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Abstract

This paper deals with anisotropic solutions u € u*+W01 (i) (w, Q,RN)
to the nonlinear elliptic system

- ZDi(af‘(aj,Du(:n))) =0, a=1,---,N.
i=1

We present a monotonicity inequality on the matrix a = (af') € RIVxn
with weight, which guarantees global pointwise bounds for the anisotropic
solutions uw with gradient constraint.
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1 Introduction and Statement of results.

Throughout this paper 2 will stand for a bounded open domain in R", n >

n -1
2. For p1,--+,pp € (1,400), we let p = (% > 171) and p, = z% be the
=1 P i

harmonic mean of py,- -, p, and the Holder co;ljugate of p;, respectively.

Let w; (i =1---,n) to be functions in 2 such that w; > 0 a.e. in 2, and

1
wi € Lip(), — e LY®=D(Q).

w;
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Denote

Wl,(Pi)(w’Q) = {ue LY Q) : wi| Dl € LYQ), i=1,---,n}.

The norm for u € Wh®i) (w, Q) is defined by

fulls o = [ luldo+ Y- ( [ wilDi
Q = \a

By the second inclusion of (1.1), the set W®) (1w, Q) is a Banach space with
respect to the norm || - ||1,(p,),w- By virtue of the first inclusion of (1.1), we
have C°(2) € Wh®)(w, Q). We denote by Wy (w,) the closure of the
set C2°(€2) in the norm of Wh®)(w, Q). The set Wy ®)(w,Q) is a reflexive
Banach space with respect to the norm induced by || - ||1,p,)w- We denote
by Wh®) (1w, Q RY) the set of all vector valued functions v = (u',--- u™)
such that for every j € {1,---, N} we have v/ € W"®)(w, Q). In particular,

WLE)(Q), Wy P9 (Q), Whe)(Q, RN) and W ®) (€, RY) stand for the special
cases of Wh®)(w, Q), W) (w,Q), WL®)(w, Q,RY) and Wi (w, 2, RY)
with w; =1,7=1,---,n, respectively.

1/pz
pi dl’)

For a vector m = (my,---,m,) € R" with m; >0,i=1,--- n, we set
-1
Gm =N -1 .
(; m;p;

We let ¢ : Q — R be a nonnegative function and u, € Wh®)(w, Q RY) be
such that |Du,(x)| < ¢(z), a.e. 2. We define

Cop = {0 € us + Wy (w0, Q,RY) : | Du(2)] < p(x) for ae. z € Q}.

It is obvious that u, € C,, ,. Therefore, C,, , # 0. It is easy to see that the
set Cy, , is convex and closed in WH®) (w, Q, RY).

We consider the nonlinear elliptic system

= Dj(a(z, Du(z))) =0, a=1,---,N.
i=1

where Du = (Dju,---, D,u) denotes the gradient of a vector valued func-
tion u = (u',---,ul) : Q@ - R, and a = (a?) : Q@ x RV — RV*" is a
Carathéodory N x n matrix, that is, af(x, &) is measurable with respect to x
and continuous with respect to ¢, 1 =1,---.,n,a=1,---, N.

We assume that there exist a constant v > 0 and a function M (z) € L"(2),
r > 1, such that

Vin‘AZ—AZ pi S zn:Zaf(x,A)(A?—flf‘)—i—M(x), (12)

=1 =1 a=1
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holds true for every pair of matrices A, A € RV*" such that there exists a row

B with A% = 0 and for every remaining row o # [ we have Ao = A~
In order to make finite the integrals over subsets of {2 of the first term in
the right hand side of (1.2), we assume that

n 1/p}
|ag'(z, A)| < ¢ (1 +> IAj|”j) :

j=1
The main result of this paper is the following theorem.

