Global boundedness for vector valued minimizers of some anisotropic variational integrals

Wang Lianhong

College of Mathematics and Information Science, Hebei University, Baoding 071002, China

Gao Hongya¹

College of Mathematics and Information Science, Hebei University, Baoding 071002, China

Abstract

This paper deals with anisotropic integral functionals of the type

$$\mathcal{I}(u;\Omega) = \int_{\Omega} f(x,Du(x))dx.$$

We present a monotonicity inequality on the density $f(x,\xi)$ with weight, which guarantees global boundedness of minimizers u with gradient constraints.

Mathematics Subject Classification: 49N60

Keywords: Global boundedness, vector valued minimizer, anisotropic variational integral, gradient constraint

1 Introduction and Statement of Results.

Let $\Omega \subset \mathbb{R}^n (n \geq 2)$ be a bounded domain. For $p_1, \dots, p_n \in (1, +\infty)$, we let $\bar{p} = \left(\frac{1}{n}\sum_{i=1}^n \frac{1}{p_i}\right)^{-1}$ and $p'_i = \frac{p_i}{p_i-1}$ be the harmonic mean of p_1, \dots, p_n and the Hölder conjugate of p_i , respectively.

For every $i \in \{1, \dots, n\}$, we let ν_i to be a function on Ω such that $\nu_i > 0$ a.e. in Ω and

$$\nu_i \in L^1_{loc}(\Omega), \quad \frac{1}{\nu_i} \in L^{1/(p_i-1)}(\Omega).$$
(1.1)

¹Corresponding author, email: ghy@hbu.cn.

Denote by $W^{1,(p_i)}(\nu,\Omega)$ the set of all functions $u \in L^1(\Omega)$ such that $\nu_i |D_i u|^{p_i} \in$ $L^1(\Omega)$. The norm for $u \in W^{1,(p_i)}(\nu, \Omega)$ is defined by

$$\|u\|_{1,(p_i),\nu} = \int_{\Omega} |u| dx + \sum_{i=1}^{n} \left(\int_{\Omega} \nu_i |D_i u|^{p_i} dx \right)^{1/p_i}$$

It is known, by the second inclusion of (1.1), that the set $W^{1,(p_i)}(\nu,\Omega)$ is a Banach space with respect to the norm $\|\cdot\|_{1,(p_i),\nu}$. Moreover, by virtue of the first inclusion of (1.1), we have $C_0^{\infty}(\Omega) \subset W^{1,(p_i)}(\nu,\Omega)$. We denote by $W_0^{1,(p_i)}(\nu,\Omega)$ the closure of the set $C_0^{\infty}(\Omega)$ in the norm of $W^{1,(p_i)}(\nu,\Omega)$. The set $W_0^{1,(p_i)}(\nu,\Omega)$ is a reflexive Banach space with respect to the norm induced by $\|\cdot\|_{1,(p_i),\nu}$. We denote by $W^{1,(p_i)}(w,\Omega,\mathbb{R}^N)$ the set of all vector valued functions $u = (u^1, \dots, u^N)$ such that for every $j \in \{1, \dots, N\}$ we have $u^{j} \in W^{1,(p_{i})}(\nu,\Omega)$. In particular, $W^{1,(p_{i})}(\Omega), W^{1,(p_{i})}_{0}(\Omega), W^{1,(p_{i})}(\Omega)$ and $W_0^{1,(p_i)}(\Omega, \mathbb{R}^N)$ stand for the special cases of $W^{1,(p_i)}(\nu, \Omega), W_0^{1,(p_i)}(\nu, \Omega),$ $W^{1,(p_i)}(\nu,\Omega,\mathbb{R}^N)$ and $W^{1,(p_i)}_0(\nu,\Omega,\mathbb{R}^N)$ with $\nu_i \equiv 1, i = 1, \cdots, n$, respectively. For a vector $m = (m_1, \cdots, m_n) \in \mathbb{R}^n$ with $m_i > 0, i = 1, \cdots, n$, we set

