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Abstract

This paper deals with anisotropic integral functionals of the type

I(u; Ω) =
∫

Ω
f(x,Du(x))dx.

We present a monotonicity inequality on the density f(x, ξ) with weight,
which guarantees global boundedness of minimizers u with gradient con-
straints.
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1 Introduction and Statement of Results.

Let Ω ⊂ Rn(n ≥ 2) be a bounded domain. For p1, · · · , pn ∈ (1,+∞), we let

p̄ =
(

1
n

n
∑

i=1

1
pi

)−1

and p′i =
pi

pi−1
be the harmonic mean of p1, · · · , pn and the

Hölder conjugate of pi, respectively.
For every i ∈ {1, · · · , n}, we let νi to be a function on Ω such that νi > 0

a.e. in Ω and

νi ∈ L1
loc(Ω),

1

νi
∈ L1/(pi−1)(Ω). (1.1)
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Denote by W 1,(pi)(ν,Ω) the set of all functions u ∈ L1(Ω) such that νi|Diu|
pi ∈

L1(Ω). The norm for u ∈ W 1,(pi)(ν,Ω) is defined by

‖u‖1,(pi),ν =
∫

Ω
|u|dx+

n
∑

i=1

(∫

Ω
νi|Diu|

pidx
)1/pi

.

It is known, by the second inclusion of (1.1), that the set W 1,(pi)(ν,Ω) is
a Banach space with respect to the norm ‖ · ‖1,(pi),ν . Moreover, by virtue
of the first inclusion of (1.1), we have C∞

0 (Ω) ⊂ W 1,(pi)(ν,Ω). We denote

by W
1,(pi)
0 (ν,Ω) the closure of the set C∞

0 (Ω) in the norm of W 1,(pi)(ν,Ω).

The set W
1,(pi)
0 (ν,Ω) is a reflexive Banach space with respect to the norm

induced by ‖ · ‖1,(pi),ν . We denote by W 1,(pi)(w,Ω,RN) the set of all vec-
tor valued functions u = (u1, · · · , uN) such that for every j ∈ {1, · · · , N} we

have uj ∈ W 1,(pi)(ν,Ω). In particular, W 1,(pi)(Ω), W
1,(pi)
0 (Ω), W 1,(pi)(Ω,RN)

and W
1,(pi)
0 (Ω,RN) stand for the special cases of W 1,(pi)(ν,Ω), W

1,(pi)
0 (ν,Ω),

W 1,(pi)(ν,Ω,RN ) and W
1,(pi)
0 (ν,Ω,RN) with νi ≡ 1, i = 1, · · · , n, respectively.

For a vector m = (m1, · · · , mn) ∈ Rn with mi > 0, i = 1, · · · , n, we set

qm = n

(

n
∑

i=1

1 +mi

mipi
− 1

)−1

.

We consider the anisotropic integral functional

I(u; Ω) =
∫

Ω
f(x,Du(x))dx, (1.2)

where f : Ω × RN×n → R is a Carathéodory function. We assume that there
exist a constant µ > 0 and a function M(x) ∈ Lr(Ω), r ≥ 1, such that

f(x, Ã) + µ
n
∑

i=1

νi|Ãi −Ai|
pi ≤ f(x,A) +M(x) (1.3)

for every pair of matrices Ã, A ∈ RN×n such that there exists a row β with
Ãβ = 0 and for every remaining row α 6= β we have Ãα = Aα.

We let ϕ : Ω → R be a nonnegative function and u∗ ∈ W 1,(pi)(w,Ω,RN ) be
such that |Du∗(x)| ≤ ϕ(x), a.e. Ω. We assume that for every x ∈ Ω,

K(x) = {ξ ∈ RN×n : |ξ| ≤ ϕ(x)}.

We define

V (u∗, K) = {v ∈ u∗ +W
1,(pi)
0 (w,Ω,RN) : Dv(x) ∈ K(x) for a.e. x ∈ Ω}.

It is obvious that Du∗(x) ∈ K(x) for a.e. x ∈ Ω. Therefore, V (u∗, K) 6= ∅. It
is easy to see that the set V (u∗, K) is convex and closed in W 1,(pi)(w,Ω,RN).

