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Abstract

In this paper, a QP-free method without a penalty function and a

filter is proposed for nonliner programming. The decrease condition of

the constraint violation and the object function is require to satisfied in

each step. The methods decrease condition compare with the acceptance

criterion of filter may achieve more flexibility of accepting trial steps.

Based on the solution of nonsmooth equations and decrease condition

which the constraint violation and the objective function must satisfied

the globally convergence is achieved.
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1 Introduction

We consider the following nonlinear inequality constrained optimization prob-
lem

min f(x)

s.t. c(x) ≤ 0 (1)

where f(x) : Rn → R and c(x) = (c1(x), c2(x), · · · , cm(x))
T : Rn → Rm are

second-order continuously differentiable functions. For convenience, we de-
note g(x) = ∇f(x) and A(x) = (∇c1(x),∇2(x), · · · ,∇cm(x)) and fk refers to
f(xk), gk to g(xk), Ak to A(xk), etc.
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The Lagrangian function of (1) is L(x, λ) = f(x)+λT c(x), where λ = (λ1, λ2, · · · , λm)
in Rm is the multiplier vector. The KKT condition is

▽xL(x
∗, λ∗) = 0, c(x∗) ≤ 0, λ∗ ≥ 0, λ∗c(x∗) = 0, (2)

The KKT point is a point satisfied KKT condition.

Sequential quadratic programming (SQP) methods are widely used for solv-
ing inequality constrained optimization problem since late 1970s. But the
high-computational costs of this methods confused most of the researchers.
Then the QP-free algorithms are proposed by Panier, Tits and Herskovits[see
1]. A system of linear equation is used in compute direction in there paper,
which overcome the difficulty of SQP methods. Recently a new QP-free meth-
ods for solution smooth inequality constraints was proposed by Pu, Li and
Xue [see2]. These methods is based on the nonsmooth equations’s solution
which are obtained by the Fischer-Burmeister NCP function and the multipli-
ers. The convergence rate under some mild condition is encouraging. Qi and
Qi (see3) use the NCP function proposed a QP-free algorithm for solving the
(NLP) problem. They used Two linear systems and a least-square problem to
solved the search direction at each iteration in QP-free algorithm. The global
convergence is provided.

In this paper, we propose a QP-free method without a penalty function
and a filter for nonliner programming. The Fischer-Burmeister NCP function
for the KKT first-order optimality condition and the multipliers was use to
solving the nonsmooth equations in each iterative. And the flexible of the
acceptance is shown by constraint violation function.

The new algorithm has the following advantages:

(1)we generalize the of constraint violation function.

(2) the scale of computation is greatly reduced ;

(3) The Maratos effect may be avoid by using self-adaption operator as
constraint violation.

This paper is divided into 4 sections. The next section introduce the concept
of a NCP function. In section 3 an algorithm of line search filter is given. The
convergence is given in section 4.

2 Preliminaries

Definition 2.1 (NCP pair and NCP functions) We call a pair (a, b) ∈ R2

to be an NCP pair if a ≥ 0, b ≥ 0 and ab = 0 .
A function ψ : R2 → R is called an NCP function if (a, b) = 0 if and only if
(a, b) is an NCP pair.
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The 4-1 piecewise linear NCP function ϕ as follows

ψ(a, b) =



















k2a, ifb ≥ k | a |;
2kb− b2a, ifa ≥| b | /k;
2k2a+ 2kb+ b2/a, ifa < − | b | /k;
k2a+ 4kb, ifb ≤ −k | a |< 0.

(3)

where parameter k > 0 ψ is continuously differentiable except at the origin,
but it is strongly semismooth at the origin. if a 6= 0 or b 6= 0, then ψ is
continuously differentiable at (a, b) ∈ R2,

∇ψ(a, b) =


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


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


















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


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





(

k2

0

)

ifb ≥ k | a |;
(

b2/a2

2k − 2b/a

)

ifa ≥| b | /k;
(

2k2 − b2/a2

2k + 2b/a

)

ifa < − | b | /k;
(

k2

4k

)

ifb ≤ −k | a |< 0.