$$q_m = n \left(\sum_{i=1}^n \frac{1+m_i}{m_i p_i} - 1 \right)^{-1}$$

We consider the anisotropic integral functional

$$\mathcal{I}(u;\Omega) = \int_{\Omega} f(x, Du(x)) dx, \qquad (1.2)$$

where $f: \Omega \times \mathbb{R}^{N \times n} \to \mathbb{R}$ is a Carathéodory function. We assume that there exist a constant $\mu > 0$ and a function $M(x) \in L^r(\Omega), r > 1$, such that

$$f(x,\tilde{A}) + \mu \sum_{i=1}^{n} \nu_i |\tilde{A}_i - A_i|^{p_i} \le f(x,A) + M(x)$$
(1.3)

for every pair of matrices $\tilde{A}, A \in \mathbb{R}^{N \times n}$ such that there exists a row β with $\tilde{A}^{\beta} = 0$ and for every remaining row $\alpha \neq \beta$ we have $\tilde{A}^{\alpha} = A^{\alpha}$.

We let $\varphi : \Omega \to \mathbb{R}$ be a nonnegative function and $u_* \in W^{1,(p_i)}(w,\Omega,\mathbb{R}^N)$ be such that $|Du_*(x)| \leq \varphi(x)$, a.e. Ω . We assume that for every $x \in \Omega$,

$$K(x) = \{\xi \in \mathbb{R}^{N \times n} : |\xi| \le \varphi(x)\}.$$

We define

$$V(u_*, K) = \{ v \in u_* + W_0^{1, (p_i)}(w, \Omega, \mathbb{R}^N) : Dv(x) \in K(x) \text{ for a.e. } x \in \Omega \}.$$

It is obvious that $Du_*(x) \in K(x)$ for a.e. $x \in \Omega$. Therefore, $V(u_*, K) \neq \emptyset$. It is easy to see that the set $V(u_*, K)$ is convex and closed in $W^{1,(p_i)}(w, \Omega, \mathbb{R}^N)$.

The main result of this paper is the following theorem.

Global boundedness for vector valued minimizers

Theorem 1.1 Let $m \in \mathbb{R}^n$, and let the following two conditions be satisfied: (a) for every $i \in \{1, \dots, n\}$ we have $m_i \ge 1/(p_i - 1)$ and $1/w_i \in L^{m_i}(\Omega)$; (b) $q_m > \bar{p}$.

We consider the integral functional (1.2) under the monotonicity inequality (1.3). We let $u \in W^{1,(p_i)}(w, \Omega, \mathbb{R}^N)$ be such that

$$u \in V(u_*, K), \tag{1.4}$$

$$\forall v \in V(u_*, K), \ \int_{\Omega} f(x, Du(x)) dx \le \int_{\Omega} f(x, Dv(x)) dx.$$
(1.5)

Then, for every component u^{β} of u, we have

$$\inf_{\partial\Omega} u_*^\beta(x) - c_* \le u^\beta(x) \le \sup_{\partial\Omega} u_*^\beta(x) + c_* \tag{1.6}$$

for almost every $x \in \Omega$, where

$$c_* = c \left(\frac{\|M\|_{L^r(\Omega)}}{\mu}\right)^{\frac{1}{\bar{p}}} |\Omega|^{\left[(1-\frac{1}{r})\frac{q_m}{\bar{p}}-1\right]\frac{1}{q_m}} 2^{(1-\frac{1}{r})\frac{q_m}{\bar{p}}\left[(1-\frac{1}{r})\frac{q_m}{\bar{p}}-1\right]^{-1}},$$

where $|\Omega|$ is the n-dimensional Lebesgue measure of Ω , and c and μ are the constants from (2.1) and (1.3), respectively.

Remark 1.2 We refer the readers to [1-6] for some related results.

A model density f for the monotonicity inequality (1.3) is given in the following.

