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Abstract

We investigate a quasilinear parabolic equation with a gradient term

subject to homogeneous Dirichlet or Neumann boundary condition. By

constructing auxiliary functions and using Hopf’s maximum principle,

we obtain the sufficient conditions for the existence of global and blow-

up solutions, the upper bounds for the “blow-up time”, the “upper

estimates” of the “blow-up rate” and the “upper estimates” of the global

solution. Finally, some application examples will be presented.

Mathematics Subject Classification: 35K65, 35K20, 35A70.
Keywords: quasilinear parabolic equation, gradient term, global solution,
blow-up.

1 Introduction

The global existence and blow-up solutions for the nonlinear evolution equa-
tions have been investigated extensively by many authors. In particular, for
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the parabolic equations with a gradient term, we refer to [1-6] etc. For example,
P. Souplet and F. B. Weissler [1] studied semilinear parabolic equation

ut = ∆u+ f(u,∇u), in D × (0, T ),

subject to the homogeneous Dirichlet boundary condition. By using compar-
ison principle and constructing self-similar lower solution, they obtained the
sufficient conditions of global existence and blow-up solutions. Andreu [2] used
similar method to study quasilinear parabolic equation

ut = ∆um + f(u,∇um), in D × (0, T ).

Chen [3] considered the following semilinear parabolic equation

ut = ∆u+ f(u) + g(u)|∇u|2, in D × (0, T ),

with homogeneous Dirichlet boundary condition. By estimating the integral
of a ratio of one solution to the other, the author proved both global existence
and blow up results. Then he used the same method to study more generalized
equation with a gradient term, see [4].

For the nonlinear parabolic equations with Neumann boundary conditions,
Lair and Oxley [5] considered quasilinear parabolic equation without a gradient
term

ut = ∇ · (a(u)∇u) + f(u), in D × (0, T ),

subject to homogeneous Neumann boundary conditions, they obtained the
necessary and sufficient conditions for the global existence and blow-up solution
by approximation method. Recently, Ding and Gao [6] have investigated initial
boundary value problem of quasilinear parabolic equation with a gradient term

(g(u))t = ∆u+ f(x, u, |∇u|2, t), in D × (0, T ),

subject to boundary flux ∂u
∂n

= r(u), and obtained sufficient conditions for the
global existence and blow-up solution, the upper estimate of global solution
and blow-up time.

Motivated by the above works, in this article, we consider more generalized
quasilinear parabolic equation with a gradient term

(g(u))t = ∇ · (a(u)b(x)c(t)∇u) + f(x, u, q, t), in D × (0, T ), (1.1)

subject to homogeneous Dirichlet boundary condition

u = 0, on ∂D × (0, T ), (1.2)

or Neumann boundary condition

∂u

∂n
= 0, on ∂D × (0, T ), (1.2)′
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and initial condition

u(x, 0) = u0(x) ≥ 0, in D, (1.3)

where D ⊆ RN(N ≥ 2) is a bounded domain with smooth boundary ∂D,
D is the closure of D, q = |∇u|2, n is the outer normal vector, u0(x) ∈
C3(D) satisfies the compatibility conditions and T is the maximum exis-
tence time of u(x, t). a(u)b(x)c(t), f(x, u, q, t) and h(x, t)r(u) are nonlin-
ear diffusion coefficient, reaction term and boundary flux, respectively. Let
R+ = (0,+∞), R+ = [0,+∞), and suppose that the function g(s) ∈ C2(R+),
g′(s) > 0 for any s > 0, a(s) ∈ C2(R+), b(x) ∈ C1(D), c(t) ∈ C1(R+),
and f(x, u, s, t) ∈ C1(D × R+ × R+ × R+) is a nonnegative function. Un-
der these assumptions, it is easy to know from the classical parabolic equa-
tion theory [7, Section 3] and Hopf’s maximum principle [8] that problem
(1.1)(1.2)(1.3) and problem (1.1)(1.2)

′

(1.3) both have a unique local positive
solution u ∈ C3(D × (0, T )) ∩ C2(D × (0, T )) with some T > 0.

