

Global boundedness for solutions to some anisotropic elliptic systems

Guo Meiqi

College of Mathematics and Information Science,
Hebei University, Baoding 071002, China

Gao Hongya¹

College of Mathematics and Information Science,
Hebei University, Baoding 071002, China

Abstract

This paper deals with anisotropic solutions $u \in u_* + W_0^{1,(p_i)}(w, \Omega, \mathbf{R}^N)$ to the nonlinear elliptic system

$$-\sum_{i=1}^n D_i(a_i^\alpha(x, Du(x))) = 0, \quad \alpha = 1, \dots, N.$$

We present a monotonicity inequality on the matrix $a = (a_i^\alpha) \in \mathbf{R}^{N \times n}$ with weight, which guarantees global pointwise bounds for the anisotropic solutions u with gradient constraint.

Mathematics Subject Classification: 49N60

Keywords: Global boundedness, anisotropic elliptic system, gradient constraint

1 Introduction and Statement of results.

Throughout this paper Ω will stand for a bounded open domain in \mathbf{R}^n , $n \geq 2$. For $p_1, \dots, p_n \in (1, +\infty)$, we let $\bar{p} = \left(\frac{1}{n} \sum_{i=1}^n \frac{1}{p_i}\right)^{-1}$ and $p'_i = \frac{p_i}{p_i-1}$ be the harmonic mean of p_1, \dots, p_n and the Hölder conjugate of p_i , respectively.

Let w_i ($i = 1 \dots, n$) to be functions in Ω such that $w_i > 0$ a.e. in Ω , and

$$w_i \in L_{loc}^1(\Omega), \quad \frac{1}{w_i} \in L^{1/(p_i-1)}(\Omega). \quad (1.1)$$

¹Corresponding author, email: ghy@hbu.cn.

Denote

$$W^{1,(p_i)}(w, \Omega) = \{u \in L^1(\Omega) : w_i |D_i u|^{p_i} \in L^1(\Omega), i = 1, \dots, n\}.$$

The norm for $u \in W^{1,(p_i)}(w, \Omega)$ is defined by

$$\|u\|_{1,(p_i),w} = \int_{\Omega} |u| dx + \sum_{i=1}^n \left(\int_{\Omega} w_i |D_i u|^{p_i} dx \right)^{1/p_i}.$$

By the second inclusion of (1.1), the set $W^{1,(p_i)}(w, \Omega)$ is a Banach space with respect to the norm $\|\cdot\|_{1,(p_i),w}$. By virtue of the first inclusion of (1.1), we have $C_0^\infty(\Omega) \subset W^{1,(p_i)}(w, \Omega)$. We denote by $W_0^{1,(p_i)}(w, \Omega)$ the closure of the set $C_0^\infty(\Omega)$ in the norm of $W^{1,(p_i)}(w, \Omega)$. The set $W_0^{1,(p_i)}(w, \Omega)$ is a reflexive Banach space with respect to the norm induced by $\|\cdot\|_{1,(p_i),w}$. We denote by $W^{1,(p_i)}(w, \Omega, \mathbf{R}^N)$ the set of all vector valued functions $u = (u^1, \dots, u^N)$ such that for every $j \in \{1, \dots, N\}$ we have $u^j \in W^{1,(p_i)}(w, \Omega)$. In particular, $W^{1,(p_i)}(\Omega)$, $W_0^{1,(p_i)}(\Omega)$, $W^{1,(p_i)}(\Omega, \mathbf{R}^N)$ and $W_0^{1,(p_i)}(\Omega, \mathbf{R}^N)$ stand for the special cases of $W^{1,(p_i)}(w, \Omega)$, $W_0^{1,(p_i)}(w, \Omega)$, $W^{1,(p_i)}(w, \Omega, \mathbf{R}^N)$ and $W_0^{1,(p_i)}(w, \Omega, \mathbf{R}^N)$ with $w_i \equiv 1$, $i = 1, \dots, n$, respectively.