Theorem 1.3 For every $i = 1, \dots, n$, let us consider $p_i \ge 2$ and $a_i > 0$; we take $m(x) \ge 0$, a.e. $x \in \Omega$. Let us consider $f : \Omega \times \mathbb{R}^{N \times n} \to \mathbb{R}$ defined as follows:

$$f(x,A) = \sum_{i=1}^{n} a_i \nu_i |A_i|^{p_i} + m(x)h\left(\frac{1}{1+\|A\|}\right),$$

where

$$||A|| = \left(Tr(A^{t}A)\right)^{1/2} = \left(\sum_{i=1}^{n} \sum_{j=1}^{N} |A_{i}^{j}|^{2}\right)^{1/2}$$

is the Hilbert-Schmidt norm of the matrix $A = (A_i^j)$, and $h(x) : (0, +\infty) \to R$ is a Lipschitz continuous function:

$$|h(t_1) - h(t_2)| \le C|t_1 - t_2|, \ \forall t_1, t_2 \ge 0.$$
(1.7)

Then the monotonicity inequality (1.3) holds true with $\mu = \min_{1 \le i \le n} \{a_i\}$ and M(x) = Cm(x), where C is the constant in (1.7).

2 Proof of Theorems 1.1 and 1.3.

In order to prove Theorem 1.1, we need two preliminary lemmas.

The following lemma is the Sobolev Imbedding Theorem with weight, which comes from [7, Proposition 2.1], the proof can be found in [8].

Lemma 2.1 Let $m \in \mathbb{R}^n$, and let the following conditions be satisfied: for every $i \in \{1, \dots, n\}$ we have $m_i \geq 1/(p_i - 1)$ and $1/w_i \in L^{m_i}(\Omega)$. Then $W_0^{1,(p_i)}(w,\Omega) \subset L^{q_m}(\Omega)$, and there exists a positive constant c such that for every function $v \in W_0^{1,(p_i)}(w,\Omega)$,

$$\left(\int_{\Omega} |v|^{q_m} dx\right)^{1/q_m} \le c \prod_{i=1}^n \left(\int_{\Omega} w_i |D_i v|^{p_i} dx\right)^{1/np_i}.$$
(2.1)

The next lemma comes from [9, Lemma 4.1].

Lemma 2.2 Let $\chi : [t_0, +\infty) \to [0, +\infty)$ be non-increasing. We assume that there exist $\tilde{C}, a > 0$ and b > 1 such that

$$t_0 \le t < T \Rightarrow \chi(T) \le \frac{\tilde{C}}{(T-t)^a} [\chi(t)]^b.$$

Then it results that

$$\chi(t_0 + d) = 0,$$

where

$$d = \left[\tilde{C}\left(\chi(t_0)\right)^{b-1} 2^{\frac{ab}{b-1}}\right]^{\frac{1}{a}}$$

Proof of Theorem 1.1. As in the proof of Lemma 2.1 in [1], we define $I_{\beta,t}$: $\mathbf{R}^N \to \mathbf{R}^N$ as follows:

$$\forall y = (y^1, \cdots, y^N) \in \mathbb{R}^N, \quad I_{\beta,t}(y) = (I^1_{\beta,t}(y), I^2_{\beta,t}(y), \cdots, I^N_{\beta,t}(y))$$

with

$$I^{\alpha}_{\beta,t}(y) = \begin{cases} y^{\alpha}, & \alpha \neq \beta \\ y^{\beta} \wedge t = \min\{y^{\beta}, t\}, & \alpha = \beta. \end{cases}$$

For $u \in V(u_*, K)$, we need to show that $I_{\beta,t}(u) \in V(u_*, K)$. In fact, it is obvious that $I_{\beta,t}(u) \in u_* + W_0^{1,(p_i)}(w, \Omega, \mathbb{R}^N)$; in order to show that $DI_{\beta,t}(u) \in K(x)$, it is sufficient to derive $|DI_{\beta,t}(u)(x)| \leq K(x)$. This is true because

$$D_i I^{\alpha}_{\beta,t}(u) = \begin{cases} D_i u^{\alpha}, & \alpha \neq \beta, \\ D_i u^{\beta} \mathbb{1}_{\{u^{\beta} \le t\}}, & \alpha = \beta, \end{cases}$$
(2.1)

where 1_B is the characteristic function of the set B, that is, $1_B(x) = 1$ if $x \in B$ and $1_B(x) = 0$ otherwise.

