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Abstract

This paper deals with anisotropic solutions u ∈ u∗+W
1,(pi)
0 (w,Ω,RN )

to the nonlinear elliptic system

−
n
∑

i=1

Di(a
α
i (x,Du(x))) = 0, α = 1, · · · , N.

We present a monotonicity inequality on the matrix a = (aαi ) ∈ RN×n

with weight, which guarantees global pointwise bounds for the anisotropic
solutions u with gradient constraint.
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1 Introduction and Statement of results.

Throughout this paper Ω will stand for a bounded open domain in Rn, n ≥

2. For p1, · · · , pn ∈ (1,+∞), we let p̄ =
(

1
n

n
∑

i=1

1
pi

)−1

and p′i = pi
pi−1

be the

harmonic mean of p1, · · · , pn and the Hölder conjugate of pi, respectively.
Let wi (i = 1 · · · , n) to be functions in Ω such that wi > 0 a.e. in Ω, and

wi ∈ L1
loc(Ω),

1

wi
∈ L1/(pi−1)(Ω). (1.1)

1Corresponding author, email: ghy@hbu.cn.
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Denote

W 1,(pi)(w,Ω) = {u ∈ L1(Ω) : wi|Diu|
pi ∈ L1(Ω), i = 1, · · · , n}.

The norm for u ∈ W 1,(pi)(w,Ω) is defined by

‖u‖1,(pi),w =
∫

Ω
|u|dx+

n
∑

i=1

(∫

Ω
wi|Diu|

pidx
)1/pi

.

By the second inclusion of (1.1), the set W 1,(pi)(w,Ω) is a Banach space with
respect to the norm ‖ · ‖1,(pi),w. By virtue of the first inclusion of (1.1), we

have C∞
0 (Ω) ⊂ W 1,(pi)(w,Ω). We denote by W

1,(pi)
0 (w,Ω) the closure of the

set C∞
0 (Ω) in the norm of W 1,(pi)(w,Ω). The set W

1,(pi)
0 (w,Ω) is a reflexive

Banach space with respect to the norm induced by ‖ · ‖1,(pi),w. We denote
by W 1,(pi)(w,Ω,RN ) the set of all vector valued functions u = (u1, · · · , uN)
such that for every j ∈ {1, · · · , N} we have uj ∈ W 1,(pi)(w,Ω). In particular,

W 1,(pi)(Ω), W
1,(pi)
0 (Ω), W 1,(pi)(Ω,RN) and W

1,(pi)
0 (Ω,RN) stand for the special

cases of W 1,(pi)(w,Ω), W
1,(pi)
0 (w,Ω), W 1,(pi)(w,Ω,RN) and W

1,(pi)
0 (w,Ω,RN)

with wi ≡ 1, i = 1, · · · , n, respectively.
For a vector m = (m1, · · · , mn) ∈ Rn with mi > 0, i = 1, · · · , n, we set

qm = n

(

n
∑

i=1

1 +mi

mipi
− 1

)−1

.

We let ϕ : Ω → R be a nonnegative function and u∗ ∈ W 1,(pi)(w,Ω,RN ) be
such that |Du∗(x)| ≤ ϕ(x), a.e. Ω. We define

Cu∗,ϕ = {v ∈ u∗ +W
1,(pi)
0 (w,Ω,RN) : |Dv(x)| ≤ ϕ(x) for a.e. x ∈ Ω}.

It is obvious that u∗ ∈ Cu∗,ϕ. Therefore, Cu∗,ϕ 6= ∅. It is easy to see that the
set Cu∗,ϕ is convex and closed in W 1,(pi)(w,Ω,RN).

We consider the nonlinear elliptic system

−
n
∑

i=1

Di(a
α
i (x,Du(x))) = 0, α = 1, · · · , N.

where Du = (D1u, · · · , Dnu) denotes the gradient of a vector valued func-
tion u = (u1, · · · , uN) : Ω → RN , and a = (aαi ) : Ω × RN×n → RN×n is a
Carathéodory N × n matrix, that is, aαi (x, ξ) is measurable with respect to x
and continuous with respect to ξ, i = 1, · · · , n, α = 1, · · · , N .

