
Mathematica Aeterna, Vol. 5, 2015, no. 1, 169 - 174

Geometry of submersions on manifolds

of nonnegative curvature

A.Ya.Narmanov

National University of Uzbekistan,Tashkent,Uzbekistan

B.A.Tursunov

National University of Uzbekistan,Tashkent,Uzbekistan

Abstract

In the paper it is studied curvature properties of foliation generated

by submersions on manifolds of nonnegative curvature. It is proved if

length of gradient vector of every coordinate function of the submersion

is constant on level surface then every leaf of the foliation generated be

submersion is a manifold of nonnegative section curvature.
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1 Introduction

Let (M, g)-be a smooth riemannian manifold of dimension n, g-riemannian
metric, TpM-tangent space at a point p ∈ M , ∇ – Levi-Civita connection
defined by the Riemannian metric g. We denote by V (M) the set of all smooth
vector fields defined on M . Throughout the paper, the smoothness means
smoothness of class C∞.

The curvature tensor R of the Levi-Civita connection ∇ is defined as a
mapping R : V (M)× V (M)× V (M) → V (M) from the formula

R(X, Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z,

where [X, Y ]- Lie bracket of vector fields X, Y . The curvature tensor R is a
tensor of type (3,1)[1].
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Let X, Y -linearly independent vector fields, σ- two-dimensional plane gen-
erated by the pair X, Y . For the plane σ associate a real number Kσ :

Kσ =
〈R(X, Y )Y,X〉

|X|2|Y |2 − (〈X, Y )〉2
,

where 〈X, Y 〉-the scalar product defined by the Riemannian metric g. Value
Kσ is called the Riemann curvature relative to the plane σ or section curvature
in the two-dimensional direction σ. The manifold M is called a manifold of
non-negative curvature if Kσ ≥ 0 for all σ.

Let F -be foliation of dimension k, where 0 < k < n [6]. Denote by Lp leaf
of foliation F , passing through the point p ∈ M , by TqF -the tangent space
of leaf Lp at the point q ∈ Lp, by H(q) - orthogonal complement of subspace
TqF . As result arises subbundle’s TF = {TqF}, TH = {H(q)} of the tangent
bundle TM and we have an orthogonal decomposition TM = TF ⊕TH . Thus
every vector field X is decomposable as: X = Xv + Xh, where Xv ∈ TF ,
Xh ∈ TH . If Xh=0 (respectively Xv = 0 ), then the field X is called the
vertical (respectively horizontal) vector field.

Riemannian metric g on a manifold M induces a Riemannian metric g̃ on
the leaf Lp. With respect to these metrics canonical injection i : Lp → M is

an isometric immersion. Connection ∇ induces a connection ∇̃ on Lp, which

coincides with the connection defined by the Riemannian metric ∇̃. This
connection defines the sectional curvature of manifolds Lp [1]. In this paper
we consider a foliation generated by submersion, and study the relationship
between the sectional curvatures of manifolds M and Lp.

Recall that a differentiable mapping f : M → B of maximal rank, where
M, B-are smooth manifold of dimension n,m respectively n > m, is called a
submersion. By the theorem on the rank of a differentiable function for each
point p ∈ B of the full inverse image f−1(p) is a submanifold of dimension k =
n−m. Thus submersion f :M → B generates a foliation F of dimension k =
n −m on a manifold M , whose leaves are submanifolds Lp = f−1(p) : p ∈ B.
Study of the geometry and topology of foliations generated submersions, is the
subject of numerous studies [2],[3], in particular in [5]derived the fundamental
equations of submersion.

If the foliation generated by submersion f : M → B, the subspace TqF
coincides with the subspace Kerdfq of the tangent space TqM , where dfq-the
differential of the map f at the point q.

2 Main Results

Let’s consider a submersion f :M → Rk, f(p) = {f1(p), f2(p), · · ·fk(p)}.
The following theorem shows the relationship between the sectional curva-

tures of the manifolds M and a leaf of the submersion f .
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Theorem 2.1 Let M-is a manifold of constant non-negative (positive) sec-
tional curvatures, and X(|gradfi|

2) = 0 for each vertical vector field X. Then,
every leaf of foliation F is a submanifold of a non-negative (positive) sectional
curvature.