Our next goal is to show that, for every $u = (u^1, u^2, \dots, u^N) \in W^{1,(p_i)}(w, \Omega, \mathbb{R}^N)$, for any $\beta \in \{1, 2, \dots, N\}$, for all $t \in \mathbb{R}$, the following inequality holds true

$$\mathcal{I}(I_{\beta,t}(u)) + \mu \sum_{i=1}^{n} \int_{\Omega} w_{i} |D_{i}(I_{\beta,t}(u)) - D_{i}u|^{p_{i}} dx \le \mathcal{I}(u) + \int_{\{u^{\beta} > t\}} M(x) dx.$$
(2.2)

Indeed, on $\{x \in \Omega : u^{\beta} > t\}$ we have $D(I_{\beta,t}^{\beta}(u)) = 0$, and for $\alpha \neq \beta$, $D(I_{\beta,t}^{\alpha}(u)) = D_{i}u^{\alpha}$; so we can apply (1.3) with $\tilde{A} = D(I_{\beta,t}(u))$ and A = Du; we obtain

$$f(x, D(I_{\beta,t}(u))) + \mu \sum_{i=1}^{n} w_i |D_i(I_{\beta,t}(u)) - D_i u|^{p_i} \le f(x, Du) + M(x)$$
(2.3)

for $x \in \{x \in \Omega : u^{\beta} > t\}$. On $\{x \in \Omega : u^{\beta} \le t\}$, $D(I_{\beta,t}(u)) = Du$, thus

$$f(x, D(I_{\beta,t}(u))) + \mu \sum_{i=1}^{n} w_i |D_i(I_{\beta,t}(u)) - D_i u|^{p_i} dx = f(x, Du)$$
(2.4)

for $x \in \{x \in \Omega : u^{\beta} \leq t\}$. From (2.3) and (2.4) we have

$$f(x, DI_{\beta,t}(u)) + \mu \sum_{i=1}^{n} w_i |D_i(I_{\beta,t}(u)) - D_i u|^{p_i} \le f(x, Du) + M(x) \cdot \mathbb{1}_{\{u^\beta > t\}}.$$
 (2.5)

Since $\mathcal{I}(u) < +\infty$, then $f(x, Du(x)) \in L^1(\Omega)$, thus $f(x, DI_{\beta,t}(u)) \in L^1(\Omega)$ too. Integrating (2.5) with respect to x, we get (2.2).

Let us fix $\beta \in \{1, 2, \dots, N\}$. If $\sup_{\partial \Omega} u_*^{\beta}(x) = +\infty$ then the right hand side of (1.6) is satisfied. Thus we assume $\sup_{\partial \Omega} u_*^{\beta}(x) < t_0 < t < +\infty$ and we note that under this assumption $I_{\beta,t}(u) \in u + W_0^{1,1}(w, \Omega, \mathbb{R}^N)$ and $D_i(I_{\beta,t}(u)) \in L^{p_i}(w, \Omega, \mathbb{R}^N)$, $i \in \{1, \dots, n\}$, this is because

$$u^{\beta} \wedge t = \min\{u^{\beta}, t\} = u^{\beta} - [\max\{u^{\beta} - t, 0\}] = u^{\beta} - [(u^{\beta} - t) \vee 0] = u^{\beta} - \phi,$$

where $\phi = \max\{u^{\beta} - t, 0\} = (u^{\beta} - t) \lor 0 \in W_0^{1,1}(\Omega) \text{ and } D_i \phi = D_i u^{\beta} \cdot 1_{\{u^{\beta} > t\}} \in L^{p_i}(w_i, \Omega), i = 1, 2, \cdots, n.$ From (1.5) and (2.2) it results that

$$\mathcal{I}(u) \leq \mathcal{I}(I_{\beta,t}(u)) \leq \mathcal{I}(u) - \mu \sum_{i=1}^{n} \int_{\Omega} w_i |D_i(I_{\beta,t}(u)) - D_i u|^{p_i} dx + \int_{\{u^\beta > t\}} M(x) dx,$$

from which we derive

$$\mu \sum_{i=1}^{n} \int_{\Omega} w_{i} |D_{i}\phi|^{p_{i}} dx = \mu \sum_{i=1}^{n} \int_{\Omega} w_{i} |D_{i}(I_{\beta,t}(u)) - D_{i}u|^{p_{i}} dx \le \int_{\{u^{\beta} > t\}} M(x) dx.$$
(2.6)