For a vector $m = (m_1, \dots, m_n) \in \mathbf{R}^n$ with $m_i > 0$, $i = 1, \dots, n$, we set

$$q_m = n \left(\sum_{i=1}^n \frac{1+m_i}{m_i p_i} - 1 \right)^{-1}.$$

We let $\varphi : \Omega \rightarrow \mathbf{R}$ be a nonnegative function and $u_* \in W^{1,(p_i)}(w, \Omega, \mathbf{R}^N)$ be such that $|Du_*(x)| \leq \varphi(x)$, a.e. Ω . We define

$$\mathcal{C}_{u_*, \varphi} = \{v \in u_* + W_0^{1,(p_i)}(w, \Omega, \mathbf{R}^N) : |Dv(x)| \leq \varphi(x) \text{ for a.e. } x \in \Omega\}.$$

It is obvious that $u_* \in \mathcal{C}_{u_*, \varphi}$. Therefore, $\mathcal{C}_{u_*, \varphi} \neq \emptyset$. It is easy to see that the set $\mathcal{C}_{u_*, \varphi}$ is convex and closed in $W^{1,(p_i)}(w, \Omega, \mathbf{R}^N)$.

We consider the nonlinear elliptic system

$$-\sum_{i=1}^n D_i(a_i^\alpha(x, Du(x))) = 0, \quad \alpha = 1, \dots, N.$$

where $Du = (D_1 u, \dots, D_n u)$ denotes the gradient of a vector valued function $u = (u^1, \dots, u^N) : \Omega \rightarrow \mathbf{R}^N$, and $a = (a_i^\alpha) : \Omega \times \mathbf{R}^{N \times n} \rightarrow \mathbf{R}^{N \times n}$ is a Carathéodory $N \times n$ matrix, that is, $a_i^\alpha(x, \xi)$ is measurable with respect to x and continuous with respect to ξ , $i = 1, \dots, n$, $\alpha = 1, \dots, N$.

We assume that there exist a constant $\nu > 0$ and a function $M(x) \in L^r(\Omega)$, $r > 1$, such that

$$\nu \sum_{i=1}^n w_i |A_i - \tilde{A}_i|^{p_i} \leq \sum_{i=1}^n \sum_{\alpha=1}^N a_i^\alpha(x, A)(A_i^\alpha - \tilde{A}_i^\alpha) + M(x), \quad (1.2)$$

holds true for every pair of matrices $A, \tilde{A} \in \mathbb{R}^{N \times n}$ such that there exists a row β with $\tilde{A}^\beta = 0$ and for every remaining row $\alpha \neq \beta$ we have $\tilde{A}^\alpha = A^\alpha$.

In order to make finite the integrals over subsets of Ω of the first term in the right hand side of (1.2), we assume that

$$|a_i^\alpha(x, A)| \leq c \left(1 + \sum_{j=1}^n |A_j|^{p_j} \right)^{1/p_i'}$$

The main result of this paper is the following theorem.

Theorem 1.1 *Let $m \in \mathbb{R}^n$, and let the following two conditions be satisfied:*

- (a) *for every $i \in \{1, \dots, n\}$ we have $m_i \geq 1/(p_i - 1)$ and $1/w_i \in L^{m_i}(\Omega)$;*
- (b) *$q_m > \bar{p}$.*

We let $u \in \mathcal{C}_{u^, \varphi}$ be such that*

$$\forall v \in \mathcal{C}_{u^*, \varphi}, \quad \int_{\Omega} \sum_{i=1}^n \sum_{\alpha=1}^N a_i^\alpha(x, Du) D_i(u^\alpha - v^\alpha) dx \leq 0. \quad (1.3)$$

Then, for every component u^β of u , we have

$$\inf_{\partial\Omega} u_*^\beta(x) - c_* \leq u^\beta(x) \leq \sup_{\partial\Omega} u_*^\beta(x) + c_* \quad (1.4)$$

for almost every $x \in \Omega$, where

$$c_* = c \left(\frac{\|M\|_{L^r(\Omega)}}{\nu} \right)^{\frac{1}{\bar{p}}} |\Omega|^{[(1-\frac{1}{r})\frac{qm}{\bar{p}}-1]\frac{1}{qm}} 2^{(1-\frac{1}{r})\frac{qm}{\bar{p}}[(1-\frac{1}{r})\frac{qm}{\bar{p}}-1]^{-1}},$$

where $|\Omega|$ is the n -dimensional Lebesgue measure of Ω , and c and ν are the constants from (2.1) and (1.2), respectively.

Remark 1.2 *We refer the readers to [1-6] for some related results.*

A model density f for the monotonicity inequality (1.2) is given in the following.

