Global boundedness for vector valued minimizers of some anisotropic variational integrals

Wang Lianhong
College of Mathematics and Information Science, Hebei University, Baoding 071002, China
\section*{Gao Hongya ${ }^{1}$}
College of Mathematics and Information Science, Hebei University, Baoding 071002, China

Abstract

This paper deals with anisotropic integral functionals of the type $$
\mathcal{I}(u ; \Omega)=\int_{\Omega} f(x, D u(x)) d x
$$

We present a monotonicity inequality on the density $f(x, \xi)$ with weight, which guarantees global boundedness of minimizers u with gradient constraints.

Mathematics Subject Classification: 49N60

Keywords: Global boundedness, vector valued minimizer, anisotropic variational integral, gradient constraint

1 Introduction and Statement of Results.

Let $\Omega \subset \mathrm{R}^{n}(n \geq 2)$ be a bounded domain. For $p_{1}, \cdots, p_{n} \in(1,+\infty)$, we let $\bar{p}=\left(\frac{1}{n} \sum_{i=1}^{n} \frac{1}{p_{i}}\right)^{-1}$ and $p_{i}^{\prime}=\frac{p_{i}}{p_{i}-1}$ be the harmonic mean of p_{1}, \cdots, p_{n} and the Hölder conjugate of p_{i}, respectively.

For every $i \in\{1, \cdots, n\}$, we let ν_{i} to be a function on Ω such that $\nu_{i}>0$ a.e. in Ω and

$$
\begin{equation*}
\nu_{i} \in L_{l o c}^{1}(\Omega), \quad \frac{1}{\nu_{i}} \in L^{1 /\left(p_{i}-1\right)}(\Omega) . \tag{1.1}
\end{equation*}
$$

[^0]Denote by $W^{1,\left(p_{i}\right)}(\nu, \Omega)$ the set of all functions $u \in L^{1}(\Omega)$ such that $\nu_{i}\left|D_{i} u\right|^{p_{i}} \in$ $L^{1}(\Omega)$. The norm for $u \in W^{1,\left(p_{i}\right)}(\nu, \Omega)$ is defined by

$$
\|u\|_{1,\left(p_{i}\right), \nu}=\int_{\Omega}|u| d x+\sum_{i=1}^{n}\left(\int_{\Omega} \nu_{i}\left|D_{i} u\right|^{p_{i}} d x\right)^{1 / p_{i}} .
$$

It is known, by the second inclusion of (1.1), that the set $W^{1,\left(p_{i}\right)}(\nu, \Omega)$ is a Banach space with respect to the norm $\|\cdot\|_{1,\left(p_{i}\right), \nu}$. Moreover, by virtue of the first inclusion of (1.1), we have $C_{0}^{\infty}(\Omega) \subset W^{1,\left(p_{i}\right)}(\nu, \Omega)$. We denote by $W_{0}^{1,\left(p_{i}\right)}(\nu, \Omega)$ the closure of the set $C_{0}^{\infty}(\Omega)$ in the norm of $W^{1,\left(p_{i}\right)}(\nu, \Omega)$. The set $W_{0}^{1,\left(p_{i}\right)}(\nu, \Omega)$ is a reflexive Banach space with respect to the norm induced by $\|\cdot\|_{1,\left(p_{i}\right), \nu}$. We denote by $W^{1,\left(p_{i}\right)}\left(w, \Omega, \mathrm{R}^{N}\right)$ the set of all vector valued functions $u=\left(u^{1}, \cdots, u^{N}\right)$ such that for every $j \in\{1, \cdots, N\}$ we have $u^{j} \in W^{1,\left(p_{i}\right)}(\nu, \Omega)$. In particular, $W^{1,\left(p_{i}\right)}(\Omega), W_{0}^{1,\left(p_{i}\right)}(\Omega), W^{1,\left(p_{i}\right)}\left(\Omega, \mathrm{R}^{N}\right)$ and $W_{0}^{1,\left(p_{i}\right)}\left(\Omega, \mathrm{R}^{N}\right)$ stand for the special cases of $W^{1,\left(p_{i}\right)}(\nu, \Omega), W_{0}^{1,\left(p_{i}\right)}(\nu, \Omega)$, $W^{1,\left(p_{i}\right)}\left(\nu, \Omega, \mathrm{R}^{N}\right)$ and $W_{0}^{1,\left(p_{i}\right)}\left(\nu, \Omega, \mathrm{R}^{N}\right)$ with $\nu_{i} \equiv 1, i=1, \cdots, n$, respectively.