If $r < +\infty$, we apply Hölder inequality and we get

$$\int_{\{u^{\beta} > t\}} M(x) dx \le \|M\|_{L^{r}(\Omega)} |\{u^{\beta} > t\}|^{1 - \frac{1}{r}}.$$

If $r = +\infty$, then

$$\int_{\{u^{\beta}>t\}} M(x)dx \le \|M\|_{L^{\infty}(\Omega)} |\{u^{\beta}>t\}| = \|M\|_{L^{r}(\Omega)} |\{u^{\beta}>t\}|^{1-\frac{1}{r}}.$$

In both cases, from (2.6) it results that

$$\sum_{i=1}^{n} \int_{\Omega} w_{i} |D_{i}\phi|^{p_{i}} dx \leq \frac{\|M\|_{L^{r}(\Omega)}}{\mu} |\{u^{\beta} > t\}|^{1-\frac{1}{r}}.$$

We apply Lemma 2.1 and we get

$$\left(\int_{\{u^{\beta}>t\}} |u^{\beta} - t|^{q_{m}} dx\right)^{1/q_{m}} = \left(\int_{\Omega} |\phi|^{q_{m}} dx\right)^{1/q_{m}} = \left(\int_{\Omega} |\phi|^{q_{m}} dx\right)^{1/q_{m}}$$

$$\leq c \prod_{i=1}^{n} \left(\int_{\Omega} w_{i} |D_{i}\phi|^{p_{i}} dx\right)^{1/np_{i}} \leq c \left(\frac{\|M\|_{L^{r}(\Omega)}}{\mu} |\{u^{\beta}>t\}|^{1-\frac{1}{r}}\right)^{\frac{1}{p}}.$$
(2.7)

For T > t we have

$$(T-t)^{q_m} |\{u^{\beta} > T\}| = \int_{\{u^{\beta} > T\}} (T-t)^{q_m} dx$$

$$\leq \int_{\{u^{\beta} > T\}} (u^{\beta} - t)^{q_m} dx \leq \int_{\{u^{\beta} > t\}} (u^{\beta} - t)^{q_m} dx.$$
 (2.8)

From (2.7) and (2.8) we get

$$|\{u^{\beta} > T\}| \le c^{q_m} \left(\frac{\|M\|_{L^r(\Omega)}}{\mu}\right)^{\frac{q_m}{\bar{p}}} \frac{1}{(T-t)^{q_m}} |\{u^{\beta} > t\}|^{(1-\frac{1}{r})\frac{q_m}{\bar{p}}}$$

for every T, t with $T > t \ge t_0$. We set $\chi(t) = |\{u^{\beta} > t\}|, \tilde{C} = c^{q_m} \left(\frac{\|M\|_{L^r(\Omega)}}{\mu}\right)^{\frac{q_m}{p}},$ $a = q_m$ and $b = (1 - \frac{1}{r})\frac{q_m}{\bar{p}}$. We use Lemma 2.2 and we get $|\{u^{\beta} > t_0 + c_*\}| = 0$, that is, $u^{\beta} \le t_0 + c_*$ almost everywhere in Ω , where

$$c_* = c \left(\frac{\|M\|_{L^r(\Omega)}}{\mu}\right)^{\frac{1}{\bar{p}}} |\Omega|^{\left[(1-\frac{1}{r})\frac{q_m}{\bar{p}}-1\right]\frac{1}{q_m}} 2^{(1-\frac{1}{r})\frac{q_m}{\bar{p}}\left[(1-\frac{1}{r})\frac{q_m}{\bar{p}}-1\right]^{-1}}.$$

In order to get the right hand side of (1.6), we take a sequence $\{(t_0)_m\}_m$ with $(t_0)_m \to \sup_{\partial\Omega} u^{\beta}$. We apply the right hand side of (1.6) to -u and we get the left hand side of (1.7). This ends the proof of Theorem 1.1.