We assume that there exist a constant ν > 0 and a function M(x) ∈ Lr(Ω),
r > 1, such that

ν
n
∑

i=1

wi|Ai − Ãi|
pi ≤

n
∑

i=1

N
∑

α=1

aαi (x,A)(A
α
i − Ãα

i ) +M(x), (1.2)
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holds true for every pair of matrices A, Ã ∈ RN×n such that there exists a row
β with Ãβ = 0 and for every remaining row α 6= β we have Ãα = Aα.

In order to make finite the integrals over subsets of Ω of the first term in
the right hand side of (1.2), we assume that

|aαi (x,A)| ≤ c



1 +
n
∑

j=1

|Aj|
pj





1/p′i

.

The main result of this paper is the following theorem.

Theorem 1.1 Let m ∈ Rn, and let the following two conditions be satisfied:
(a) for every i ∈ {1, · · · , n} we have mi ≥ 1/(pi − 1) and 1/wi ∈ Lmi(Ω);
(b) qm > p̄.

We let u ∈ Cu∗,ϕ be such that

∀v ∈ Cu∗,ϕ,
∫

Ω

n
∑

i=1

N
∑

α=1

aαi (x,Du)Di(u
α − vα)dx ≤ 0. (1.3)

Then, for every component uβ of u, we have

inf
∂Ω

uβ
∗ (x)− c∗ ≤ uβ(x) ≤ sup

∂Ω
uβ
∗ (x) + c∗ (1.4)

for almost every x ∈ Ω, where

c∗ = c

(

‖M‖Lr(Ω)

ν

) 1
p̄

|Ω|[(1−
1
r
) qm

p̄
−1] 1

qm 2(1−
1
r
) qm

p̄ [(1− 1
r
) qm

p̄
−1]

−1

,

where |Ω| is the n-dimensional Lebesgue measure of Ω, and c and ν are the
constants from (2.1) and (1.2), respectively.

Remark 1.2 We refer the readers to [1-6] for some related results.

A model density f for the monotonicity inequality (1.2) is given in the
following.

Theorem 1.3 For every i = 1, · · · , n, let us consider pi ≥ 2 and ti > 0.
For A ∈ RN×n we consider a(x,A) = (a1(x,A), · · · , an(x,A)) with

ai(x,A) = tiwi|Ai|
pi−2Ai +

m(x)

1 + ‖A‖
, i = 1, · · · , n,

where m(x) ≥ 0. Then the inequality (1.2) holds true with

ν = min
1≤i≤n

{ti} and M(x) = m(x).
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2 Proof of Theorems 1.2 and 1.3.

In order to prove Theorem 1, we need two preliminary lemmas.
The following lemma is the Sobolev Imbedding Theorem with weight, which

comes from [7, Proposition 2.1], the proof can be found in [8].

Lemma 2.1 Let m ∈ Rn, and let the following conditions be satisfied: for
every i ∈ {1, · · · , n} we have mi ≥ 1/(pi − 1) and 1/wi ∈ Lmi(Ω). Then

W
1,(pi)
0 (w,Ω) ⊂ Lqm(Ω), and there exists a positive constant c such that for

every function v ∈ W
1,(pi)
0 (w,Ω),

(
∫

Ω
|v|qmdx

)1/qm

≤ c
n
∏

i=1

(
∫

Ω
wi|Div|

pidx
)1/npi

. (2.1)

The next lemma comes from [9, Lemma 4.1].

Lemma 2.2 Let χ : [t0,+∞) → [0,+∞) be non-increasing. We assume
that there exist C̃, a > 0 and b > 1 such that

t0 ≤ t < T ⇒ χ(T ) ≤
C̃

(T − t)a
[χ(t)]b.

Then it results that
χ(t0 + d) = 0,

where

d =
[

C̃ (χ(t0))
b−1 2

ab
b−1

]
1
a
.

Proof of Theorem 1.1. As in the proof of Lemma 2.1 in [1], we define
Iβ,t : R

N → RN as follows:

∀y = (y1, · · · , yN) ∈ RN , Iβ,t(y) = (I1β,t(y), I
2
β,t(y), · · · , I

N
β,t(y))

with

Iαβ,t(y) =

{

yα, α 6= β
yβ ∧ t = min{yβ, t}, α = β.