For a vector $m=\left(m_{1}, \cdots, m_{n}\right) \in \mathrm{R}^{n}$ with $m_{i}>0, i=1, \cdots, n$, we set

$$
q_{m}=n\left(\sum_{i=1}^{n} \frac{1+m_{i}}{m_{i} p_{i}}-1\right)^{-1}
$$

We consider the anisotropic integral functional

$$
\begin{equation*}
\mathcal{I}(u ; \Omega)=\int_{\Omega} f(x, D u(x)) d x \tag{1.2}
\end{equation*}
$$

where $f: \Omega \times \mathrm{R}^{N \times n} \rightarrow \mathrm{R}$ is a Carathéodory function. We assume that there exist a constant $\mu>0$ and a function $M(x) \in L^{r}(\Omega), r \geq 1$, such that

$$
\begin{equation*}
f(x, \tilde{A})+\mu \sum_{i=1}^{n} \nu_{i}\left|\tilde{A}_{i}-A_{i}\right|^{p_{i}} \leq f(x, A)+M(x) \tag{1.3}
\end{equation*}
$$

for every pair of matrices $\tilde{A}, A \in \mathrm{R}^{N \times n}$ such that there exists a row β with $\tilde{A}^{\beta}=0$ and for every remaining row $\alpha \neq \beta$ we have $\tilde{A}^{\alpha}=A^{\alpha}$.

We let $\varphi: \Omega \rightarrow \mathrm{R}$ be a nonnegative function and $u_{*} \in W^{1,\left(p_{i}\right)}\left(w, \Omega, \mathrm{R}^{N}\right)$ be such that $\left|D u_{*}(x)\right| \leq \varphi(x)$, a.e. Ω. We assume that for every $x \in \Omega$,

$$
K(x)=\left\{\xi \in \mathrm{R}^{N \times n}:|\xi| \leq \varphi(x)\right\} .
$$

We define

$$
V\left(u_{*}, K\right)=\left\{v \in u_{*}+W_{0}^{1,\left(p_{i}\right)}\left(w, \Omega, \mathrm{R}^{N}\right): D v(x) \in K(x) \text { for a.e. } x \in \Omega\right\} .
$$

It is obvious that $D u_{*}(x) \in K(x)$ for a.e. $x \in \Omega$. Therefore, $V\left(u_{*}, K\right) \neq \emptyset$. It is easy to see that the set $V\left(u_{*}, K\right)$ is convex and closed in $W^{1,\left(p_{i}\right)}\left(w, \Omega, \mathrm{R}^{N}\right)$.

The main result of this paper is the following theorem.

Theorem 1.1 Let $m \in R^{n}$, and let the following two conditions be satisfied:
(a) for every $i \in\{1, \cdots, n\}$ we have $m_{i} \geq 1 /\left(p_{i}-1\right)$ and $1 / w_{i} \in L^{m_{i}}(\Omega)$;
(b) $q_{m}>\bar{p}$.

We consider the integral functional (1.2) under the monotonicity inequality (1.3). We let $u \in W^{1,\left(p_{i}\right)}\left(w, \Omega, R^{N}\right)$ be such that

$$
\begin{gather*}
u \in V\left(u_{*}, K\right) \tag{1.4}\\
\forall v \in V\left(u_{*}, K\right), \int_{\Omega} f(x, D u(x)) d x \leq \int_{\Omega} f(x, D v(x)) d x . \tag{1.5}
\end{gather*}
$$