The main result of this paper is the following theorem.
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Theorem 1.1 Let m ∈ Rn, and let the following two conditions be satisfied:
(a) for every i ∈ {1, · · · , n} we have mi ≥ 1/(pi − 1) and 1/wi ∈ Lmi(Ω);
(b) qm > p̄.

We consider the integral functional (1.2) under the monotonicity inequality
(1.3). We let u ∈ W 1,(pi)(w,Ω,RN) be such that

u ∈ V (u∗, K), (1.4)

∀v ∈ V (u∗, K),
∫

Ω
f(x,Du(x))dx ≤

∫

Ω
f(x,Dv(x))dx. (1.5)

Then, for every component uβ of u, we have

inf
∂Ω

uβ
∗ (x)− c∗ ≤ uβ(x) ≤ sup

∂Ω
uβ
∗ (x) + c∗ (1.6)

for almost every x ∈ Ω, where

c∗ = c

(

‖M‖Lr(Ω)

µ

) 1
p̄

|Ω|[(1−
1
r
) qm

p̄
−1] 1

qm 2(1−
1
r
) qm

p̄ [(1− 1
r
) qm

p̄
−1]

−1

,

where |Ω| is the n-dimensional Lebesgue measure of Ω, and c and µ are the
constants from (2.1) and (1.3), respectively.

Remark 1.2 We refer the readers to [1-6] for some related results.

A model density f for the monotonicity inequality (1.3) is given in the
following.

Theorem 1.3 For every i = 1, · · · , n, let us consider pi ≥ 2 and ai > 0;
we take m(x) ≥ 0, a.e. x ∈ Ω. Let us consider f : Ω× RN×n → R defined as
follows:

f(x,A) =
n
∑

i=1

aiνi|Ai|
pi +m(x)h

(

1

1 + ‖A‖

)

,

where

‖A‖ =
(

Tr(AtA)
)1/2

=





n
∑

i=1

N
∑

j=1

|Aj
i |
2





1/2

is the Hilbert-Schmidt norm of the matrix A = (Aj
i ), and h(x) : (0,+∞) → R

is a Lipschitz continuous function:

|h(t1)− h(t2)| ≤ C|t1 − t2|, ∀t1, t2 ≥ 0. (1.7)

Then the monotonicity inequality (1.3) holds true with µ = min
1≤i≤n

{ai} and

M(x) = Cm(x), where C is the constant in (1.7).
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2 Proof of Theorems 1.1 and 1.3.

In order to prove Theorem 1.1, we need two preliminary lemmas.
The following lemma is the Sobolev Imbedding Theorem with weight, which

comes from [7, Proposition 2.1], the proof can be found in [8].

Lemma 2.1 Let m ∈ Rn, and let the following conditions be satisfied: for
every i ∈ {1, · · · , n} we have mi ≥ 1/(pi − 1) and 1/wi ∈ Lmi(Ω). Then

W
1,(pi)
0 (w,Ω) ⊂ Lqm(Ω), and there exists a positive constant c such that for

every function v ∈ W
1,(pi)
0 (w,Ω),

(∫

Ω
|v|qmdx

)1/qm

≤ c
n
∏

i=1

(∫

Ω
wi|Div|

pidx
)1/npi

. (2.1)

The next lemma comes from [9, Lemma 4.1].

Lemma 2.2 Let χ : [t0,+∞) → [0,+∞) be non-increasing. We assume
that there exist C̃, a > 0 and b > 1 such that

t0 ≤ t < T ⇒ χ(T ) ≤
C̃

(T − t)a
[χ(t)]b.

Then it results that

χ(t0 + d) = 0,

where

d =
[

C̃ (χ(t0))
b−1 2

ab
b−1

]
1
a
.

Proof of Theorem 1.1. As in the proof of Lemma 2.1 in [1], we define Iβ,t :
RN → RN as follows:

∀y = (y1, · · · , yN) ∈ RN , Iβ,t(y) = (I1β,t(y), I
2
β,t(y), · · · , I

N
β,t(y))

with

Iαβ,t(y) =

{

yα, α 6= β
yβ ∧ t = min{yβ, t}, α = β.