We may assume sup∂Ω uβ
∗ < t0 ≤ t, since otherwise, sup∂Ω uβ

∗ = +∞, the right
hand side inequality of (1.4) holds true trivially. For such t and u ∈ Cu∗,ϕ,
we need to show that Iβ,t(u) ∈ Cu∗,ϕ. In fact, it is obvious that Iβ,t(u) ∈

u∗ +W
1,(pi)
0 (w,Ω,RN); in order to show that |DIβ,t(u)(x)| ≤ K(x) we notice

that

Di(I
α
β,t(u)) =

{

Diu
α, α 6= β,

Diu
β1{uβ≤t}, α = β,

(2.1)
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where 1B is the characteristic function of the set B, that is, 1B(x) = 1 if x ∈ B
and 1B(x) = 0 otherwise. In both cases of (2.1), we have |DIβ,t(u)(x)| ≤ K(x).

(1.3) with v = Iβ,t(u) acting as a test function yields

∫

Ω

n
∑

i=1

N
∑

α=1

aαi (x,Du)Di(u
α − Iαβ,t(u))dx ≤ 0. (2.2)

It is obvious that

Di(u
α − Iαβ,t(u)) =

{

0, α 6= β,
Diu

β · 1{uβ>t} α = β.

On {x ∈ Ω : uβ > t} we have D(Iββ,t(u)) = 0 and, for α 6= β,D(Iαβ,t(u)) = Duα;

so we can apply (1.2) with A = Du and Ã = D(Iβ,t(u)); we obtain that

ν
n
∑

i=1

wi|Diu−Di(Iβ,t(u))|
pi ≤

n
∑

i=1

N
∑

α=1

aαi (x,Du)
(

Diu
α −Di

(

Iαβ,t(u)
))

+M(x)

(2.3)
for x ∈ {x ∈ Ω : uβ > t}. On {x ∈ Ω : uβ ≤ t}, D(Iβ,t(u)) = Du, thus

ν
n
∑

i=1

wi|Diu−Di(Iβ,t(u))|
pi =

n
∑

i=1

N
∑

α=1

ai(x,Du)
(

Diu
α −Di

(

Iαβ,t(u)
))

= 0,

(2.4)
for x ∈ {x ∈ Ω : uβ ≤ t}. From (2.3) and (2.4) we have

ν
n
∑

i=1

wi|Diu−Di(Iβ,t(u))|
pi ≤

n
∑

i=1

N
∑

α=1

ai(x,Du)
(

Diu
α −Di

(

Iαβ,t(u)
))

+M(x)·1{uβ>t},

from which we derive

ν
∫

Ω

n
∑

i=1

wi|Diu−Di(Iβ,t(u))|
pidx

≤
∫

Ω

n
∑

i=1

N
∑

α=1

aαi (x,Du)
(

Diu
α −Di

(

Iαβ,t(u)
))

dx+
∫

{uβ>t}
M(x)dx.

We apply (2.2) and we get

ν
∫

Ω

n
∑

i=1

wi|Diu−Di(Iβ,t(u))|
pidx ≤

∫

{uβ>t}
M(x)dx. (2.5)

If we define φ = (uβ − t)∨ 0 = max{uβ − t, 0}, then (2.5) together with Hölder
inequality yields

ν
n
∑

i=1

∫

Ω
wi|Diφ|

pidx ≤
∫

{uβ>t}
M(x)dx ≤ ‖M‖Lr(Ω)|{u

β > t}|1−
1
r .
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If r < +∞, we apply Hölder inequality and we get
∫

{uβ>t}
M(x)dx ≤ ‖M‖Lr(Ω)|{u

β > t}|1−
1
r .

If r = +∞, then
∫

{uβ>t}
M(x)dx ≤ ‖M‖L∞(Ω)|{u

β > t}| = ‖M‖Lr(Ω)|{u
β > t}|1−

1
r .

In both cases, from (2.5) it results that

n
∑

i=1

∫

Ω
wi|Diφ|

pidx ≤
‖M‖Lr(Ω)

ν
|{uβ > t}|1−

1
r .

We apply Lemma 2.1 and we get

(

∫

{uβ>t}
|uβ − t|qmdx

)1/qm

=

(

∫

{uβ>t}
|φ|qmdx

)1/qm

=
(∫

Ω
|φ|qmdx

)1/qm

≤ c
n
∏

i=1

(∫

Ω
wi|Diφ|

pidx
)1/npi

≤ c

(

‖M‖Lr(Ω)

ν
|{uβ > t}|1−

1
r

) 1
p̄

.