Then, for every component u^{β} of u, we have

$$
\begin{equation*}
\inf _{\partial \Omega} u_{*}^{\beta}(x)-c_{*} \leq u^{\beta}(x) \leq \sup _{\partial \Omega} u_{*}^{\beta}(x)+c_{*} \tag{1.6}
\end{equation*}
$$

for almost every $x \in \Omega$, where

$$
c_{*}=c\left(\frac{\|M\|_{L^{r}(\Omega)}}{\mu}\right)^{\frac{1}{\bar{p}}}|\Omega|^{\left[\left(1-\frac{1}{r}\right) \frac{q_{m}}{\bar{p}}-1\right] \frac{1}{q_{m}}} 2^{\left(1-\frac{1}{r}\right) \frac{q_{m}}{\bar{p}}\left[\left(1-\frac{1}{r}\right) \frac{q_{m}}{\bar{p}}-1\right]^{-1}},
$$

where $|\Omega|$ is the n-dimensional Lebesgue measure of Ω, and c and μ are the constants from (2.1) and (1.3), respectively.

Remark 1.2 We refer the readers to [1-6] for some related results.
A model density f for the monotonicity inequality (1.3) is given in the following.

Theorem 1.3 For every $i=1, \cdots, n$, let us consider $p_{i} \geq 2$ and $a_{i}>0$; we take $m(x) \geq 0$, a.e. $x \in \Omega$. Let us consider $f: \Omega \times R^{N \times n} \rightarrow R$ defined as follows:

$$
f(x, A)=\sum_{i=1}^{n} a_{i} \nu_{i}\left|A_{i}\right|^{p_{i}}+m(x) h\left(\frac{1}{1+\|A\|}\right),
$$

where

$$
\|A\|=\left(\operatorname{Tr}\left(A^{t} A\right)\right)^{1 / 2}=\left(\sum_{i=1}^{n} \sum_{j=1}^{N}\left|A_{i}^{j}\right|^{2}\right)^{1 / 2}
$$

is the Hilbert-Schmidt norm of the matrix $A=\left(A_{i}^{j}\right)$, and $h(x):(0,+\infty) \rightarrow R$ is a Lipschitz continuous function:

$$
\begin{equation*}
\left|h\left(t_{1}\right)-h\left(t_{2}\right)\right| \leq C\left|t_{1}-t_{2}\right|, \quad \forall t_{1}, t_{2} \geq 0 \tag{1.7}
\end{equation*}
$$

Then the monotonicity inequality (1.3) holds true with $\mu=\min _{1 \leq i \leq n}\left\{a_{i}\right\}$ and $M(x)=C m(x)$, where C is the constant in (1.7).

2 Proof of Theorems 1.1 and 1.3.

In order to prove Theorem 1.1, we need two preliminary lemmas.
The following lemma is the Sobolev Imbedding Theorem with weight, which comes from [7, Proposition 2.1], the proof can be found in [8].

Lemma 2.1 Let $m \in R^{n}$, and let the following conditions be satisfied: for every $i \in\{1, \cdots, n\}$ we have $m_{i} \geq 1 /\left(p_{i}-1\right)$ and $1 / w_{i} \in L^{m_{i}}(\Omega)$. Then $W_{0}^{1,\left(p_{i}\right)}(w, \Omega) \subset L^{q_{m}}(\Omega)$, and there exists a positive constant c such that for every function $v \in W_{0}^{1,\left(p_{i}\right)}(w, \Omega)$,

$$
\begin{equation*}
\left(\int_{\Omega}|v|^{q_{m}} d x\right)^{1 / q_{m}} \leq c \prod_{i=1}^{n}\left(\int_{\Omega} w_{i}\left|D_{i} v\right|^{p_{i}} d x\right)^{1 / n p_{i}} . \tag{2.1}
\end{equation*}
$$

The next lemma comes from [9, Lemma 4.1].
Lemma 2.2 Let $\chi:\left[t_{0},+\infty\right) \rightarrow[0,+\infty)$ be non-increasing. We assume that there exist $\tilde{C}, a>0$ and $b>1$ such that

$$
t_{0} \leq t<T \Rightarrow \chi(T) \leq \frac{\tilde{C}}{(T-t)^{a}}[\chi(t)]^{b} .
$$

Then it results that

$$
\chi\left(t_{0}+d\right)=0,
$$

where

$$
d=\left[\tilde{C}\left(\chi\left(t_{0}\right)\right)^{b-1} 2^{\frac{a b}{b-1}}\right]^{\frac{1}{a}} .
$$