Our aim is to study existence of global or blow-up solutions, depending on
the relations between the nonlinearites g, s, b, c, f and the nonlinear boundary
conditions. For this purpose, we construct different auxiliary functions and
use Hopf’s maximum principle to establish the sufficient conditions for the
global existence and blow-up of solutions, an upper bound for the “blow-up
time”, an upper estimate of the “blow-up rate” and an upper estimate of the
global solution to problem (1.1)-(1.3), then some examples are given. The
equation (1.1) describes nonlinear diffusion phenomenon in fields like physics,
mechanics, biology and so on. For example, Newton flow in fluid dynamics,
semiconductor, population dynamics model, see [9-12].

2 Blow-up solutions

In this section, we give sufficient conditions for the existence of blow-up solu-
tions of problems (1.1)(1.2)(1.3) and (1.1)(1.2)

′

(1.3).

Theorem 2.1 Let u ∈ C3(D × (0, T )) ∩ C2(D × (0, T )) be a solution of
problem (1.1)(1.2)(1.3). Assume that the following conditions hold:

(1) For any (x, s, q, t) ∈ D ×R×R+ ×R+,

b(x) > 0, c(t) > 0; (2.1)

(2) For any (x, s, q, t) ∈ D ×R+ ×R+ ×R+,

a(s) ≥ a′(s) ≥ 0, fq ≥ 0, c′(t) ≥ 0, g′(s) > 0, g′′(s) ≤ 0, (2.2)

ft(x, s, q, t) ≥
c′(t)

c(t)
f(x, s, q, t), fs(x, s, q, t) ≥ f(x, s, q, t) ≥ 0; (2.3)
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(3) For any x ∈ {x | f(x, u0, q0, 0) = 0, x ∈ D},

∇(a(u0)b(x)c(0)∇u0) ≥ 0; (2.4)

(4) The constant

β = min
D1

{ a(u0)

g′(u0)eu0

[∇(a(u0)b(x)c(0)∇u0) + f(x, u0, q0, 0)]} > 0, (2.5)

where D1 = {x | f(x, u0, q0, 0) 6= 0, x ∈ D} 6= φ, q0 = |∇u0|2;
(5) The integration

∫ +∞

M0

a(s)

es − 1
ds < +∞, where M0 = max

D

u0(x). (2.6)

then the solution u(x, t) of system (1.1)(1.2)(1.3) must blow up in finite time
T and

T ≤ 1

β

∫ +∞

M0

a(s)

es − 1
ds, (2.7)

u(x, t) ≤ Φ−1(β(T − t)), (2.8)

where Φ(z) =
∫+∞

z
a(s)
es−1

ds, z > 0, and Φ−1 is the inverse function of Φ.

Proof of Theorem 2.1: Consider the auxiliary function

Ψ = −a(u)ut + βeu, (2.9)

then we have
∇Ψ = −a′ut∇u− a∇ut + βeu∇u, (2.10)

∆Ψ = −a′ut∆u− a′′qut − 2a′∇u · ∇ut − a∆ut + βeu∆u+ βeuq, (2.11)

and

Ψt = −a′(ut)
2+βeuut−a(ut)t = −a′(ut)

2+βeuut−a[
1

g′
(abc∆u+a′bcq+ac∇b·∇u+f)]t

= −a′(ut)
2+βeuut−

a

g′
(a′bcut∆u+abc′∆u+abc∆ut+a′′bcqut+a′bc′q+2a′bc∇u·∇ut

+a′cut∇b ·∇u+ ac′∇b ·∇u+ ac∇b ·∇ut+2fq∇u ·∇ut+ ft+ fuut)

+
ag′′

(g′)2
(abc∆u + a′bcq + ac∇b · ∇u+ f)ut

(2.12)
It follows from (2.11) and (2.12) that

abc

g′
∆Ψ−Ψt
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= −aa′bcg′′

(g′)2
qut + 2

afq

g′
∇u · ∇ut −

a2bcg′′

(g′)2
ut∆u+ (

a2bc′

g′
+ β

abc

g′
eu)∆u

+(
aa′bc′

g′
+ β

abc

g′
eu)q + a′(ut)

2 + (
afu

g′
− βeu − afg′′

(g′)2
)ut +

a2c′

g′
∇b · ∇u

+(
aa′c

g′
− a2cg′′

(g′)2
)ut∇b · ∇u+

a2c

g′
∇b · ∇ut +

aft

g′
. (2.13)