Theorem 1.1 Letm € R", and let the following two conditions be satisfied:
(a) for everyi € {1,---,n} we have m; > 1/(p; — 1) and 1/w; € L™ (Q);

(b) qm > D.
We let u € C,, , be such that

n N
Vo € Cy, / > > af(z, Du)Dy(u® — v*)dz < 0. (1.3)
Qi=la=1
Then, for every component u® of u, we have

inf u?(z) — ¢, < u’(x) <supuf(z)+c, (1.4)
o0 90

for almost every x € 2, where

Y

1
S <_“M||er>>” lla-be ] gu-hefa-be ]
1%

where || is the n-dimensional Lebesque measure of 2, and ¢ and v are the
constants from (2.1) and (1.2), respectively.

Remark 1.2 We refer the readers to [1-6] for some related results.

A model density f for the monotonicity inequality (1.2) is given in the
following.

Theorem 1.3 For every i = 1,---,n, let us consider p; > 2 and t; > 0.
For A € RN*™ we consider a(x, A) = (a1(x, A), - - -, an(z, A)) with

m(z)

1+ []A]

i=1,,n,

where m(x) > 0. Then the inequality (1.2) holds true with

v= min {t;} and M(z)=m(z).

1<i<n
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2 Proof of Theorems 1.2 and 1.3.

In order to prove Theorem 1, we need two preliminary lemmas.
The following lemma is the Sobolev Imbedding Theorem with weight, which
comes from [7, Proposition 2.1], the proof can be found in [8].

Lemma 2.1 Let m € R", and let the following conditions be satisfied: for
every i € {1,---,n} we have m; > 1/(p; — 1) and 1/w; € L™ (). Then
Wy P (w, Q) € L (Q), and there exists a positive constant ¢ such that for
every function v € Wy (w, Q),

1/qm n
and < / | D;
</Q|v\ :c> _cE(ﬂw\ v

The next lemma comes from [9, Lemma 4.1].

1/np;
pidx) . (2.1)

Lemma 2.2 Let x : [to, +00) — [0,+00) be non-increasing. We assume
that there exist C,a > 0 and b > 1 such that

<t <T=x(T) < G t)a[x(t)]b-

Then it results that
X(to + d) = O,

where

Q=

d=[C (x(ty))" " 277]

Proof of Theorem 1.1. As in the proof of Lemma 2.1 in [1], we define
I, : RN — RY as follows:

\V/y = (yla e >yN) € RNa Iﬁ,t(y) = (Ié,t(y)a [g,t(y)a ) Ié\,[t(y))
with

N T aFp
Iﬁ,t(y) = { y? At =min{y? t}, a=p.

We may assume supyq u? < to < t, since otherwise, sup,q u”? = 400, the right
hand side inequality of (1.4) holds true trivially. For such ¢t and u € C,, ,,
we need to show that Ig,(u) € C,, .. In fact, it is obvious that Ig:(u) €
Uy + Wol’(pi)(w, Q,R™); in order to show that |DIs(u)(x)| < K(z) we notice
that

o Diuaa Oé#ﬁ,
Dwmwwz{DmﬁMQbazﬁ, 2.1)
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where 15 is the characteristic function of the set B, that is, 15(z) = 1ifz € B
and 1p(x) = 0 otherwise. In both cases of (2.1), we have |DIg,(u)(x)| < K(x).
(1.3) with v = Ig4(u) acting as a test function yields

/ZZ(L (2, Du) Dy (u® — I3, (u))dx < 0. (2.2)

i=1 a=1

It is obvious that

o _ T 0, o # B,
D;(u® — Iﬁ,t(u)) = { DyuP - lassy a=0.