Theorem 1.3 *For every $i = 1, \dots, n$, let us consider $p_i \geq 2$ and $t_i > 0$. For $A \in \mathbb{R}^{N \times n}$ we consider $a(x, A) = (a_1(x, A), \dots, a_n(x, A))$ with*

$$a_i(x, A) = t_i w_i |A_i|^{p_i-2} A_i + \frac{m(x)}{1 + \|A\|}, \quad i = 1, \dots, n,$$

where $m(x) \geq 0$. Then the inequality (1.2) holds true with

$$\nu = \min_{1 \leq i \leq n} \{t_i\} \quad \text{and} \quad M(x) = m(x).$$

2 Proof of Theorems 1.2 and 1.3.

In order to prove Theorem 1, we need two preliminary lemmas.

The following lemma is the Sobolev Imbedding Theorem with weight, which comes from [7, Proposition 2.1], the proof can be found in [8].

Lemma 2.1 *Let $m \in \mathbb{R}^n$, and let the following conditions be satisfied: for every $i \in \{1, \dots, n\}$ we have $m_i \geq 1/(p_i - 1)$ and $1/w_i \in L^{m_i}(\Omega)$. Then $W_0^{1,(p_i)}(w, \Omega) \subset L^{q_m}(\Omega)$, and there exists a positive constant c such that for every function $v \in W_0^{1,(p_i)}(w, \Omega)$,*

$$\left(\int_{\Omega} |v|^{q_m} dx \right)^{1/q_m} \leq c \prod_{i=1}^n \left(\int_{\Omega} w_i |D_i v|^{p_i} dx \right)^{1/n p_i}. \quad (2.1)$$

The next lemma comes from [9, Lemma 4.1].

Lemma 2.2 *Let $\chi : [t_0, +\infty) \rightarrow [0, +\infty)$ be non-increasing. We assume that there exist $\tilde{C}, a > 0$ and $b > 1$ such that*

$$t_0 \leq t < T \Rightarrow \chi(T) \leq \frac{\tilde{C}}{(T - t)^a} [\chi(t)]^b.$$

Then it results that

$$\chi(t_0 + d) = 0,$$

where

$$d = \left[\tilde{C} (\chi(t_0))^{b-1} 2^{\frac{ab}{b-1}} \right]^{\frac{1}{a}}.$$

Proof of Theorem 1.1. As in the proof of Lemma 2.1 in [1], we define $I_{\beta,t} : \mathbb{R}^N \rightarrow \mathbb{R}^N$ as follows:

$$\forall y = (y^1, \dots, y^N) \in \mathbb{R}^N, \quad I_{\beta,t}(y) = (I_{\beta,t}^1(y), I_{\beta,t}^2(y), \dots, I_{\beta,t}^N(y))$$

with

$$I_{\beta,t}^{\alpha}(y) = \begin{cases} y^{\alpha}, & \alpha \neq \beta \\ y^{\beta} \wedge t = \min\{y^{\beta}, t\}, & \alpha = \beta. \end{cases}$$

We may assume $\sup_{\partial\Omega} u_*^{\beta} < t_0 \leq t$, since otherwise, $\sup_{\partial\Omega} u_*^{\beta} = +\infty$, the right hand side inequality of (1.4) holds true trivially. For such t and $u \in \mathcal{C}_{u_*, \varphi}$, we need to show that $I_{\beta,t}(u) \in \mathcal{C}_{u_*, \varphi}$. In fact, it is obvious that $I_{\beta,t}(u) \in u_* + W_0^{1,(p_i)}(w, \Omega, \mathbb{R}^N)$; in order to show that $|DI_{\beta,t}(u)(x)| \leq K(x)$ we notice that

$$D_i(I_{\beta,t}^{\alpha}(u)) = \begin{cases} D_i u^{\alpha}, & \alpha \neq \beta, \\ D_i u^{\beta} 1_{\{u^{\beta} \leq t\}}, & \alpha = \beta, \end{cases} \quad (2.1)$$

where 1_B is the characteristic function of the set B , that is, $1_B(x) = 1$ if $x \in B$ and $1_B(x) = 0$ otherwise. In both cases of (2.1), we have $|DI_{\beta,t}(u)(x)| \leq K(x)$.

