotropic

obstacle problem for the functional I. For L ∈ (0,+∞) and a function v, let
TL(v) be the usual truncation of v at level L; that is,

TL(v) =

{

v, for |v| ≤ L,

sign(v)L, for |v| > L.

Let us consider

w = θ∗ + TL(u− θ∗) =











θ∗ + L, for u− θ∗ > L,

u, for |u− θ∗| ≤ L,

θ∗ − L, for u− θ∗ < −L.
(2.1)

Our nearest goal is to show that w ∈ K
(pi)
ψ,θ (Ω). Indeed, it is obvious that

w ∈ W 1,(pi)(Ω); in order to prove w ≥ ψ a.e., we notice that in the first case
of (2.1), w = θ∗ + L ≥ θ∗ ≥ ψ, in the second case of (2.1), w = u ≥ ψ since

u ∈ K
(pi)
ψ,θ (Ω), and in the third case of (2.1), w = θ∗ − L > u ≥ ψ; in order to

prove w−θ ∈ W
1,(pi)
0 (Ω), we notice that θ∗ = θ on ∂Ω, and then TL(u−θ∗) = 0

on ∂Ω, thus w = θ∗ = θ on ∂Ω.
(2.1) implies

Dw = (Du)1{|u−θ∗|≤L} + (Dθ∗)1{|u−θ∗|>L}, (2.2)

where 1E is the characteristic function of E, that is, 1E(x) = 1 for x ∈ E and
1E(x) = 0 for x 6∈ E. By Definition 1.1 one has

∫

Ω
f(x,Du(x))dx ≤

∫

Ω
f(x,Dw(x))dx,
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which together with (2.2) yields

(

∫

{|u−θ∗|≤L}
+
∫

{|u−θ∗|>L}

)

f(x,Du(x))dx

≤

(

∫

{|u−θ∗|≤L}
+
∫

{|u−θ∗|>L}

)

f(x,Dw(x))dx

=
∫

{|u−θ∗|≤L}
f(x,Du(x))dx+

∫

{|u−θ∗|>L}
f(x,Dθ∗(x))dx.

(2.3)

By assumption, all integrals in (2.3) are finite and we drop the integrals over
{|u− θ∗| ≤ L} from both sides of (2.3) arriving at

∫

{|u−θ∗|>L}
f(x,Du(x))dx ≤

∫

{|u−θ∗|>L}
f(x,Dθ∗(x))dx. (2.4)

Using (1.1) and (2.4), we have

∫

{|u−θ∗|>L}

n
∑

i=1

|Diu−Diθ∗|
pidx

≤ 2pm−1

(

∫

{|u−θ∗|>L}

n
∑

i=1

|Diu|
pidx+

∫

{|u−θ∗|>L}

n
∑

i=1

|Diθ∗|
pidx

)

≤ 2pm−1

(

∫

{|u−θ∗|>L}
f(x,Du(x))dx+

∫

{|u−θ∗|>L}

n
∑

i=1

|Diθ∗|
pidx

)

≤ 2pm−1

(

∫

{|u−θ∗|>L}
f(x,Dθ∗(x))dx+

∫

{|u−θ∗|>L}

n
∑

i=1

|Diθ∗|
pidx

)

≤ 2pm−1

(

c0

∫

{|u−θ∗|>L}

n
∑

i=1

(ϕi(x) + |Diθ∗|)
pi dx+

∫

{|u−θ∗|>L}

n
∑

i=1

|Diθ∗|
pidx

)

≤ 2pm−1(c0 + 1)
∫

{|u−θ∗|>L}
(ϕi(x) + |Diθ∗|)

pi dx.

(2.5)

Let

ti =
pi

1− b
,

where b be any number satisfying (1.4). This ensures

ti − pi

ti
= b

does not depend on i. Let

M = max
1≤i≤n

(

∫

{|u−θ∗|>L}
(ϕi(x) + |Diθ∗|)

ti dx

)

pi
ti

.
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(1.4) implies M is finite. Hölder inequality yields

∫

{|u−θ∗|>L}
(ϕi(x) + |Diθ∗|)

pi dx

≤

(

∫

{|u−θ∗|>L}
(ϕi(x) + |Diθ∗|)

ti dx

)

pi
ti

|{|u− θ∗| > L}|b

≤ M |{|u− θ∗| > L}|b.

(2.6)

Combining (2.5) with (2.6) yields

∫

{|u−θ∗|>L}

n
∑

i=1

|Diu−Diθ∗|
pidx ≤M |{|u− θ∗| > L}|b.

Following the idea of the proof of Theorem 2.1 in [4], we complete the proof
of Theorem 1.1.
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