(4)

and

Aψ = ∂ψ(0, 0) =

{(

k2t2

2k(1− t)

)

⋃

(

2k2(1− t2)
2k(1− t)

)

∣

∣

∣

∣

|t| ≤ 1

}

. (5)

Let

φi(x, λ) = ψ(−gi(x), λi), 1 ≤ i ≤ m. Φ(x, λ) = (φ1(x, λ), · · · , φm(x, λ))

If (gi(x), λi) 6= (0, 0), then φi is continuously differentiable at (x, λ) ∈
Rn+m. We have

∇φi(x, λ) =


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
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






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


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




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

(

−k2∇gi(x)
0

)

ifλi ≥ k | gi(x) |;
(

−λ2i∇gi(x)/gi(x)
2

(2k − 2λi/gi)ei

)

if − gi(x) ≥| λi | /k;
(

(−2k + λ2i /gi(x)
2)∇gi(x)

(2k − 2λi/gi(x))ei

)

if − gi(x) < − | λi | /k;
(

−k2∇gi(x)
4kei

)

ifλi ≤ −k | gi(x) |< 0.

(6)

If gi(x) = 0 and λi = 0,1 ≤ i ≤ m, then we have

∂φi(x, λ) =

{(

−k2t2∇gi(x)
2k(1− t)ei

)

⋃

(

−2k2(1− t2∇gi(x))
(2k − 2t)ei

)

∣

∣

∣

∣

|t| ≤ 1

}
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where ei = (0, · · · , 0, 1, 0, · · · , 0)T ∈ Rm is the ith column of the unite matrix.
We take k = 1 in this paper.
If (−gj(x

k), λk) = (0, 0), let ξkj = −2, ηkj = 2, otherwise, let (−ξkj , η
k
j ) =

∇ψ(a, b)|a=−gi(x), b = λkj , We obtain

(ξkj∇gj(x
k), ηkj ej) = ∇φj(x

k, λk).

Clearly ξkj ≤ 0 and ηkj ≥ 0. Let

Vk =

(

Hk ∇Gk

diag(ξk)(∇Gk)T diag(ηk + ck)

)

where Hk is a positive matrix which may be modified by BFGS update.
diag(ξk) or diag(ηk + ck) denotes the diagonal matrix whose j diagonal ele-
ment is ξkj or ηk + ck, respectively, and ckj = cmin{1, ‖Φk‖v}, where Φk =
Φk(xk, λk), c > 0 and v > 1are given paramenters.

3 Description of the algorithm

We aim the problem as a bi-objective optimization problem with two goals,i.e.
minimizing the objective function f(x) and the constraint violation h(c(x)) =
Σmax{0, ci(x)}.
First of all, we consider the decrease condition for the constraint violation
function. We denote Pk = ‖Akλk + Gk‖. A slack variable Mk is needed in
order to resuce h(ck) and Pk evenly.

n0 > 0, nk =
n0

k + 1
(j ≥ 1), nj → 0(j → 0), and

1

2
≤
nk+1

nk
< 1.

For constraint violation function, we adopt a parameter Mk to relax the crite-
rion of iterates and enhance the flexible. let

Ql,k = max
k−l+1≤i≤k−1

h(ci)

If the constraint violation h(ck) < min{η1nk, η2Pk}, 0 < η1, η2 <
1
2
, we set

Mk = min{njk, Pk} (7)

if slack variable Mk ≥ Ql,k then we said that a trial step is accepted as a new
iterate, as long as the follow formula is satisfied.

Mk − h(ck+1) ≥ αηMk, η ∈ (0,
1

2
)



Global Convergence Of A Qp-free Method Without A Penalty Function... 965

otherwise if Mk ≤ Ql,kthen we said that a trial step is accepted as a new
iterate, as long as the follow formula is satisfied.

Ql,k − h(ck+1) ≥ αηQl,k, η ∈ (0,
1

2
)

If the constraint violation function h(ck) ≥ min{η1nk, η2Pk}, 0 < η1, η2 <
1
2
,

set
Mk = h(ck) (8)

then similar to the description of the above, if slack variable Mk ≥ Ql,k then
we said that a trial step is accepted as a new iterate, as long as the follow
formula is satisfied.