For u ∈ V (u∗, K), we need to show that Iβ,t(u) ∈ V (u∗, K). In fact, it is

obvious that Iβ,t(u) ∈ u∗+W
1,(pi)
0 (w,Ω,RN); in order to show that DIβ,t(u) ∈

K(x), it is sufficient to derive |DIβ,t(u)(x)| ≤ K(x). This is true because

DiI
α
β,t(u) =

{

Diu
α, α 6= β,

Diu
β1{uβ≤t}, α = β,

(2.1)
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where 1B is the characteristic function of the set B, that is, 1B(x) = 1 if x ∈ B
and 1B(x) = 0 otherwise.

Our next goal is to show that, for every u = (u1, u2, · · · , uN) ∈ W 1,(pi)(w,Ω,RN ),
for any β ∈ {1, 2, · · · , N}, for all t ∈ R, the following inequality holds true

I(Iβ,t(u)) + µ
n
∑

i=1

∫

Ω
wi|Di(Iβ,t(u))−Diu|

pidx ≤ I(u) +
∫

{uβ>t}
M(x)dx. (2.2)

Indeed, on {x ∈ Ω : uβ > t} we have D(Iββ,t(u)) = 0, and for α 6= β,

D(Iαβ,t(u)) = Diu
α; so we can apply (1.3) with Ã = D(Iβ,t(u)) and A = Du;

we obtain

f(x,D(Iβ,t(u))) + µ
n
∑

i=1

wi|Di(Iβ,t(u))−Diu|
pi ≤ f(x,Du) +M(x) (2.3)

for x ∈ {x ∈ Ω : uβ > t}. On {x ∈ Ω : uβ ≤ t}, D(Iβ,t(u)) = Du, thus

f(x,D(Iβ,t(u))) + µ
n
∑

i=1

wi|Di(Iβ,t(u))−Diu|
pidx = f(x,Du) (2.4)

for x ∈ {x ∈ Ω : uβ ≤ t}. From (2.3) and (2.4) we have

f(x,DIβ,t(u))+µ
n
∑

i=1

wi|Di(Iβ,t(u))−Diu|
pi ≤ f(x,Du)+M(x)·1{uβ>t}. (2.5)

Since I(u) < +∞, then f(x,Du(x)) ∈ L1(Ω), thus f(x,DIβ,t(u)) ∈ L1(Ω) too.
Integrating (2.5) with respect to x, we get (2.2).

Let us fix β ∈ {1, 2, · · · , N}. If sup∂Ω uβ
∗ (x) = +∞ then the right hand side

of (1.6) is satisfied. Thus we assume sup∂Ω uβ
∗ (x) < t0 < t < +∞ and we note

that under this assumption Iβ,t(u) ∈ u + W 1,1
0 (w,Ω,RN) and Di(Iβ,t(u)) ∈

Lpi(w,Ω,RN), i ∈ {1, · · · , n}, this is because

uβ ∧ t = min{uβ, t} = uβ − [max{uβ − t, 0}] = uβ − [(uβ − t) ∨ 0] = uβ − φ,

where φ = max{uβ− t, 0} = (uβ− t)∨0 ∈ W 1,1
0 (Ω) and Diφ = Diu

β ·1{uβ>t} ∈
Lpi(wi,Ω), i = 1, 2, · · · , n. From (1.5) and (2.2) it results that

I(u) ≤ I(Iβ,t(u)) ≤ I(u)−µ
n
∑

i=1

∫

Ω
wi|Di(Iβ,t(u))−Diu|

pidx+
∫

{uβ>t}
M(x)dx,

from which we derive

µ
n
∑

i=1

∫

Ω
wi|Diφ|

pidx = µ
n
∑

i=1

∫

Ω
wi|Di(Iβ,t(u))−Diu|

pidx ≤
∫

{uβ>t}
M(x)dx.

(2.6)



502 Wang Lianhong and Gao Hongya

If r < +∞, we apply Hölder inequality and we get
∫

{uβ>t}
M(x)dx ≤ ‖M‖Lr(Ω)|{u

β > t}|1−
1
r .