Proof of Theorem 1.1. As in the proof of Lemma 2.1 in [1], we define $I_{\beta, t}$: $\mathrm{R}^{N} \rightarrow \mathrm{R}^{N}$ as follows:

$$
\forall y=\left(y^{1}, \cdots, y^{N}\right) \in \mathrm{R}^{N}, \quad I_{\beta, t}(y)=\left(I_{\beta, t}^{1}(y), I_{\beta, t}^{2}(y), \cdots, I_{\beta, t}^{N}(y)\right)
$$

with

$$
I_{\beta, t}^{\alpha}(y)= \begin{cases}y^{\alpha}, & \alpha \neq \beta \\ y^{\beta} \wedge t=\min \left\{y^{\beta}, t\right\}, & \alpha=\beta\end{cases}
$$

For $u \in V\left(u_{*}, K\right)$, we need to show that $I_{\beta, t}(u) \in V\left(u_{*}, K\right)$. In fact, it is obvious that $I_{\beta, t}(u) \in u_{*}+W_{0}^{1,\left(p_{i}\right)}\left(w, \Omega, \mathrm{R}^{N}\right)$; in order to show that $D I_{\beta, t}(u) \in$ $K(x)$, it is sufficient to derive $\left|D I_{\beta, t}(u)(x)\right| \leq K(x)$. This is true because

$$
D_{i} I_{\beta, t}^{\alpha}(u)= \begin{cases}D_{i} u^{\alpha}, & \alpha \neq \beta, \tag{2.1}\\ D_{i} u^{\beta} 1_{\left\{u^{\beta} \leq t\right\}}, & \alpha=\beta,\end{cases}
$$

where 1_{B} is the characteristic function of the set B, that is, $1_{B}(x)=1$ if $x \in B$ and $1_{B}(x)=0$ otherwise.

Our next goal is to show that, for every $u=\left(u^{1}, u^{2}, \cdots, u^{N}\right) \in W^{1,\left(p_{i}\right)}\left(w, \Omega, \mathrm{R}^{N}\right)$, for any $\beta \in\{1,2, \cdots, N\}$, for all $t \in \mathrm{R}$, the following inequality holds true

$$
\begin{equation*}
\mathcal{I}\left(I_{\beta, t}(u)\right)+\mu \sum_{i=1}^{n} \int_{\Omega} w_{i}\left|D_{i}\left(I_{\beta, t}(u)\right)-D_{i} u\right|^{p_{i}} d x \leq \mathcal{I}(u)+\int_{\left\{u^{\beta}>t\right\}} M(x) d x \tag{2.2}
\end{equation*}
$$

Indeed, on $\left\{x \in \Omega: u^{\beta}>t\right\}$ we have $D\left(I_{\beta, t}^{\beta}(u)\right)=0$, and for $\alpha \neq \beta$, $D\left(I_{\beta, t}^{\alpha}(u)\right)=D_{i} u^{\alpha}$; so we can apply (1.3) with $\tilde{A}=D\left(I_{\beta, t}(u)\right)$ and $A=D u$; we obtain

$$
\begin{equation*}
f\left(x, D\left(I_{\beta, t}(u)\right)\right)+\mu \sum_{i=1}^{n} w_{i}\left|D_{i}\left(I_{\beta, t}(u)\right)-D_{i} u\right|^{p_{i}} \leq f(x, D u)+M(x) \tag{2.3}
\end{equation*}
$$

for $x \in\left\{x \in \Omega: u^{\beta}>t\right\}$. On $\left\{x \in \Omega: u^{\beta} \leq t\right\}, D\left(I_{\beta, t}(u)\right)=D u$, thus

$$
\begin{equation*}
f\left(x, D\left(I_{\beta, t}(u)\right)\right)+\mu \sum_{i=1}^{n} w_{i}\left|D_{i}\left(I_{\beta, t}(u)\right)-D_{i} u\right|^{p_{i}} d x=f(x, D u) \tag{2.4}
\end{equation*}
$$

for $x \in\left\{x \in \Omega: u^{\beta} \leq t\right\}$. From (2.3) and (2.4) we have

$$
\begin{equation*}
f\left(x, D I_{\beta, t}(u)\right)+\mu \sum_{i=1}^{n} w_{i}\left|D_{i}\left(I_{\beta, t}(u)\right)-D_{i} u\right|^{p_{i}} \leq f(x, D u)+M(x) \cdot 1_{\left\{u^{\beta}>t\right\}} . \tag{2.5}
\end{equation*}
$$

Since $\mathcal{I}(u)<+\infty$, then $f(x, D u(x)) \in L^{1}(\Omega)$, thus $f\left(x, D I_{\beta, t}(u)\right) \in L^{1}(\Omega)$ too. Integrating (2.5) with respect to x, we get (2.2).