(1.3) with $v = I_{\beta,t}(u)$ acting as a test function yields

$$\int_{\Omega} \sum_{i=1}^n \sum_{\alpha=1}^N a_i^{\alpha}(x, Du) D_i(u^{\alpha} - I_{\beta,t}^{\alpha}(u)) dx \leq 0. \quad (2.2)$$

It is obvious that

$$D_i(u^{\alpha} - I_{\beta,t}^{\alpha}(u)) = \begin{cases} 0, & \alpha \neq \beta, \\ D_i u^{\beta} \cdot 1_{\{u^{\beta} > t\}} & \alpha = \beta. \end{cases}$$

On $\{x \in \Omega : u^{\beta} > t\}$ we have $D(I_{\beta,t}^{\beta}(u)) = 0$ and, for $\alpha \neq \beta$, $D(I_{\beta,t}^{\alpha}(u)) = Du^{\alpha}$; so we can apply (1.2) with $A = Du$ and $\tilde{A} = D(I_{\beta,t}(u))$; we obtain that

$$\nu \sum_{i=1}^n w_i |D_i u - D_i(I_{\beta,t}(u))|^{p_i} \leq \sum_{i=1}^n \sum_{\alpha=1}^N a_i^{\alpha}(x, Du) (D_i u^{\alpha} - D_i(I_{\beta,t}^{\alpha}(u))) + M(x) \quad (2.3)$$

for $x \in \{x \in \Omega : u^{\beta} > t\}$. On $\{x \in \Omega : u^{\beta} \leq t\}$, $D(I_{\beta,t}(u)) = Du$, thus

$$\nu \sum_{i=1}^n w_i |D_i u - D_i(I_{\beta,t}(u))|^{p_i} = \sum_{i=1}^n \sum_{\alpha=1}^N a_i(x, Du) (D_i u^{\alpha} - D_i(I_{\beta,t}^{\alpha}(u))) = 0, \quad (2.4)$$

for $x \in \{x \in \Omega : u^{\beta} \leq t\}$. From (2.3) and (2.4) we have

$$\nu \sum_{i=1}^n w_i |D_i u - D_i(I_{\beta,t}(u))|^{p_i} \leq \sum_{i=1}^n \sum_{\alpha=1}^N a_i(x, Du) (D_i u^{\alpha} - D_i(I_{\beta,t}^{\alpha}(u))) + M(x) \cdot 1_{\{u^{\beta} > t\}},$$

from which we derive

$$\begin{aligned} & \nu \int_{\Omega} \sum_{i=1}^n w_i |D_i u - D_i(I_{\beta,t}(u))|^{p_i} dx \\ & \leq \int_{\Omega} \sum_{i=1}^n \sum_{\alpha=1}^N a_i^{\alpha}(x, Du) (D_i u^{\alpha} - D_i(I_{\beta,t}^{\alpha}(u))) dx + \int_{\{u^{\beta} > t\}} M(x) dx. \end{aligned}$$

We apply (2.2) and we get

$$\nu \int_{\Omega} \sum_{i=1}^n w_i |D_i u - D_i(I_{\beta,t}(u))|^{p_i} dx \leq \int_{\{u^{\beta} > t\}} M(x) dx. \quad (2.5)$$

If we define $\phi = (u^{\beta} - t) \vee 0 = \max\{u^{\beta} - t, 0\}$, then (2.5) together with Hölder inequality yields

$$\nu \sum_{i=1}^n \int_{\Omega} w_i |D_i \phi|^{p_i} dx \leq \int_{\{u^{\beta} > t\}} M(x) dx \leq \|M\|_{L^r(\Omega)} |\{u^{\beta} > t\}|^{1-\frac{1}{r}}.$$

If $r < +\infty$, we apply Hölder inequality and we get

$$\int_{\{u^\beta > t\}} M(x)dx \leq \|M\|_{L^r(\Omega)} |\{u^\beta > t\}|^{1-\frac{1}{r}}.$$

If $r = +\infty$, then

$$\int_{\{u^\beta > t\}} M(x)dx \leq \|M\|_{L^\infty(\Omega)} |\{u^\beta > t\}| = \|M\|_{L^r(\Omega)} |\{u^\beta > t\}|^{1-\frac{1}{r}}.$$

In both cases, from (2.5) it results that

$$\sum_{i=1}^n \int_{\Omega} w_i |D_i \phi|^{p_i} dx \leq \frac{\|M\|_{L^r(\Omega)}}{\nu} |\{u^\beta > t\}|^{1-\frac{1}{r}}.$$

