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Abstract

In this paper, we consider the higher order nonlinear rational differ-

ence equation

xn+1 =
α+ xn + γxn−k

A+ xn−k

, n = 0, 1, · · ·

with the parameters and the initial conditions x−k, · · · , x0 are nonneg-

ative real numbers. We investigate the periodic character, invariant

intervals and the global asymptotic stability of all positive solutions

of the above mentioned equation. In particular, our results partially

confirm the conjecture introduced by Amleh and Ladas in their paper.

Mathematics Subject Classification: 39A11

Keywords: Difference equation; Global asymptotic stability; Invariant
intervals; Period-two solutions

1 Introduction and preliminaries

Our aim in this paper is to investigate the global behavior of solutions of the
following nonlinear rational difference equation

xn+1 =
α + xn + γxn−k

A+ xn−k

, n = 0, 1, · · · (1)

where the parameters α, γ, A and the initial conditions x−k, · · · , x0 are non-
negative real numbers, k ∈ {1, 2, · · · }.

In 2007, Amleh and Ladas [1] proposed the following conjecture:
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Conjecture 1.1 Assume that γ, A ∈ [0,∞) and α, γ + A ∈ (0,∞). Show
that the positive equilibrium of the following equation:

xn+1 =
α + xn + γxn−1

A+ xn−1

, n = 0, 1, · · · (2)

is globally asymptotically stable.

Inspired by the above conjecture, we will consider and investigate
the global asymptotic stability and the invariant interval for all positive

solutions of Eq.(1).
For the global behavior of solutions of some related equations, see [2,4,6,7].

Other related results can be found in [3, 9–12]. For the sake of convenience,
we recall some theorems which will be useful in the sequel.

Theorem 1.2 (See [8]) Assume that P,Q ∈ R and k ∈ {1, 2, · · · }. Then

|P |+ |Q| < 1

is a sufficient condition for the asymptotic stability of the difference equation

yn+1 = Pyn +Qyn−k, n = 0, 1, · · · .

Lemma 1.3 (See [5]) Consider the difference equation

yn+1 = f(yn, yn−k), n = 0, 1, · · · (3)

where k ∈ {1, 2, · · · }. Let I = [a, b] be some interval of real numbers and
assume that

f : [a, b]× [a, b] → [a, b]

is a continuous function satisfying the following properties:

(a) f(u, v) is nondecreasing in u and nonincreasing in v.

(b) If (m,M) ∈ [a, b]× [a, b] is a solution of the system

m = f(m,M) and M = f(M,m),

then m = M .

Then Eq.(3) has a unique equilibrium ȳ ∈ [a, b] and every solution of Eq.(3)
converges to ȳ.

Lemma 1.4 (See [9]) Let I = [a, b] be some interval of real numbers and
assume that

f : [a, b]× [a, b] → [a, b]

is a continuous function satisfying the following properties:
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(a) f(u, v) is nondecreasing in each of its arguments.

(b) The equation f(u, u) = u has a unique positive solution in the interval
[a, b].

Then Eq.(3) has a unique equilibrium ȳ ∈ [a, b] and every solution of Eq.(3)
converges to ȳ.

2 Local stability and period-two solutions

Eq.(1) possesses the unique positive equilibrium

x̄ =
1 + γ − A+

√

(1 + γ − A)2 + 4α

2
.

The linearized equation associated with Eq.(1) about the positive equilibrium
is

zn+1 −
1

A+ x̄
zn −

γ − x̄

A + x̄
zn−k = 0. (4)

By Theorem 1.2, we have the following result.

Theorem 2.1 Assume that
A > 1. (5)

Then the positive equilibrium x̄ of Eq.(1) is locally asymptotically stable.

Theorem 2.2 Eq.(1) has no nonnegative prime period-two solution.

Proof. (a)Assume that k is odd, then xn+1 = xn−k. Let

· · · , φ1, φ2, φ1, φ2, · · ·

be a nonnegative prime period-two solution of Eq.(1). Then φ1, φ2 satisfy the
following system:

φ1 =
α + φ2 + γφ1

A+ φ1

and φ2 =
α + φ1 + γφ2

A+ φ2

.

Substituting the above two equations, we obtain

(φ1 − φ2)(φ1 + φ2 − γ + A + 1) = 0.

If φ1 6= φ2, then φ1 + φ2 = γ − A− 1.
Adding them and using the above equations, we can get

φ1φ2 = A+ 1− γ − α.
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Obviously, if φ1 + φ2 = γ − A− 1 ≥ 0, then φ1φ2 = A + 1 − γ − α < 0. This
contradicts the hypothesis that φ1, φ2 are nonnegative.

(b)Assume that k is even, then xn = xn−k. If there exist distinctive non-
negative real number φ1 and φ2, such that

· · · , φ1, φ2, φ1, φ2, · · ·

is a prime period-two solution of Eq.(1) and φ1, φ2 satisfy the following system:

φ1 =
α + φ2 + γφ2

A+ φ2

and φ2 =
α + φ1 + γφ1

A+ φ1

,

which is equivalent to

Aφ1 + φ1φ2 = α + φ2 + γφ2 and Aφ2 + φ1φ2 = α + φ1 + γφ1.

