Global Integrability for Minimizers of Obstacle Problems of Anisotropic Functionals

GAO Hongya

College of Mathematics and Computer Science, Hebei University, Baoding, 071002, China

CUI Yi

College of Mathematics and Computer Science, Hebei University, Baoding, 071002, China

LIANG Shuang

College of Mathematics and Computer Science, Hebei University, Baoding, 071002, China

Abstract

This paper deals with minimizers $u \in \mathcal{K}_{\psi,\theta}^{(p_i)}(\Omega)$ of $\mathcal{K}_{\psi,\theta}^{(p_i)}$ -obstacle problems of anisotropic functionals whose prototype is

$$\int_{\Omega} \left(|D_1 u|^{p_1} + |D_2 u|^{p_2} + \dots + |D_n u|^{p_n} \right) dx.$$

We show that higher integrability of $\theta_* = \max\{\theta, \psi\}$ forces minimizers u to have higher integrability as well.

Mathematics Subject Classification: 49N60, 35J60.

Keywords: Global integrability, minimizer, obstacle problem, anisotropic functional.

1 Introduction and Statement of Result

Let Ω be a bounded open subset of \mathbb{R}^n , $n \geq 2$. For numbers $p_i > 1$, $i = 1, 2, \dots, n$, we denote by p_m and \overline{p} the maximum value and the harmonic mean of $p_i (i = 1, 2, \dots, n)$, respectively, that is,

$$p_m = \max_{1 \le i \le n} \{p_i\}, \quad \overline{p} : \frac{1}{\overline{p}} = \frac{1}{n} \sum_{i=1}^n \frac{1}{p_i}.$$

The anisotropic Sobolev spaces $W^{1,(p_i)}(\Omega)$ and $W^{1,(p_i)}_0(\Omega)$ are defined, respectively, by

$$W^{1,(p_i)}(\Omega) = \left\{ v \in W^{1,1}(\Omega) : D_i v \in L^{p_i}(\Omega) \text{ for every } i = 1, 2, \cdots, n \right\}$$

and

$$W_0^{1,(p_i)}(\Omega) = \left\{ v \in W_0^{1,1}(\Omega) : D_i v \in L^{p_i}(\Omega) \text{ for every } i = 1, 2, \cdots, n \right\}.$$

Let $f: \Omega \times \mathbb{R}^n \to [0, +\infty)$ be a Carathéodory function and satisfies

$$\sum_{i=1}^{n} |z_i|^{p_i} \le f(x, z) \le c_0 \sum_{i=1}^{n} (\varphi_i(x) + |z_i|)^{p_i}$$
(1.1)

for almost all $x \in \Omega$ and all $z \in \mathbb{R}^n$. The conditions on the functions $\varphi_i(x)(i = 1, 2, \dots, n)$ in (1.1) will be given later. Consider the integral functional

$$\mathcal{I}(u;\Omega) = \int_{\Omega} f(x, Du(x)) dx$$
(1.2)

with the integrand f satisfies (1.1). The prototype of the integral (1.2) with f satisfies (1.1) is

$$\int_{\Omega} \left(|D_1 u|^{p_1} + |D_2 u|^{p_2} + \dots + |D_n u|^{p_n} \right) dx,$$

where the derivative $D_i u$ has the exponent p_i that might be different from the exponent p_j of the derivative $D_j v$ when $j \neq i$.

Let ψ be any function in Ω with values in $\mathbb{R} \cup \{\pm \infty\}$, and $\theta \in W^{1,(p_i)}(\Omega)$. We introduce

$$\mathcal{K}_{\psi,\theta}^{(p_i)}(\Omega) = \left\{ v \in W^{1,(p_i)}(\Omega) : v \ge \psi, \text{ a.e., and } v - \theta \in W_0^{1,(p_i)}(\Omega) \right\}.$$

Definition 1.1 By a solution to the anisotropic obstacle problem for the functional \mathcal{I} , we mean a function $u \in \mathcal{K}_{\psi,\theta}^{(p_i)}(\Omega)$ such that

$$\mathcal{I}(u;\Omega) \le \mathcal{I}(w;\Omega) \tag{1.3}$$

whenever $w \in \mathcal{K}_{\psi,\theta}^{(p_i)}(\Omega)$.