Mk − h(ck+1) ≥ αηMk, η ∈ (0,
1

2
)

otherwise if Mk ≤ Ql,kthen we said that a trial step is accepted as a new
iterate, as long as the follow formula is satisfied.

Ql,k − h(ck+1) ≥ αηQl,k, η ∈ (0,
1

2
)

For convenience, we denote Tk = max(Mk, Ql,k), then the constraint viola-
tion can be expression as

Tk − h(ck+1) ≥ αηQl,k (9)

Now we consider the decrease condition for the objective function. we
define

△fk = f(xk − f(xk+1))

If

gTk dk ≤ −βdTkBkdk and h(ck) ≤ ζ1‖dk‖
ζ2 (10)

where β ∈ (0, 1
2
), ζ1 > 0, ζ2 ∈ (2, 3), then the sufficient decrease condition

of objective function is
△fk ≥ −gTk dkσα

QP-free algorithm

The improved algorithm is presented as following.
Step0. Give a starting point x0 ∈ Rn and a initial positive definite matrix

H0, σ ∈ (0, 1
2
), n0 > 0, η ∈ (0, 1

2
), θ > 0, β ∈ (0, 1

2
), η1 , η2 ∈ (0, 1

2
), ζ1 > 0, ζ2 ∈

(2, 3), t ∈ (0, 1), c > 0, k = 0.
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Step1. compute dk0 and λk0 by solving the following linear system in (d, λ)
:

Vk

(

d
λ

)

=

(

−∇fk
0

)

. (11)

where ∇fk = ∇f(xk).
If dk0 = 0, then stop

otherwise, if ηjk 6== 0, then let λk0j = ηjkλ
k
0

j /(−η
k0
j +ckj ), otherwise let λ

k0
j = λ

k
0

j

compute (dk1, λk1) by solving the following linear system in (d, λ):

Vk

(

d
λ

)

=

(

−∇Lk
−Φk

)

. (12)

where ∇Lk = ∇L(xk, λk) and Φk = Φ(xk, λk) . If ηkj 6= 0, then let λk1j =

ηjkλ
k
1

j /(−η
k1
j + ckj ), otherwise let λk1j = λ

k1
j

If Φk = 0 then let bk = 1 and ρk = 0 , otherwise if dk0 = 0 then let bk = 0
and ρk = 1 , otherwise denote bk = (1− ρk) and

ρk =







1 if(dk1)
T∇fk ≤ θ(dk0)

T∇fk

(1− θ)
(dk0 )

T∇fk

(dk0−dk1 )
T∇fk

otherwise

and let

(

dk
λk

)

= bk

(

dk0
λk0

)

+ ρk

(

dk1
λk1

)

, (13)

Step2 set α = 1 evaluate function at xk. compute hxk , fxk , gxk , Axk If the
KKT condition of problem (1) are satisfied stop, otherwise update Mk by (7)
or (8).

Step3. If (3.3) holds go to 3.1 else go to 3.2
3.1 If T − h(ck+1) < αηQl,k or △fk < −gTk dkσα, then set α = tα,, go to

step 5, otherwise set αk = α, xk+1 = xk + αkdk, go to step 6.
3.2 If T − h(ck+1) ≥ αηQl,k then set α = α,xk+1 = xk + αkdk, go to step

6.
Step4. give Hk by BFGS update, let k = k + 1 go to step 1.

4 The Convergence Properties

To present a proof of global convergence of algorithm, In this section, we always
assume that the following conditions hold.
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A 1 The level set {x|f(x) ≤ f(x0)} is bounded, and for sufficiently large
k, ‖µk + λk0 + λk1‖ < µ

A 2 f and gi are twice Lipschitz continuously differentiable, and for all
y, z ∈ Rn+m,

‖∇L(y)−∇L(z)‖ ≤ m3‖y − z‖, ‖Φ(y)− Φ(z)‖ ≤ m3‖y − z‖,

where m3 > 0 is the Lipschitz constant.
A 3 Hk is positive definite and there exist positive numbers m1 and m2

such that

m1‖d‖
2 ≤ dTHkd ≤ m2‖d‖

2

for all d ∈ Rn and all k and the lagrange multiplier λk is bounded for all k.
We suppose that the assumptions A1-A3 hold.