Subtracting these two equation, we can get

(φ1 − φ2)(A+ γ + 1) = 0.

Then φ1 = φ2. This contradicts the hypothesis that φ1 6= φ2.
The proof is complete. �

3 Invariant Interval

In this section, we will investigate the invariant interval of Eq.(1).
Let

f(u, v) =
α + u+ γv

A+ v
.

Then the following statements are true.

Lemma 3.1 (a) Assume that Aγ − α ≤ 0. Then f(u, v) is increasing in u
for each v and decreasing in v for each u.

(b) Assume that Aγ − α > 0. Then f(u, v) is increasing in u for each v
and increasing in v for u ∈ [0, Aγ − α], and decreasing in v for u ∈
[Aγ − α,∞).

Proof. The proofs of (a) and (b) are simple and will be omitted. �

Lemma 3.2 Assume that (5) holds, then Eq.(1) possesses the following
invariant intervals:

(a) [γ, α

A−1
], when Aγ − α < γ;

(b) [ α

A−1
, γ], when Aγ − α ≥ γ.



Global Behavior of a Higher Order Nonlinear Difference Equation 743

Proof.
(a)Using the monotonic character of the function f(u, v) which is described

by Lemma 3.1 and the condition that Aγ − α < γ, when x−k, · · · , x−1, x0 ∈
[γ, α

A−1
], we can get

γ < f(γ,
α

A− 1
) ≤ x1 =

α + x0 + γx−k

A + x−k

= f(xo, x−k) ≤ f(
α

A− 1
, γ) <

α

A− 1
.

The proof follows by induction.
(b)Using the monotonic character of the function f(u, v) which is described

by Lemma 3.1 (b) and the condition that Aγ − α ≥ γ, we see that when
x−k, · · · , x−1, x0 ∈ [ α

A−1
, γ], then

α

A− 1
≤ f(

α

A− 1
,

α

A− 1
) ≤ x1 =

α + x0 + γx−k

A + x−k

≤
α + γ + γ2

A + γ
≤ γ.

The proof follows by induction.
The proof is complete. �

4 Semicycles analysis

Let {xn}
∞

n=−k
be a positive solution of Eq.(1). Then we have the following

equations:

xn+1 −
α

A
=

xn + (γ − α

A
)xn−k

A + xn−k

, for n ≥ 0. (6)

xn+1 − γ = −
(Aγ − α)− xn

A+ xn−k

, for n ≥ 0. (7)

xn+1 − (Aγ − α) =
A[ α

A
− (Aγ − α)] + xn + [γ − (Aγ − α)]xn−k

A+ xn−k

, for n ≥ 0.

(8)

xn+1 −
α

A− 1
=

(xn −
α

A−1
) + (γ − α

A−1
)xn−k

A+ xn−k

, for n ≥ 0. (9)

xn+1 − x̄ =
(xn − x̄) + (x̄− γ)(x̄− xn−k)

A+ xn−k

, for n ≥ 0. (10)

xn+1 − xn =
(A− 1)( α

A−1
− xn) + (γ − xn)xn−k

A+ xn−k

, for n ≥ 0. (11)

If Aγ − α = γ, then the unique positive equilibrium is x̄ = γ, and (7) and
(11) change into

xn+1 − γ = −
γ − xn

A + xn−k

, for n ≥ 0. (12)
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xn+1 − xn =
(γ − xn)(A− 1 + xn−k)

A+ xn−k

, for n ≥ 0. (13)

The following lemma is straightforward consequences of identities (6)-(13).

Lemma 4.1 Assume that Aγ − α < γ and let {xn}
∞

n=−k
be a solution of

Eq.(1). Then the following statements are true.

(i) If for some N ≥ 0, xN ≤ α

A−1
, then xN+1 ≤

α

A−1
;

(ii) If for some N ≥ 0, xN ≥ γ, then xN+1 ≥ γ;

(iii) If for some N ≥ 0, xN−k > x̄ and xN < x̄, then xN+1 < x̄;

(iv) If for some N ≥ 0, xN−k < x̄ and xN > x̄, then xN+1 > x̄;

(v) If for some N ≥ 0, xN > α

A−1
, then xN+1 < xN ;

(vi) If for some N ≥ 0, xN < γ, then xN+1 > xN ;

(vii) γ ≤ x̄ ≤ α

A−1
.

Lemma 4.2 Assume that Aγ − α ≥ γ and let {xn}
∞

n=−k
be a solution of

Eq.(1). Then the following statements are true.

(i) If for some N ≥ 0, xN ≥ α

A−1
, then xN+1 ≥

α

A−1
;

(ii) If for some N ≥ 0, xN ≥ Aγ − α, then xN+1 ≥ γ;

(iii) If for some N ≥ 0, xN−k > x̄ and xN > x̄, then xN+1 > x̄;

(iv) If for some N ≥ 0, xN−k < x̄ and xN < x̄, then xN+1 < x̄;

(v) If for some N ≥ 0, xN < α

A−1
, then xN+1 > xN ;

(vi) If for some N ≥ 0, xN > γ, then xN+1 < xN ;

(vii) α

A−1
≤ x̄ ≤ γ.