(2.6)

For T > t we have

(T − t)qm |{uβ > T}| =
∫

{uβ>T}
(T − t)qmdx

≤
∫

{uβ>T}
(uβ − t)qmdx ≤

∫

{uβ>t}
(uβ − t)qmdx.

(2.7)

From (2.6) and (2.7) we get

|{uβ > T}| ≤ cqm
(

‖M‖Lr(Ω)

ν

)
qm
p̄ 1

(T − t)qm
|{uβ > t}|(1−

1
r
) qm

p̄

for every T, t with T > t ≥ t0. We set χ(t) = |{uβ > t}|, C̃ = cqm
(

‖M‖Lr(Ω)

µ

)

qm
p̄
,

a = qm and b = (1− 1
r
) qm

p̄
. We use Lemma 2.2 and we get

|{uβ > t0 + c∗}| = 0,

that is
uβ ≤ t0 + c∗

almost everywhere in Ω, where

c∗ = c

(

‖M‖Lr(Ω)

µ

) 1
p̄

|Ω|[(1−
1
r
) qm

p̄
−1] 1

qm 2(1−
1
r
) qm

p̄ [(1− 1
r
) qm

p̄
−1]

−1

.
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In order to get the right hand side of (1.4), we take a sequence {(t0)m}m with
(t0)m → sup∂Ω uβ. We apply the right hand side of (1.4) to −u and we get the
left hand side of (1.4). This ends the proof of Theorem 1.

Proof of Theorem 1.3. We assume that Ã, A ∈ RN×n with Ãβ = 0 and
Ãα = Aα for every α 6= β. We need to show that

ν
n
∑

i=1

wi|Ai − Ãi|
pi ≤

n
∑

i=1

N
∑

α=1

tiwi|Ai|
pi−2Aα

i (A
α
i − Ãα

i ), (2.6)

holds true with ν = min
1≤i≤n

{ti}. In fact

n
∑

i=1

N
∑

α=1

tiwi|Ai|
pi−2Aα

i (A
α
i − Ãα

i )

=
n
∑

i=1

tiwi|Ai|
pi−2(Aβ

i )
2 ≥ min

1≤i≤n
{ti}

n
∑

i=1

wi|A
β
i |

pi−2(Aβ
i )

2

= min
1≤i≤n

{ti}
n
∑

i=1

wi|A
β
i |

pi = min
1≤i≤n

{ti}
n
∑

i=1

wi|Ai − Ãi|
pi.

Using (2.6) we derive

n
∑

i=1

N
∑

α=1

aαi (x,A)(A
α
i − Ãα

i )

=
n
∑

i=1

N
∑

α=1

[

tiwi|Ai|
pi−2Aα

i +
m(x)

1 + ‖A‖

]

(Aα
i − Ãα

i )

≥ ν
n
∑

i=1

wi|Ai − Ãi|
pi +

m(x)

1 + ‖A‖

n
∑

i=1

N
∑

α=1

(Aα
i − Ãα

i )

= ν
n
∑

i=1

wi|Ai − Ãi|
pi +

m(x)

1 + ‖A‖

n
∑

i=1

Aβ
i

≥ ν
n
∑

i=1

wi|Ai − Ãi|
pi −

m(x)

1 + ‖A‖

n
∑

i=1

|Aβ
i |.

(2.7)

Using the inequality between geometric and arithmetic means

1

n

n
∑

i=1

|wi| ≤

(

1

n

n
∑

i=1

|wi|
2

)1/2

,
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and recall that M(x) = n1/2m(x), we get from (2.7) that

n
∑

i=1

N
∑

α=1

aαi (x,A)(A
α
i − Ãα

i ) +M(x)

≥ ν
n
∑

i=1

wi|Ai − Ãi|
pi −

m(x)

1 + ‖A‖

n
∑

i=1

|Aβ
i |+M(x)

≥ ν
n
∑

i=1

wi|Ai − Ãi|
pi −m(x) +M(x)

≥ ν
n
∑

i=1

wi|Ai − Ãi|
pi.

Thus the monotonicity inequality (1.2) holds true with ν = min
1≤i≤n

{ti} and

M(x) = m(x).
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