Let us fix $\beta \in\{1,2, \cdots, N\}$. If $\sup _{\partial \Omega} u_{*}^{\beta}(x)=+\infty$ then the right hand side of (1.6) is satisfied. Thus we assume $\sup _{\partial \Omega} u_{*}^{\beta}(x)<t_{0}<t<+\infty$ and we note that under this assumption $I_{\beta, t}(u) \in u+W_{0}^{1,1}\left(w, \Omega, \mathrm{R}^{N}\right)$ and $D_{i}\left(I_{\beta, t}(u)\right) \in$ $L^{p_{i}}\left(w, \Omega, \mathrm{R}^{N}\right), i \in\{1, \cdots, n\}$, this is because

$$
u^{\beta} \wedge t=\min \left\{u^{\beta}, t\right\}=u^{\beta}-\left[\max \left\{u^{\beta}-t, 0\right\}\right]=u^{\beta}-\left[\left(u^{\beta}-t\right) \vee 0\right]=u^{\beta}-\phi,
$$

where $\phi=\max \left\{u^{\beta}-t, 0\right\}=\left(u^{\beta}-t\right) \vee 0 \in W_{0}^{1,1}(\Omega)$ and $D_{i} \phi=D_{i} u^{\beta} \cdot 1_{\left\{u^{\beta}>t\right\}} \in$ $L^{p_{i}}\left(w_{i}, \Omega\right), i=1,2, \cdots, n$. From (1.5) and (2.2) it results that
$\mathcal{I}(u) \leq \mathcal{I}\left(I_{\beta, t}(u)\right) \leq \mathcal{I}(u)-\mu \sum_{i=1}^{n} \int_{\Omega} w_{i}\left|D_{i}\left(I_{\beta, t}(u)\right)-D_{i} u\right|^{p_{i}} d x+\int_{\left\{u^{\beta}>t\right\}} M(x) d x$,
from which we derive

$$
\begin{equation*}
\mu \sum_{i=1}^{n} \int_{\Omega} w_{i}\left|D_{i} \phi\right|^{p_{i}} d x=\mu \sum_{i=1}^{n} \int_{\Omega} w_{i}\left|D_{i}\left(I_{\beta, t}(u)\right)-D_{i} u\right|^{p_{i}} d x \leq \int_{\left\{u^{\beta}>t\right\}} M(x) d x . \tag{2.6}
\end{equation*}
$$

If $r<+\infty$, we apply Hölder inequality and we get

$$
\int_{\left\{u^{\beta}>t\right\}} M(x) d x \leq\|M\|_{L^{r}(\Omega)}\left|\left\{u^{\beta}>t\right\}\right|^{1-\frac{1}{r}} .
$$

If $r=+\infty$, then

$$
\int_{\left\{u^{\beta}>t\right\}} M(x) d x \leq\|M\|_{L^{\infty}(\Omega)}\left|\left\{u^{\beta}>t\right\}\right|=\|M\|_{L^{r}(\Omega)}\left|\left\{u^{\beta}>t\right\}\right|^{1-\frac{1}{r}} .
$$

In both cases, from (2.6) it results that

$$
\sum_{i=1}^{n} \int_{\Omega} w_{i}\left|D_{i} \phi\right|^{p_{i}} d x \leq \frac{\|M\|_{L^{r}(\Omega)}}{\mu}\left|\left\{u^{\beta}>t\right\}\right|^{1-\frac{1}{r}}
$$