The following results are consequences of Lemma 4.1-4.2.

Theorem 4.3 Let {xn}
∞

n=−k
be a non-trivial solution of Eq.(1) and x̄ is the

unique positive equilibrium point of Eq.(1). Then the following statements are
true:

(a) Assume that Aγ − α < γ. Then except possibly for the first semicycle,
every oscillatory solution of Eq.(1) which lies in the invariant interval
[γ, α

A−1
] has semicycles of length at least k+1, or of length at most k−1.

(b) Assume that Aγ − α ≥ γ. Then except possibly for the first semicycle,
every oscillatory solution of Eq.(1) which lies in the invariant interval
[ α

A−1
, γ] has semicycles of length at most k.
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5 Global Stability

In this section, we will investigate global stability of the positive equilibrium
point x̄ of Eq.(1).

Theorem 5.1 Assume that (5) holds and let {xn}
∞

n=−k
be a positive solu-

tion of Eq.(1). Then every solution of Eq.(1) eventually enters the invariant
interval

(a) [γ, α

A−1
] if Aγ − α < γ;

(b) [ α

A−1
, γ] if Aγ − α ≥ γ.

Proof.
(a)In view of Lemma 4.1(i) and (ii), we know that xn ≥ γ and xn ≤ α

A−1

for all n ≥ 1 and [γ, α

A−1
] is an invariant interval of Eq.(1). If there exist an

integer N such that xN ∈ [γ, α

A−1
], then xn ∈ [γ, α

A−1
] for n ≥ N , from which it

follows that the result is true. Now assume for the sake of contradiction that
terms of {xn} never enter the invariant interval [γ, α

A−1
], then there are two

cases to be considered:
(i) They all lie in the interval [0, γ].
(ii) They all lie in the interval [ α

A−1
,∞).

Case(i). Noticing that x1 ≤ γ and Aγ − α < γ hold, we get

x2 − x1 =
α− (A− 1)x1 + x1−k(γ − x1)

A+ x1−k

≥
α−Aγ + γ

A+ x1−k

> 0,

from which it follows by induction that the sequence {xn} is increasing in the
interval [0, γ]. Hence, lim

n→∞

xn exists and lim
n→∞

xn ≤ γ, which is a contradiction

because Eq.(1) has no equilibrium point in the interval [0, γ].
Case(ii). According to x1 ≥

α

A−1
and Aγ − α < γ, we get

x2 − x1 =
α− (A− 1)x1 + x1−k(γ − x1)

A + x1−k

≤
α− α + x1−k(γ − α

A−1
)

A+ x1−k

< 0,

from which it follows by induction that the sequence {xn} is decreasing in
the interval [ α

A−1
,∞). Hence, lim

n→∞

xn exists and lim
n→∞

xn ≥ α

A−1
, which is a

contradiction because Eq.(1) has no equilibrium point in the interval [ α

A−1
,∞).

(b) The proof is similar to (a), so will be omitted.
The proof is complete. �

Theorem 5.2 Assume that (5) holds. Then the positive equilibrium x̄ is a
global attractor of Eq.(1).
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Proof. The proof is finished by considering the following two cases.
Case(i) When Aγ − α < γ. By Lemma 3.2(a) and Theorem 5.1(a), we

know that Eq.(1) possesses an invariant interval [γ, α

A−1
] and every solution of

Eq.(1) eventually enters the interval [γ, α

A−1
]. Further, it is easy to see that

f(u, v) increases in u and decreases in v in [γ, α

A−1
].

Finally observe that when (5) holds, let m,M ∈ [γ, α

A−1
] is a solution of

the system
α +m+ γM

A+M
= m and

α +M + γm

A+m
= M,

then (M −m)(A− 1+ γ) = 0, which implies that is m = M . Further, Lemma
4.1 implies that Eq.(1) has a unique equilibrium x̄ ∈ [γ, α

A−1
]. Thus, in view

of Lemma 1.3, every solution of Eq.(1) converges to x̄. So the unique positive
equilibrium x̄ is a global attractor of Eq.(1).

Case(ii) When Aγ − α ≥ γ. By Lemma 3.2(b) and Theorem 5.1(b), we
know that Eq.(1) possesses an invariant interval [ α

A−1
, γ] and every solution

of Eq.(1) eventually enters the interval [ α

A−1
, γ]. Furthermore, it is easy to

see that the function f(u, v) increases in each of its arguments in the interval
[ α

A−1
, γ] and the system

α+m+ γm

A+m
= m

has a unique positive solution in the interval [ α

A−1
, γ]. Employing Lemma 1.4,

we see that Eq.(1) has a unique equilibrium x̄ ∈ [ α

A−1
, γ] and every solution

of Eq.(1) converges to x̄. Thus the unique positive equilibrium x̄ is a global
attractor of Eq.(1).

The proof is complete. �

In view of Theorem 2.1 and 5.2, we have the following result, which solves
Conjecture1.1 when condition (5) holds.

Theorem 5.3 Assumed that (5) holds. Then the positive equilibrium of
Eq.(1) is globally asymptotically stable.
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