Lemma 4.1 If Φk 6= 0 then V k and V ∗ are nonsingular.

Proof: If

Vk

(

u
ϑ

)

= 0,

for some (u, ϑ) ∈ Rn, where ϑ = (ϑ1, · · · , ϑ)
T , u = (u1, · · · , un)

T , then we
have

Hku+∇ckv = 0 (14)

and
diag(ξk)(∇ck)Tu+ diag(ηk)v = 0

From the definition of ξkj and ηkj , we know that ξkj ≥ 0 and ηkj 6= 0 for all j.
So, diag ηk is nonsingular. We have

v = −(diag(ηk))−1diag(ξk)(∇ck)Tu (15)

Putting (4.3) into (4.1), we have

uT (Hku+∇ckv) = uTHku− uT∇ckdiag(ξk)(diag(ηk))−1(∇ck)Tu = 0

The fact that −∇ckdiag(ξk)(diag(ηk))−1(∇ck)T is positive semidefinite implies
u = 0, and then v = 0 by(4.3). V k is nonsingular. This lemma holds.

Lemma 4.2 If dk0 = 0, then ∇f(xk) = 0. and xk is KKT point of prob-
lem(NLP). The lemma 2 hold (see [6] Lemma 2)

Lemma 4.3 If the Algorithm cannot terminate finitely, then limk→+∞ h(ck) =
0
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Proof: We assue that h(ck) → 0. there exists a suffciently large inter j > 0,
such that for k ≥ j,

Tk = max(h(ck), Ql,k)

It implies with Ql,k = maxk−l+1≤i≤k−1 h(ci) that

Tk = max(h(ck), Ql,k) = max
k−l+1≤i≤k−1

h(ci) (16)

According to the update of Mk, (9)and(16), we have



















h(ck+1) < (1− αkη)maxk−l+1≤i≤k−1 h(ci)
h(ck+2) < (1− αk+1η)maxk−l+2≤i≤k+1 h(ci)

· · ·
h(ck+l) < (1− αk+l−1η)maxk≤i≤k+l−1 h(ci)

(17)

and for k ≥ j

max
k−l+1≤i≤k−1

h(ci) ≥ max
k−l+2≤i≤k+1

h(ci) ≥ · · · ≥ max
k≤i≤k+l−1

h(ci) (18)

Sinceh(ck) → 0, it follows that there exists a positive constant ǫ1 > 0 and
an infinite subsequence h(cki), such that h(cki) ≥ ǫ1 for all ki > j. Then, for
any ki > j there exists a positive integer i0, such that ki0 > k, So it follows
with (18) that

max
k≤i≤k+l−1

h(ci) ≥ max
ki0≤i≤ki0+l−1

h(ci) ≥ ǫ1 (19)

According to (16), we have that there exists a step size αmin > 0, such that
αk > αmin for all k > j. thus,

max
k≤i≤k+l−1

h(ci) ≤ (1− αminη)
(
k−k1

l
) max
kl−l+1≤i≤kl

h(ci) (20)

where α denotes the maximal integer less than α.
So we have that

lim
k→∞

max
k≤i≤k+l−1

h(ci) = 0

It implies that

lim
i→∞

h(ci) = 0

which contradicts the assumption that h(cki) ≥ ǫ1 for all ki > j. The conclu-
sion follows.

Lemma 4.4 Suppose assumption A1-A3 hold then

‖dk‖ = o(Pk)
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Proof: It follows from KKT condition of QP subproblem that

dk = −B−1
k (gk + Akλk)

Since Bkis uniformly positive sefinite and uniformly bounded, we obtain that
B−1
k is also positive definite and bounded for all k. Therefore ‖dk‖ = o(‖gk +

Akλk‖)o(Pk).

Theorem 4.5 Suppose assumptions A1-A3 hold. Then one of the following
two situations occurs; (i)Algorithm terminates at a KKT point of problem(1).
(ii)There exists at least one accumulation point, which is a KKT point.
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