We apply Lemma 2.1 and we get

$$
\begin{align*}
& \left(\int_{\left\{u^{\beta}>t\right\}}\left|u^{\beta}-t\right|^{q_{m}} d x\right)^{1 / q_{m}} \\
= & \left(\int_{\left\{u^{\beta}>t\right\}}|\phi|^{q_{m}} d x\right)^{1 / q_{m}}=\left(\int_{\Omega}|\phi|^{q_{m}} d x\right)^{1 / q_{m}} \tag{2.7}\\
\leq & c \prod_{i=1}^{n}\left(\int_{\Omega} w_{i}\left|D_{i} \phi\right|^{p_{i}} d x\right)^{1 / n p_{i}} \leq c\left(\frac{\|M\|_{L^{r}(\Omega)}}{\mu}\left|\left\{u^{\beta}>t\right\}\right|^{1-\frac{1}{r}}\right)^{\frac{1}{p}} .
\end{align*}
$$

For $T>t$ we have

$$
\begin{align*}
&(T-t)^{q_{m}}\left|\left\{u^{\beta}>T\right\}\right|=\int_{\left\{u^{\beta}>T\right\}}(T-t)^{q_{m}} d x \\
& \leq \int_{\left\{u^{\beta}>T\right\}}\left(u^{\beta}-t\right)^{q_{m}} d x \leq \int_{\left\{u^{\beta}>t\right\}}\left(u^{\beta}-t\right)^{q_{m}} d x . \tag{2.8}
\end{align*}
$$

From (2.7) and (2.8) we get

$$
\left|\left\{u^{\beta}>T\right\}\right| \leq c^{q_{m}}\left(\frac{\|M\|_{L^{r}(\Omega)}}{\mu}\right)^{\frac{q_{m}}{\bar{p}}} \frac{1}{(T-t)^{q_{m}}}\left|\left\{u^{\beta}>t\right\}\right|^{\left(1-\frac{1}{r}\right) \frac{q_{m}}{\bar{p}}}
$$

for every T, t with $T>t \geq t_{0}$. We set $\chi(t)=\left|\left\{u^{\beta}>t\right\}\right|, \tilde{C}=c^{q_{m}}\left(\frac{\|M\|_{L^{r}(\Omega)}}{\mu}\right)^{\frac{q_{m}}{\bar{p}}}$, $a=q_{m}$ and $b=\left(1-\frac{1}{r}\right) \frac{q_{m}}{\bar{p}}$. We use Lemma 2.2 and we get $\left|\left\{u^{\beta}>t_{0}+c_{*}\right\}\right|=0$, that is, $u^{\beta} \leq t_{0}+c_{*}$ almost everywhere in Ω, where

$$
c_{*}=c\left(\frac{\|M\|_{L^{r}(\Omega)}}{\mu}\right)^{\frac{1}{\bar{p}}}|\Omega|^{\left[\left(1-\frac{1}{r}\right) \frac{q_{m}}{\bar{p}}-1\right] \frac{1}{q_{m}}} 2^{\left(1-\frac{1}{r}\right) \frac{q_{m}}{\bar{p}}\left[\left(1-\frac{1}{r}\right) \frac{q_{m}}{\bar{p}}-1\right]^{-1}} .
$$

In order to get the right hand side of (1.6), we take a sequence $\left\{\left(t_{0}\right)_{m}\right\}_{m}$ with $\left(t_{0}\right)_{m} \rightarrow \sup _{\partial \Omega} u^{\beta}$. We apply the right hand side of (1.6) to $-u$ and we get the left hand side of (1.7). This ends the proof of Theorem 1.1.

Proof of Theorem 1.3. We assume that $\tilde{A}, A \in \mathrm{R}^{N \times n}$ with $\tilde{A}^{\beta}=0$ and $\tilde{A}^{\alpha}=A^{\alpha}$ for $\alpha \neq \beta$. Then

$$
\sum_{\alpha}\left|A_{i}^{\alpha}\right|^{2}=\sum_{\alpha}\left|A_{i}^{\alpha}-\tilde{A}_{i}^{\alpha}\right|^{2}+\sum_{\alpha}\left|\tilde{A}_{i}^{\alpha}\right|^{2} .
$$