Minimizers of anisotropic integral functionals seem to be useful when dealing with some reinforced materials. Leonetti and Siepe obtained a global integrability result for minimizers of anisotropic functionals in [1]. Some other related results can be found in [2-4]. In the present paper, we consider obstacle problems of anisotropic functionals, the main result of this paper is the following theorem. global integrability for minimizers

Theorem 1.2 Let $u \in \mathcal{K}_{\psi,\theta}^{(p_i)}(\Omega)$ be a solution to the anisotropic obstacle problem for the functional \mathcal{I} , $\theta_* = \max\{\theta, \psi\} \in \theta + W_0^{1,(q_i)}(\Omega), \ 0 \leq \varphi_i(x) \in L^{q_i}(\Omega)$ with $q_i > p_i, \ i = 1, 2, \cdots, n$. Moreover $\overline{p} < n$. Then

$$u \in \theta_* + L^t_{weak}(\Omega),$$

where

$$t = \frac{\overline{p} \ \overline{p}^*}{\overline{p} - b\overline{p}^*} > \overline{p}^*$$

and b is any number such that

$$0 < b \le \min_{i=1,2,\cdots,n} \left\{ 1 - \frac{p_i}{q_i} \right\} \text{ and } b < \frac{\overline{p}}{\overline{p}^*}.$$

$$(1.4)$$

2 Proof of the Main Theorem

It is no loss of generality to assume $\theta \geq \psi$ almost everywhere on $\partial\Omega$ since otherwise $\mathcal{K}_{\psi,\theta}^{(p_i)}(\Omega)$ will be empty. Let $u \in \mathcal{K}_{\psi,\theta}^{(p_i)}(\Omega)$ be a solution to the anisotropic obstacle problem for the functional \mathcal{I} . For $L \in (0, +\infty)$ and a function v, let $T_L(v)$ be the usual truncation of v at level L; that is,

$$T_L(v) = \begin{cases} v, & \text{for } |v| \le L, \\ \operatorname{sign}(v)L, & \text{for } |v| > L. \end{cases}$$

Let us consider

$$w = \theta_* + T_L(u - \theta_*) = \begin{cases} \theta_* + L, & \text{for } u - \theta_* > L, \\ u, & \text{for } |u - \theta_*| \le L, \\ \theta_* - L, & \text{for } u - \theta_* < -L. \end{cases}$$
(2.1)

Our nearest goal is to show that $w \in \mathcal{K}_{\psi,\theta}^{(p_i)}(\Omega)$. Indeed, it is obvious that $w \in W^{1,(p_i)}(\Omega)$; in order to prove $w \ge \psi$ a.e., we notice that in the first case of (2.1), $w = \theta_* + L \ge \theta_* \ge \psi$, in the second case of (2.1), $w = u \ge \psi$ since $u \in \mathcal{K}_{\psi,\theta}^{(p_i)}(\Omega)$, and in the third case of (2.1), $w = \theta_* - L > u \ge \psi$; in order to prove $w - \theta \in W_0^{1,(p_i)}(\Omega)$, we notice that $\theta_* = \theta$ on $\partial\Omega$, and then $T_L(u - \theta_*) = 0$ on $\partial\Omega$, thus $w = \theta_* = \theta$ on $\partial\Omega$.

(2.1) implies

$$Dw = (Du)\mathbf{1}_{\{|u-\theta_*| \le L\}} + (D\theta_*)\mathbf{1}_{\{|u-\theta_*| > L\}},$$
(2.2)

where 1_E is the characteristic function of E, that is, $1_E(x) = 1$ for $x \in E$ and $1_E(x) = 0$ for $x \notin E$. By Definition 1.1 one has

$$\int_{\Omega} f(x, Du(x)) dx \le \int_{\Omega} f(x, Dw(x)) dx,$$

which together with (2.2) yields

$$\begin{pmatrix} \int_{\{|u-\theta_*|\leq L\}} + \int_{\{|u-\theta_*|>L\}} \end{pmatrix} f(x, Du(x)) dx \\
\leq \begin{pmatrix} \int_{\{|u-\theta_*|\leq L\}} + \int_{\{|u-\theta_*|>L\}} \end{pmatrix} f(x, Dw(x)) dx \\
= \int_{\{|u-\theta_*|\leq L\}} f(x, Du(x)) dx + \int_{\{|u-\theta_*|>L\}} f(x, D\theta_*(x)) dx.$$
(2.3)