If r = +∞, then
∫

{uβ>t}
M(x)dx ≤ ‖M‖L∞(Ω)|{u

β > t}| = ‖M‖Lr(Ω)|{u
β > t}|1−

1
r .

In both cases, from (2.6) it results that

n
∑

i=1

∫

Ω
wi|Diφ|

pidx ≤
‖M‖Lr(Ω)

µ
|{uβ > t}|1−

1
r .

We apply Lemma 2.1 and we get

(

∫

{uβ>t}
|uβ − t|qmdx

)1/qm

=

(

∫

{uβ>t}
|φ|qmdx

)1/qm

=
(∫

Ω
|φ|qmdx

)1/qm

≤ c
n
∏

i=1

(∫

Ω
wi|Diφ|

pidx
)1/npi

≤ c

(

‖M‖Lr(Ω)

µ
|{uβ > t}|1−

1
r

) 1
p̄

.

(2.7)

For T > t we have

(T − t)qm |{uβ > T}| =
∫

{uβ>T}
(T − t)qmdx

≤
∫

{uβ>T}
(uβ − t)qmdx ≤

∫

{uβ>t}
(uβ − t)qmdx.

(2.8)

From (2.7) and (2.8) we get

|{uβ > T}| ≤ cqm
(

‖M‖Lr(Ω)

µ

)
qm
p̄ 1

(T − t)qm
|{uβ > t}|(1−

1
r
) qm

p̄

for every T, t with T > t ≥ t0. We set χ(t) = |{uβ > t}|, C̃ = cqm
(

‖M‖Lr(Ω)

µ

)

qm
p̄
,

a = qm and b = (1− 1
r
) qm

p̄
. We use Lemma 2.2 and we get |{uβ > t0+ c∗}| = 0,

that is, uβ ≤ t0 + c∗ almost everywhere in Ω, where

c∗ = c

(

‖M‖Lr(Ω)

µ

) 1
p̄

|Ω|[(1−
1
r
) qm

p̄
−1] 1

qm 2(1−
1
r
) qm

p̄ [(1− 1
r
) qm

p̄
−1]

−1

.

In order to get the right hand side of (1.6), we take a sequence {(t0)m}m with
(t0)m → sup∂Ω uβ. We apply the right hand side of (1.6) to −u and we get the
left hand side of (1.7). This ends the proof of Theorem 1.1.
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Proof of Theorem 1.3. We assume that Ã, A ∈ RN×n with Ãβ = 0 and Ãα = Aα

for α 6= β. Then
∑

α

|Aα
i |

2 =
∑

α

|Aα
i − Ãα

i |
2 +

∑

α

|Ãα
i |

2.

Thus
|Ai|

2 = |Ai − Ãi|
2 + |Ãi|

2.

The conditions pi ≥ 2, i = 1, · · · , n, imply

|Ai|
pi ≥ |Ai − Ãi|

pi + |Ãi|
pi.

Thus

f(x, Ã) + min
1≤i≤n

{bi} ·
n
∑

i=1

wi|Ãi − Ai|
pi

≤
n
∑

i=1

biwi|Ãi|
pi +m(x)h

(

1

1 + ‖Ã‖

)

+
n
∑

i=1

biwi|Ãi − Ai|
pi

≤
n
∑

i=1

biwi|Ai|
pi +m(x)h

(

1

1 + ‖Ã‖

)

=
n
∑

i=1

biwi|Ai|
pi +m(x)h

(

1

1 + ‖A‖

)

+m(x)

[

h

(

1

1 + ‖Ã‖

)

− h

(

1

1 + ‖A‖

)]

≤ f(x,A) + Cm(x)

∣

∣

∣

∣

∣

1

1 + ‖Ã‖
−

1

1 + ‖A‖

∣

∣

∣

∣

∣

= f(x,A) + Cm(x)

(

|Aβ|

(1 + ‖A‖)(1 + ‖Ã‖)

)

≤ f(x,A) + Cm(x).

Thus the monotonicity inequality (1.5) holds true with µ = min
1≤i≤n

{ai} and

M(x) = Cm(x).
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