Using (2.10), we have

∇ut = −1

a
∇Ψ− a′

a
ut∇u+ β

1

a
eu∇u. (2.14)

Now substituting (2.14) into (2.13) leads to

abc

g′
∆Ψ+ (

ac

g′
∇b+ 2

fq

g′
∇u)∇Ψ−Ψt

= (−aa′bcg′′

(g′)2
− 2

a′fq

g′
)qut −

a2bcg′′

(g′)2
ut∆u+ (

a2bc′

g′
+ β

abc

g′
eu)∆u

+(
aa′bc′

g′
+β

abc

g′
eu+2β

fq

g′
eu)q−a2cg′′

(g′)2
ut∇b·∇u+(

afu

g′
−βeu−afg′′

(g′)2
)ut

+(
a2c′

g′
+ β

ac

g′
eu)∇b · ∇u+ a′(ut)

2 +
aft

g′
. (2.15)

By (1.1), we have

∆u =
1

abc
(g′ut − a′bcq − ac∇b · ∇u− f), (2.16)

If we combine (2.15) and (2.16), we arrive at

abc

g′
∆Ψ+ (

ac

g′
∇b+ 2

fq

g′
∇u)∇Ψ−Ψt

= −2
a′fq

g′
qut + (β

abc

g′
eu − β

a′bc

g′
eu + 2β

fq

g′
eu − ag′′

g′
)q + (

afu

g′
+

ac′

c
)ut

−(
ac′

cg′
+ β

1

g′
eu)f + a′(ut)

2 +
aft

g′
. (2.17)

In view of (2.9), it follows

ut = −1

a
Ψ+ β

1

a
eu, (2.18)

then substituting (2.18) into (2.17) yields

abc

g′
∆Ψ+ (

ac

g′
∇b+ 2

fq

g′
∇u)∇Ψ+ (

fu

g′
+

c′

c
+

a′fq

ag′
)Ψ−Ψt
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= β
1

g′
(fue

u− feu)+β
c′

c
eu+

a

g′
(ft−

c′

c
f)+β(

abc

g′
eu− a′bc

g′
eu)q

+2β(
fq

g′
eu − a′fq

ag′
eu)q − ag′′

g′
q + a′(ut)

2

= β
1

g′
e2u(

f

eu
)′+β

c′

c
eu+

ac

g′
(
f

c
)′+β

a2bc

g′
(
eu

a
)′q+2β

afq

g′
(
eu

a
)′q−ag′′

g′
q+a′(ut)

2.

(2.19)
From assumptions (2.1)-(2.3), it follows that the right-hand side of (2.19) is
nonnegative, i.e.

abc

g′
∆Ψ + (

ac

g′
∇b+ 2

fq

g′
∇u)∇Ψ+ (

fu

g′
+

c′

c
+

a′fq

ag′
)Ψ−Ψt ≥ 0. (2.20)

In fact, we can see from (2.4) and (2.5) that

max
D

Ψ(x, 0) = max
D

{− a(u0)

g′(u0)
[∇(a(u0)b(x)c(0)∇u0)+f(x, u0, q0, 0)]+βeu0} ≤ 0.

(2.21)
Also, on ∂D × (0, T ), we have ut = 0, therefore

Ψ = −a(0)ut + βe0 = β, (2.22)

By combining (2.20)-(2.22) and using the Hopf’s maximum principles, we find
that the maximum of Ψ on D × (0, T ) is β, i.e.

Ψ ≤ β in D × (0, T ),

and by (2.9), we can see that

a(u)

eu − 1
ut ≥ β. (2.23)

At the point x0 ∈ D, where u0(x0) = M0, integrating (2.23) over [0, t], we get

1

β

∫ u(x0,t)

M0

a(s)

es − 1
ds ≥ t. (2.24)

This together with assumption (2.6) shows that u(x, t) must blow up at the
finite time T , moreover

T ≤ 1

β

∫ +∞

M0

a(s)

es − 1
ds. (2.25)

For each fixed x, integrating the inequality (2.23) over [t, s](0 < t < s < T )
yields

Φ(u(x, t)) ≥ Φ(u(x, t))−Φ(u(x, s)) =
∫ u(x,s)

u(x,t)

a(s)

es − 1
ds =

∫ s

t

a(u)

eu − 1
utdt ≥ β(s−t),
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If we let s → T ,then formally

Φ(u(x, t)) ≥ β(T − t),

therefore
u(x, t) ≤ Φ−1(β(T − t)).