Thus

$$
\left|A_{i}\right|^{2}=\left|A_{i}-\tilde{A}_{i}\right|^{2}+\left|\tilde{A}_{i}\right|^{2} .
$$

The conditions $p_{i} \geq 2, i=1, \cdots, n$, imply

$$
\left|A_{i}\right|^{p_{i}} \geq\left|A_{i}-\tilde{A}_{i}\right|^{p_{i}}+\left|\tilde{A}_{i}\right|^{p_{i}}
$$

Thus

$$
\begin{aligned}
& f(x, \tilde{A})+\min _{1 \leq i \leq n}\left\{b_{i}\right\} \cdot \sum_{i=1}^{n} w_{i}\left|\tilde{A}_{i}-A_{i}\right|^{p_{i}} \\
\leq & \sum_{i=1}^{n} b_{i} w_{i}\left|\tilde{A}_{i}\right|^{p_{i}}+m(x) h\left(\frac{1}{1+\|\tilde{A}\|}\right)+\sum_{i=1}^{n} b_{i} w_{i}\left|\tilde{A}_{i}-A_{i}\right|^{p_{i}} \\
\leq & \sum_{i=1}^{n} b_{i} w_{i}\left|A_{i}\right|^{p_{i}}+m(x) h\left(\frac{1}{1+\|\tilde{A}\|}\right) \\
= & \sum_{i=1}^{n} b_{i} w_{i}\left|A_{i}\right|^{p_{i}}+m(x) h\left(\frac{1}{1+\|A\|}\right)+m(x)\left[h\left(\frac{1}{1+\|\tilde{A}\|}\right)-h\left(\frac{1}{1+\|A\|}\right)\right] \\
\leq & f(x, A)+C m(x)\left|\frac{1}{1+\|\tilde{A}\|}-\frac{1}{1+\|A\|}\right| \\
= & f(x, A)+C m(x)\left(\frac{\left|A^{\beta}\right|}{(1+\|A\|)(1+\|\tilde{A}\|)}\right) \\
\leq & f(x, A)+C m(x) .
\end{aligned}
$$

Thus the monotonicity inequality (1.5) holds true with $\mu=\min _{1 \leq i \leq n}\left\{a_{i}\right\}$ and $M(x)=C m(x)$.

ACKNOWLEDGEMENT. The first author was supported by NSF of Hebei Province (A2015201149).

References

[1] F.Leonetti, P.V.Petricca, Regularity for vector valued minimizers of some anisotropic integral functionals, Journal of Inequalities in Pure and Applied Mathematics, 2006, 7(3), Art. 88.
[2] H.Gao, S.Liang, Y.Cui, Regularity for anisotropic solutions to some nonlinear elliptic system, Front. Math. China, 11(1) (2016), 77-87.
[3] A. A. Kovalevsky: Integrability and boundedness of solutions to some anisotropic problems. J. Math. Anal. Appl. 432, 820-843 (2015).
[4] Yu.S.Gorban, A. A. Kovalevsky, On the boundedness of solutioins of degenerate anisotropic elliptic variatioinal inequalities. Results Math. 65, 121-142 (2014).
[5] A.A.Kovalevsky, Yu.S.Gorban, Denerate anisotropic variational inequalities with L^{1}-data, (Preprint 2007.01), 92pp. Inst. Appl. Math. Mech. NAS Ukraine, Donetsk (2007).
[6] A. Innamorati, F. Leonetti: Global integrability for weak solutions to some anisotropic equations. Nonlinear Anal. 113, 430-434 (2015).
[7] Yu.S.Gorban, A. A. Kovalevsky, On the boundedness of solutioins of degenerate anisotropic elliptic variatioinal inequalities. Results Math. 65, 121-142 (2014).
[8] A.A.Kovalevsky, Yu.S.Gorban, Degenerate anisotropic variational inequalities with L^{1}-data, (Preprint 2007.01), 92pp. Inst. Appl. Math. Mech. NAS Ukraine, Donetsk (2007).
[9] G. Stampacchia, Equations elliptiques du second ordre a coefficientes discontinus, Semin. de Math. Superieures, Univ. de Montreal, 16, 1966.

Received: July, 2016

[^0]: ${ }^{1}$ Corresponding author, email: ghy@hbu.cn.