Proof of Theorem 1.3. We assume that $\tilde{A}, A \in \mathbb{R}^{N \times n}$ with $\tilde{A}^{\beta} = 0$ and $\tilde{A}^{\alpha} = A^{\alpha}$ for $\alpha \neq \beta$. Then

$$\sum_{\alpha} |A_i^{\alpha}|^2 = \sum_{\alpha} |A_i^{\alpha} - \tilde{A}_i^{\alpha}|^2 + \sum_{\alpha} |\tilde{A}_i^{\alpha}|^2.$$

Thus

$$|A_i|^2 = |A_i - \tilde{A}_i|^2 + |\tilde{A}_i|^2.$$

The conditions $p_i \ge 2, i = 1, \dots, n$, imply

$$|A_i|^{p_i} \ge |A_i - \tilde{A}_i|^{p_i} + |\tilde{A}_i|^{p_i}.$$

Thus

$$\begin{aligned} &f(x,\tilde{A}) + \min_{1 \le i \le n} \{b_i\} \cdot \sum_{i=1}^n w_i |\tilde{A}_i - A_i|^{p_i} \\ &\le \sum_{i=1}^n b_i w_i |\tilde{A}_i|^{p_i} + m(x)h\left(\frac{1}{1+\|\tilde{A}\|}\right) + \sum_{i=1}^n b_i w_i |\tilde{A}_i - A_i|^{p_i} \\ &\le \sum_{i=1}^n b_i w_i |A_i|^{p_i} + m(x)h\left(\frac{1}{1+\|\tilde{A}\|}\right) \\ &= \sum_{i=1}^n b_i w_i |A_i|^{p_i} + m(x)h\left(\frac{1}{1+\|A\|}\right) + m(x)\left[h\left(\frac{1}{1+\|\tilde{A}\|}\right) - h\left(\frac{1}{1+\|A\|}\right)\right] \\ &\le f(x,A) + Cm(x)\left|\frac{1}{1+\|\tilde{A}\|} - \frac{1}{1+\|A\|}\right| \\ &= f(x,A) + Cm(x)\left(\frac{|A^\beta|}{(1+\|A\|)(1+\|\tilde{A}\|)}\right) \\ &\le f(x,A) + Cm(x). \end{aligned}$$

Thus the monotonicity inequality (1.5) holds true with $\mu = \min_{1 \le i \le n} \{a_i\}$ and M(x) = Cm(x).

ACKNOWLEDGEMENT. The first author was supported by NSF of Hebei Province (A2015201149).

References

- [1] F.Leonetti, P.V.Petricca, Regularity for vector valued minimizers of some anisotropic integral functionals, Journal of Inequalities in Pure and Applied Mathematics, 2006, 7(3), Art. 88.
- [2] H.Gao, S.Liang, Y.Cui, Regularity for anisotropic solutions to some nonlinear elliptic system, Front. Math. China, 11(1) (2016), 77-87.
- [3] A. A. Kovalevsky: Integrability and boundedness of solutions to some anisotropic problems. J. Math. Anal. Appl. **432**, 820-843 (2015).

- [4] Yu.S.Gorban, A. A. Kovalevsky, On the boundedness of solutions of degenerate anisotropic elliptic variational inequalities. Results Math. 65, 121-142 (2014).
- [5] A.A.Kovalevsky, Yu.S.Gorban, Denerate anisotropic variational inequalities with L¹-data, (Preprint 2007.01), 92pp. Inst. Appl. Math. Mech. NAS Ukraine, Donetsk (2007).
- [6] A. Innamorati, F. Leonetti: Global integrability for weak solutions to some anisotropic equations. Nonlinear Anal. 113, 430-434 (2015).
- [7] Yu.S.Gorban, A. A. Kovalevsky, On the boundedness of solutions of degenerate anisotropic elliptic variational inequalities. Results Math. 65, 121-142 (2014).
- [8] A.A.Kovalevsky, Yu.S.Gorban, Degenerate anisotropic variational inequalities with L^1 -data, (Preprint 2007.01), 92pp. Inst. Appl. Math. Mech. NAS Ukraine, Donetsk (2007).
- [9] G. Stampacchia, Equations elliptiques du second ordre a coefficientes discontinus, Semin. de Math. Superieures, Univ. de Montreal, 16, 1966.

Received: July, 2016