The proof is completed.

Theorem 2.2 Let u ∈ C3(D × (0, T )) ∩ C2(D × (0, T )) be a solution of
problem (1.1)(1.2)

′

(1.3). Assume that the following conditions hold:
(1) For any (x, s, q, t) ∈ D ×R×R+ ×R+,

b(x) > 0, c(t) > 0; (2.26)

(2) For any (x, s, q, t) ∈ D ×R+ ×R+ ×R+,

a(s) ≥ a′(s) ≥ 0, fq ≥ 0, c′(t) ≥ 0, g′(s) > 0, g′′(s) ≤ 0, (2.27)

ft(x, s, q, t) ≥
c′(t)

c(t)
f(x, s, q, t), fs(x, s, q, t) ≥ f(x, s, q, t) ≥ 0; (2.28)

(3) For any x ∈ {x | f(x, u0, q0, 0) = 0, x ∈ D},

∇(a(u0)b(x)c(0)∇u0) ≥ 0; (2.29)

(4) The constant

β =
a(m0)

g′(m0)em0

min
D1

f(x,m0, 0, 0) > 0, (2.30)

where D1 = {x | f(x, u0, q0, 0) 6= 0, x ∈ D} 6= φ, q0 = |∇u0|2;
(5) The integration

∫ +∞

m0

a(s)

es
ds < +∞, where m0 = min

D

u0(x). (2.31)

then the solution u(x, t) of system (1.1)(1.2)
′

(1.3) must blow up in finite time
T and

T ≤ 1

β

∫ +∞

m0

a(s)

es
ds. (2.32)

Proof of Theorem 2.2: Let u be a solution of the following problem

(g(u))t = ∇ · (a(u)b(x)c(t)∇u) + f(x, u, q, t), in D × (0, T ),

∂u

∂n
= 0, on ∂D × (0, T ),
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u(x, 0) = m0, in D,

where q = |∇u|2, then u is a lower solution of (1.1)(1.2)
′

(1.3). In order to
show that u blows up in finite time, we merely have to show that u blows up
in some finite time.

Consider the auxiliary function

Ψ = −a(u)ut + βeu. (2.33)

Going along the lines of Theorem 2.1 and under the assumptions of (2.26)-
(2.28), it follows

abc

g′
∆Ψ + (

ac

g′
∇b+ 2

fq

g′
∇u)∇Ψ+ (

fu

g′
+

c′

c
+

a′fq

ag′
)Ψ−Ψt ≥ 0. (2.34)

We can see from (2.29) and (2.30) that

max
D

Ψ(x, 0) = max
D

{− a(m0)

g′(m0)e(m0)
[∇(a(m0)b(x)c(0)∇m0)+f(x,m0, q0, 0)]+βem0 ≤ 0.

(2.35)
Also, on ∂D × (0, T ), it gives

Ψ = −a′ut

∂u

∂n
− a

∂ut

∂n
+ βeu

∂u

∂n
= −a

∂ut

∂n
= 0, (2.36)

Now combining (2.34)-(2.36) and using the Hopf’s maximum principles, we
find that the maximum of Ψ on D × (0, T ) is β, i.e.

Ψ ≤ β in D × (0, T ),

and by (2.33), we can see that

a(u)

eu
ut ≥ β. (2.37)

At the point x0 ∈ D, where u0(x0) = M0, integrating (2.37) over [0, t] yields

1

β

∫ u(x0,t)

M0

a(s)

es
ds ≥ t. (2.38)

This together with assumption (2.31) shows that u(x, t) must blow up at the
finite time T , moreover

T ≤ 1

β

∫ +∞

M0

a(s)

es
ds. (2.39)

The proof is completed.
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3 Global solutions

In this section, we give nonexistence result of global solution of problem
(1.1)(1.2)(1.3) and sufficient conditions for the existence of blow-up solution
of problem (1.1)(1.2)

′

(1.3) under suitable conditions.

Theorem 3.1 The system (1.1)(1.2)(1.3) does not have global solution for
all t > 0.

Proof of Theorem 3.1: We prove this theorem by contradiction. If (1.1)(1.2)(1.3)
has a global solution u, then the following assumptions about a(u) must hold

a(s) > 0, a′(s) ≤ 0, a(s) ≤ a′(s), ∀s ∈ R+.