On {z € Q: u” > t} we have D(I§7t(u)) = 0 and, for a # 3, D(I§,(u)) = Du®;
so we can apply (1.2) with A = Du and A = D(I3,(u)); we obtain that

I/iwi\Diu — Di(Ig4(u))P < Zf: Z_: (x, Du) ( —D; (Ig‘t(u))) + M(x)

(2.3)
forx e {z €Q:uf >t} On{z € Q:u’ <t}, D(Is(u)) = Du, thus

I/Zwi\Diu— i(Ig.(u

=353 ale 0u) (D = 0, (13,0)) =0
o (2.4)
for z € {x € Q : uf < t}. From (2.3) and (2.4) we have

waZ|Du D;(I5(u zn:g:al (z, Du) ( — D, ([E‘,t(u)))ﬂLM(x)'l{u%t}v

i=1 i=1 a=1

from which we derive

y/ zn:wi|D,~u — Di(Ig(w))Pid
< / Z Z (2, Du) (D u® = D; (Ig‘t(u))) dr + M (z)dz.

i=1 a=1 {uP>t}

We apply (2.2) and we get

/ Zw,w w— Di(Ig,(w)|Pda < / M(z)dz. (2.5)
{uP>t}

If we define ¢ = (u” —t) V0 = max{u” —¢,0}, then (2.5) together with Holder

inequality yields

i=1

Pide < M(z)dz < ||M]|pr oy {u® > )]+,
{uf >t}
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If r < +o00, we apply Holder inequality and we get
1
/ M (w)dw < || M|zl {u” >t}
{uf >t}
If r = +o00, then
_1
[ M < Ml 0 > 6] = [ Mo (0 > D
In both cases, from (2.5) it results that

- M|,
Z/ w;| Dp|Pidr < H”ﬂmﬁ > t}|1_%,
i=179 v

We apply Lemma 2.1 and we get

</ ju” — th’"d:):>
{uf>t}
1/Qm

— </ |¢ Q'rrldx) _ (/ |¢

{ub>t} Q

a 1/np; Ml ;- )
< T (fmineras) " <o (BE2100 - 01)

i=1

For T > t we have

1/Qm

1/gm
qmdx> (2.6)

1=

P

(T _ t)Qm {uﬁ > T}| — / (T _ t)deI
{uf>T} (27)
< (uf —t)imde < / (uP — t)imda.
{uf>T} {uf>t}

From (2.6) and (2.7) we get

q
am

B 1 _lyam
) (T—t)qm|{uﬁ>t}|(l 7%

| M| ()
14

1) < o

~ dm
for every T, t with T' > t > to. Weset x(t) = [{u® > t}|, C = ¢ (%) "

a=qnand b= (1- %)%. We use Lemma 2.2 and we get

|{UB > 1o + C*}‘ =0,

that is
uB S tO + cy

almost everywhere in (2, where

lﬁ
o —c (HMHmm)p =D gu-helo-hee ]
"
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In order to get the right hand side of (1.4), we take a sequence { (o) }m With
(to)m — Supyg u”. We apply the right hand side of (1.4) to —u and we get the
left hand side of (1.4). This ends the proof of Theorem 1.

_ Proof of Theorem 1.3. We assume that A, A € RV with A% = 0 and
A® = A® for every a # 5. We need to show that

PURAR (AT - AD), (2.6)

n n N
i=1 i=1 a=1

holds true with v = 1réru<n {t;}. In fact

1 /BZ
wi AP AL > 1gll<n{t}zwz|f1lp A7y

n N
ZZ qwi| Ag[P2 A2 (AY — A%)
Z

=1

Di

= min {t; }ZwZ\AB

1<i<n

Pi — mln {t }ZwZ|A A;

Using (2.6) we derive

n

N
SN af(w, A)(AF — A2)

i=1a=1
n N

= tdA Ay ¢ ) e g
2 2 [l 1+||AHN( ’
% | 1+||A| Zz_:

= UV UJZAZ—AZM ZB

Vv

1A — A.|Pi —
VZU;AA, A, 1+HA| Z:

i=1

Using the inequality between geometric and arithmetic means

DI (ggwuw) |
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and recall that M(z) = n'/?m(z), we get from (2.7) that

Z >t (o )47 = A7)+ M(z)

n - m(x) n 5
> vy wildi = A" = == > AT+ M(2)
; ]'_I—HA”;
i=1

i=1

Thus the monotonicity inequality (1.2) holds true with ¥ = min {¢;} and
M(z) = m(z).

1<i<n
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