We apply Lemma 2.1 and we get

$$\begin{aligned} & \left(\int_{\{u^\beta > t\}} |u^\beta - t|^{q_m} dx \right)^{1/q_m} \\ &= \left(\int_{\{u^\beta > t\}} |\phi|^{q_m} dx \right)^{1/q_m} = \left(\int_{\Omega} |\phi|^{q_m} dx \right)^{1/q_m} \\ &\leq c \prod_{i=1}^n \left(\int_{\Omega} w_i |D_i \phi|^{p_i} dx \right)^{1/n p_i} \leq c \left(\frac{\|M\|_{L^r(\Omega)}}{\nu} |\{u^\beta > t\}|^{1-\frac{1}{r}} \right)^{\frac{1}{p}}. \end{aligned} \quad (2.6)$$

For $T > t$ we have

$$\begin{aligned} (T-t)^{q_m} |\{u^\beta > T\}| &= \int_{\{u^\beta > T\}} (T-t)^{q_m} dx \\ &\leq \int_{\{u^\beta > T\}} (u^\beta - t)^{q_m} dx \leq \int_{\{u^\beta > t\}} (u^\beta - t)^{q_m} dx. \end{aligned} \quad (2.7)$$

From (2.6) and (2.7) we get

$$|\{u^\beta > T\}| \leq c^{q_m} \left(\frac{\|M\|_{L^r(\Omega)}}{\nu} \right)^{\frac{q_m}{p}} \frac{1}{(T-t)^{q_m}} |\{u^\beta > t\}|^{(1-\frac{1}{r})\frac{q_m}{p}}$$

for every T, t with $T > t \geq t_0$. We set $\chi(t) = |\{u^\beta > t\}|$, $\tilde{C} = c^{q_m} \left(\frac{\|M\|_{L^r(\Omega)}}{\mu} \right)^{\frac{q_m}{p}}$, $a = q_m$ and $b = (1 - \frac{1}{r}) \frac{q_m}{p}$. We use Lemma 2.2 and we get

$$|\{u^\beta > t_0 + c_*\}| = 0,$$

that is

$$u^\beta \leq t_0 + c_*$$

almost everywhere in Ω , where

$$c_* = c \left(\frac{\|M\|_{L^r(\Omega)}}{\mu} \right)^{\frac{1}{p}} |\Omega|^{[(1-\frac{1}{r})\frac{q_m}{p}-1]\frac{1}{q_m}} 2^{(1-\frac{1}{r})\frac{q_m}{p}[(1-\frac{1}{r})\frac{q_m}{p}-1]^{-1}}.$$

In order to get the right hand side of (1.4), we take a sequence $\{(t_0)_m\}_m$ with $(t_0)_m \rightarrow \sup_{\partial\Omega} u^\beta$. We apply the right hand side of (1.4) to $-u$ and we get the left hand side of (1.4). This ends the proof of Theorem 1.

Proof of Theorem 1.3. We assume that $\tilde{A}, A \in \mathbb{R}^{N \times n}$ with $\tilde{A}^\beta = 0$ and $\tilde{A}^\alpha = A^\alpha$ for every $\alpha \neq \beta$. We need to show that

$$\nu \sum_{i=1}^n w_i |A_i - \tilde{A}_i|^{p_i} \leq \sum_{i=1}^n \sum_{\alpha=1}^N t_i w_i |A_i|^{p_i-2} A_i^\alpha (A_i^\alpha - \tilde{A}_i^\alpha), \quad (2.6)$$

holds true with $\nu = \min_{1 \leq i \leq n} \{t_i\}$. In fact

$$\begin{aligned} & \sum_{i=1}^n \sum_{\alpha=1}^N t_i w_i |A_i|^{p_i-2} A_i^\alpha (A_i^\alpha - \tilde{A}_i^\alpha) \\ &= \sum_{i=1}^n t_i w_i |A_i|^{p_i-2} (A_i^\beta)^2 \geq \min_{1 \leq i \leq n} \{t_i\} \sum_{i=1}^n w_i |A_i^\beta|^{p_i-2} (A_i^\beta)^2 \\ &= \min_{1 \leq i \leq n} \{t_i\} \sum_{i=1}^n w_i |A_i^\beta|^{p_i} = \min_{1 \leq i \leq n} \{t_i\} \sum_{i=1}^n w_i |A_i - \tilde{A}_i|^{p_i}. \end{aligned}$$