It is clear that such a(u) is non-existent. Therefore, the system (1.1)(1.2)(1.3)
does not have the global solution.

Theorem 3.2 Let u ∈ C3(D × (0, T )) ∩ C2(D × (0, T )) be a solution of
(1.1)(1.2)

′

(1.3). Assume that the following conditions hold:
(1) For any (x, s, q, t) ∈ D ×R×R+ ×R+,

b(x) > 0, c(t) > 0; (3.1)

(2) For any (x, s, q, t) ∈ D ×R+ ×R+ ×R+,

a′(s) ≤ 0, a(s) + a′(s) ≤ 0, fq ≤ 0, c′(t) ≤ 0, g′(s) > 0, g′′(s) ≥ 0, (3.2)

ft(x, s, q, t) ≤
c′(t)

c(t)
f(x, s, q, t), fs(x, s, q, t) + f(x, s, q, t) ≤ 0; (3.3)

(3) For any x ∈ {x | f(x, u0, q0, 0) = 0, x ∈ D},

∇(a(u0)b(x)c(0)∇u0) ≥ 0; (3.4)

(4) The constant

α =
a(M0)

g′(M0)eM0

max
D1

f(x,M0, 0, 0) > 0, (3.5)

where D1 = {x | f(x, u0, q0, 0) 6= 0, x ∈ D} 6= φ, q0 = |∇u0|2;
(5) The integration

∫ +∞

M0

a(s)

es
ds < +∞, where M0 = max

D
u0(x). (3.6)

then the solution u(x, t) of system (1.1)(1.2)
′

(1.3) must be a global solution,
and

u(x, t) ≤ Ψ−1(β(T − t)), (3.7)

where Ψ(z) =
∫ z
M0

a(s)
e−s

ds, z > 0, and Ψ−1 is the inverse function of Φ.
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Proof of Theorem 3.2: Let u be a solution of the following problem

(g(u))t = ∇ · (a(u)b(x)c(t)∇u) + f(x, u, q, t), in D × (0, T ),

∂u

∂n
= 0, on ∂D × (0, T ),

u(x, 0) = M0, in D,

where q = |∇u|2, then u is an upper solution of (1.1)(1.2)
′

(1.3). We show that
u must be a global solution, thus the solution u of (1.1)(1.2)

′

(1.3) must be a
global solution.

Consider the auxiliary function

Φ = −a(u)ut + αe−u. (3.8)

We first repeat the arguments of the proof of Theorem 2.1 by replacing Ψ and
β by Φ and α, respectively, and under the assumptions of (3.1)-(3.3), it follows

abc

g′
∆Φ+ (

ac

g′
∇b+ 2

fq

g′
∇u)∇Φ+ (

fu

g′
+

c′

c
+

a′fq

ag′
)Φ− Φt ≤ 0. (3.9)

Then we can see from (3.4) and (3.5) that

max
D

Φ(x, 0) = max
D

{− a(M0)

g′(M0)e(M0)
[∇(a(M0)b(x)c(0)∇M0)+f(x,M0, 0, 0)]+αe−M0} ≤ 0.

(3.10)
Also, on ∂D × (0, T ), it gives

∂Φ

∂n
= −a′ut

∂u

∂n
− a

∂ut

∂n
− αe−u∂u

∂n
= −a

∂ut

∂n
= 0. (3.11)

Now combining (3.9)-(3.11) and using the Hopf’s maximum principles, we find
that the maximum of Ψ on D × (0, T ) is β, i.e.

Φ ≥ 0 in D × (0, T ),

and by (3.8), we can see that

a(u)

e−u
ut ≤ α. (3.12)

At the point x0 ∈ D, where u0(x0) = M0, integrating (3.12) over [0, t] leads to

1

α

∫ u(x0,t)

M0

a(s)

e−s
ds ≤ t. (3.13)

This together with assumption (3.6) shows that u(x, t) must be a global solu-
tion, moreover

Ψ(u(x, t))−Ψ(u0(x, t)) =
∫ u(x,s)

u0(x)

a(s)

e−s
ds ≤ αt,

therefore
u(x, t) ≤ Φ−1(β(T − t)).