By assumption, all integrals in (2.3) are finite and we drop the integrals over $\{|u - \theta_*| \le L\}$ from both sides of (2.3) arriving at

$$\int_{\{|u-\theta_*|>L\}} f(x, Du(x)) dx \le \int_{\{|u-\theta_*|>L\}} f(x, D\theta_*(x)) dx.$$
(2.4)

Using (1.1) and (2.4), we have

$$\int_{\{|u-\theta_{*}|>L\}} \sum_{i=1}^{n} |D_{i}u - D_{i}\theta_{*}|^{p_{i}} dx$$

$$\leq 2^{p_{m}-1} \left(\int_{\{|u-\theta_{*}|>L\}} \sum_{i=1}^{n} |D_{i}u|^{p_{i}} dx + \int_{\{|u-\theta_{*}|>L\}} \sum_{i=1}^{n} |D_{i}\theta_{*}|^{p_{i}} dx \right)$$

$$\leq 2^{p_{m}-1} \left(\int_{\{|u-\theta_{*}|>L\}} f(x, Du(x)) dx + \int_{\{|u-\theta_{*}|>L\}} \sum_{i=1}^{n} |D_{i}\theta_{*}|^{p_{i}} dx \right)$$

$$\leq 2^{p_{m}-1} \left(\int_{\{|u-\theta_{*}|>L\}} f(x, D\theta_{*}(x)) dx + \int_{\{|u-\theta_{*}|>L\}} \sum_{i=1}^{n} |D_{i}\theta_{*}|^{p_{i}} dx \right)$$

$$\leq 2^{p_{m}-1} \left(c_{0} \int_{\{|u-\theta_{*}|>L\}} \sum_{i=1}^{n} (\varphi_{i}(x) + |D_{i}\theta_{*}|)^{p_{i}} dx + \int_{\{|u-\theta_{*}|>L\}} \sum_{i=1}^{n} |D_{i}\theta_{*}|^{p_{i}} dx \right)$$

$$\leq 2^{p_{m}-1} (c_{0} + 1) \int_{\{|u-\theta_{*}|>L\}} (\varphi_{i}(x) + |D_{i}\theta_{*}|)^{p_{i}} dx.$$
(2.5)

Let

$$t_i = \frac{p_i}{1-b},$$

where b be any number satisfying (1.4). This ensures

$$\frac{t_i - p_i}{t_i} = b$$

does not depend on i. Let

$$M = \max_{1 \le i \le n} \left(\int_{\{|u-\theta_*|>L\}} \left(\varphi_i(x) + |D_i\theta_*|\right)^{t_i} dx \right)^{\frac{p_i}{t_i}}.$$

(1.4) implies M is finite. Hölder inequality yields

$$\int_{\{|u-\theta_{*}|>L\}} (\varphi_{i}(x) + |D_{i}\theta_{*}|)^{p_{i}} dx \\
\leq \left(\int_{\{|u-\theta_{*}|>L\}} (\varphi_{i}(x) + |D_{i}\theta_{*}|)^{t_{i}} dx \right)^{\frac{p_{i}}{t_{i}}} |\{|u-\theta_{*}|>L\}|^{b} \qquad (2.6) \\
\leq M|\{|u-\theta_{*}|>L\}|^{b}.$$

Combining (2.5) with (2.6) yields

$$\int_{\{|u-\theta_*|>L\}} \sum_{i=1}^n |D_i u - D_i \theta_*|^{p_i} dx \le M |\{|u-\theta_*|>L\}|^b.$$

Following the idea of the proof of Theorem 2.1 in [4], we complete the proof of Theorem 1.1.

References

- F.Leonetti, F.Siepe, Global integrability for minimizers of anisotropic functionals, Manuscripta Math., 2014, 144(1-2), 91-98.
- [2] F.Leonetti, F.Siepe, Integrability for solutions to some anisotropic elliptic equations, Nonlinear Anal., 2012, 75, 2867-2873.
- [3] H.Y.Gao, Q.H.Huang, Local regularity for solutions of anisotropic obstacle problems, Nonlinear Anal., 2012, 75, 4761-4765.
- [4] H.Y.Gao, Y.J.Zhang, S.L.Li, Integrability for solutions of anisotropic obstacle problems, Int. J. Math. Math. Sci., 2012, Article ID 549285.

Received: May, 2014