Using (2.6) we derive

$$\begin{aligned} & \sum_{i=1}^n \sum_{\alpha=1}^N a_i^\alpha(x, A) (A_i^\alpha - \tilde{A}_i^\alpha) \\ &= \sum_{i=1}^n \sum_{\alpha=1}^N \left[t_i w_i |A_i|^{p_i-2} A_i^\alpha + \frac{m(x)}{1 + \|A\|} \right] (A_i^\alpha - \tilde{A}_i^\alpha) \\ &\geq \nu \sum_{i=1}^n w_i |A_i - \tilde{A}_i|^{p_i} + \frac{m(x)}{1 + \|A\|} \sum_{i=1}^n \sum_{\alpha=1}^N (A_i^\alpha - \tilde{A}_i^\alpha) \\ &= \nu \sum_{i=1}^n w_i |A_i - \tilde{A}_i|^{p_i} + \frac{m(x)}{1 + \|A\|} \sum_{i=1}^n A_i^\beta \\ &\geq \nu \sum_{i=1}^n w_i |A_i - \tilde{A}_i|^{p_i} - \frac{m(x)}{1 + \|A\|} \sum_{i=1}^n |A_i^\beta|. \end{aligned} \quad (2.7)$$

Using the inequality between geometric and arithmetic means

$$\frac{1}{n} \sum_{i=1}^n |w_i| \leq \left(\frac{1}{n} \sum_{i=1}^n |w_i|^2 \right)^{1/2},$$

and recall that $M(x) = n^{1/2}m(x)$, we get from (2.7) that

$$\begin{aligned}
 & \sum_{i=1}^n \sum_{\alpha=1}^N a_i^\alpha(x, A)(A_i^\alpha - \tilde{A}_i^\alpha) + M(x) \\
 & \geq \nu \sum_{i=1}^n w_i |A_i - \tilde{A}_i|^{p_i} - \frac{m(x)}{1 + \|A\|} \sum_{i=1}^n |A_i^\beta| + M(x) \\
 & \geq \nu \sum_{i=1}^n w_i |A_i - \tilde{A}_i|^{p_i} - m(x) + M(x) \\
 & \geq \nu \sum_{i=1}^n w_i |A_i - \tilde{A}_i|^{p_i}.
 \end{aligned}$$

Thus the monotonicity inequality (1.2) holds true with $\nu = \min_{1 \leq i \leq n} \{t_i\}$ and $M(x) = m(x)$.

ACKNOWLEDGEMENT. The first author was supported by NSF of Hebei Province (A2015201149).

References

- [1] F. Leonetti, P.V. Petricca, Regularity for vector valued minimizers of some anisotropic integral functionals, *Journal of Inequalities in Pure and Applied Mathematics*, 2006, **7**(3), Art. 88.
- [2] H. Gao, S. Liang, Y. Cui, Regularity for anisotropic solutions to some nonlinear elliptic system, *Front. Math. China*, **11**(1) (2016), 77-87.
- [3] A. A. Kovalevsky: Integrability and boundedness of solutions to some anisotropic problems. *J. Math. Anal. Appl.* **432**, 820-843 (2015).
- [4] Yu.S. Gorban, A. A. Kovalevsky, On the boundedness of solutions of degenerate anisotropic elliptic variational inequalities. *Results Math.* **65**, 121-142 (2014).
- [5] A.A. Kovalevsky, Yu.S. Gorban, Degenerate anisotropic variational inequalities with L^1 -data, (Preprint 2007.01), 92pp. Inst. Appl. Math. Mech. NAS Ukraine, Donetsk (2007).
- [6] A. Innamorati, F. Leonetti: Global integrability for weak solutions to some anisotropic equations. *Nonlinear Anal.* **113**, 430-434 (2015).
- [7] Yu.S. Gorban, A. A. Kovalevsky, On the boundedness of solutions of degenerate anisotropic elliptic variational inequalities. *Results Math.* **65**, 121-142 (2014).

- [8] A.A.Kovalevsky, Yu.S.Gorban, Degenerate anisotropic variational inequalities with L^1 -data, (Preprint 2007.01), 92pp. Inst. Appl. Math. Mech. NAS Ukraine, Donetsk (2007).
- [9] G. Stampacchia, Equations elliptiques du second ordre a coefficients discontinus, Semin. de Math. Superieures, Univ. de Montreal, 16, 1966.

Received: July, 2016