The proof is completed.
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4 Applications

In what follows, we present several examples to demonstrate the applications
of Theorem 2.1, Theorem 2.2 and Theorem 3.2.

Example 1. Let u be a solution of

(u+
√
u+ 1)t = ∇ · (eu

2 (2−
3∑

i=1

x2
i )e

t∇u) + (9+ q+
3∑

i=1

x2
i )e

uet, in D× (0, T )

u = 0, on ∂D × (0, T )

u(x, 0) = u0(x) = 1−
3∑

i=1

x2
i , in D

where D = {x = (x1, x2, x3) |
∑3

i=1 x
2
i < 1}, then we have

g(u) = u+
√
u+ 1, a(u) = e

u

2 , b(x) = 2−
3∑

i=1

x2
i , c(t) = et,

f(x, u, q, t) = (9 + q +
3∑

i=1

x2
i )e

uet.

It is easy to verify that (2.1)-(2.4) hold. In order to determine β, we suppose
w =

∑3
i=1 x

2
i . By (2.5), we find

β = min
D1

{ a(u0)

g′(u0)eu0

[∇(a(u0)b(x)c(0)∇u0) + f(x, u0, q0, 0)]}

= min
0≤w<1

{ 2

2 + (2− w)−
1

2

[14w − 2w2 − 12 + (9 + 5w)e
1−w

2 ]} .
= 2.0971.

It follows from Theorem 2.1 that u(x, t) must blow up at a finite time T

and

T ≤ 1

β

∫ +∞

M0

a(s)

es − 1
ds =

1

β

∫ +∞

1

a(s)

es − 1
ds =

1

2.0971
ln

√
e+ 1√
e− 1

,

u(x, t) ≤ Φ−1(β(T − t)) =
1

2
.

Example 2. Let u be a solution of

(u+
√
u)t = ∇ · (eu

2 (1 +
3∑

i=1

x2
i )e

t∇u) + exp(u+ q + t+
3∑

i=1

x2
i ), in D× (0, T )

∂u

∂n
= 0, on ∂D × (0, T )
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u(x, 0) = u0(x) = 1 + (1−
3∑

i=1

x2
i )

2, in D

where D = {x = (x1, x2, x3) |
∑3

i=1 x
2
i < 1}, then we have

g(u) = u+
√
u, a(u) = e

u

2 , b(x) = 1 +
3∑

i=1

x2
i , c(t) = et,

f(x, u, q, t) = exp(u+ q + t+
3∑

i=1

x2
i ).

It is easy to verify that (2.26)-(2.29) hold. By (2.30), we find

β =
a(m0)

g′(m0)em0

min
D1

f(x,m0, 0, 0)

=
2

3
e−

1

2 min
D1

exp(1 +
3∑

i=1

x2
i ) =

2

3
e

1

2 .

It follows from Theorem 2.2 that u(x, t) must blow up at a finite time T and

T ≤ 1

β

∫ +∞

m0

a(s)

es
ds =

3

2
e−

1

2

∫ +∞

1

e
s

2

es
ds =

3

e
,

u(x, t) ≤ Φ−1(β(T − t)) = 2 ln(3e−
1

2 (T − t)−1).

Example 3. Let u be a solution of

(eu)t = ∇ · (e−u(1 +
3∑

i=1

x2
i )e

−t∇u) + exp(−u− q − t−
3∑

i=1

x2
i ), in D × (0, T )

∂u

∂n
= 0, on ∂D × (0, T )

u(x, 0) = u0(x) = 1 + (1−
3∑

i=1

x2
i )

2, in D

where D = {x = (x1, x2, x3) |
∑3

i=1 x
2
i < 1}, then we have

g(u) = eu, a(u) = e−u, b(x) = 1 +
3∑

i=1

x2
i , c(t) = e−t,

f(x, u, q, t) = exp(−u− q − t−
3∑

i=1

x2
i ).
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It is easy to verify that (3.1)-(3.4) hold. By (3.5), we find

α =
a(M0)

g′(M0)
eM0 max

D1

f(x,M0, 0, 0)

= e−2max
D1

exp(−2−
3∑

i=1

x2
i ) = e−4.

It follows from Theorem 3.2 that u(x, t) must be a global solution and

u(x, t) ≤ Ψ−1(αt) = e−4t+ 2.
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