Proof. Let L-is a leaf of foliation F , q ∈ L, V1, V2 ∈ TqF . It is known

that, sectional curvature Kσ, K̃σ of manifolds L,M in the direction of a two-
dimensional subspace σ ⊂ TqL is connected by a relation (Gauss Equation)

Kσ = K̃σ +
k∑

i=1

[
1

|gradfi|
2 det

(
hi (V1, V1) hi (V1, V2)
hi (V1, V2) hi (V2, V2)

)]
,

where hi-is hessian of function fi, σ-is a plane, generated by vectors V1, V2.
Therefore it is sufficient to us to prove for i that,

det

(
hi (V1, V1) hi (V1, V2)
hi (V1, V2) hi (V2, V2)

)
> 0.

As it is known the hessian of the function fi is defined by a relation
hi (X, Y ) = 〈∇XZ, Y 〉, Z = gradfi, where the Hessian tensor ∇XZ is defined
by a symmetric matrix A:

∇XZ = AX

We know that if X(|gradfi|
2) = 0 for each vertical vector field X , then each

gradient line of the function fi is a geodesic line of Riemannian manifold M

[3]. By definition, the gradient line is a geodesic if and only if when ∇NN = 0,
where N = Z

|Z|
. We compute the covariant differential

∇NN =
1

|Z|
∇ZN =

1

|Z|

{
1

|Z|
∇ZZ + Z(

Z

|Z|
)Z

}
= 0

and find ∇ZZ = λZ, where λ = −|Z|Z( 1
[Z]

). This means that the gradient
vector Z is the eigenvector of the matrix A.

Let X1, X2, · · · , Xn−1, Z-mutually orthogonal eigenvectors of the matrix A
at the point q such, that X1, X2, · · · , Xn−1 vectors of unit length. Z

0-the value
of the gradient field at the point q. Locally, they can be continued to vector
field X1, X2, · · · , Xn−1, Z in a neighborhood (say U) of a point q so that at each
point of U they are generate orthogonal basis consisting of the eigenvectors.

Using vectors X0
1 , X

0
2 , · · · , X

0
n−1, Z

0 we introduce normal coordinate system
of (x1, x2, · · · , xn) in a neighborhood U of the point q. Components gij of the
metric g and the connected components of Γk

ij in the normal coordinate system
satisfy the conditions ([1],p.132)

gij (q) = δij,Γ
k
ij = 0.
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We show that X(λ) = 0 for each vertical field X . We set ϕ = 1
|Z|

. Then

X(λ) = −X(|Z|)Z( 1
|Z|

)− |Z|X(Z( 1
|Z|

)). From the condition of the theorem it

follows that X(|Z|) = 0. We compute

X(Z(
1

|Z|
)) = X(Z(ϕ)) = [X,Z](ϕ)− Z(X(ϕ)).

In [6], is shown that X(|gradfi|
2) = 0 for each vertical vector field X if and

only if, when hi(X,Z) = 0. It follows that [X,Z] is a vertical field. Therefore,
under the condition of the theorem we have X(Z(ϕ)) = 0. Thus λ is a constant
function on each leaf L.

Now denote by λ1, λ2, · · · , λn−1 the eigenvalues of the matrix A, corre-
sponding to the eigenvectors X1, X2, · · · , Xn−1. Then the matrix A has the
form

A =




λ1 0 · · · 0 0
0 λ2 · · · 0 0
...
0 0 · · · λn−1 0
0 0 · · · 0 λ



.

By the definition of a normal coordinate system it takes place

∇Xi
Xj = ∇Xj

Xi,∇Xi
Z = ∇ZXi

at the point q for each i, j.
Under the condition of the theorem the vector field ∇XZ is vertical field.

Therefore, the Codazzi equations are of the form [1]:

(∇XA)Y = (∇YA)X.

From Codazzi equation we get

∇Xi
AXj = ∇Xj

AXi,∇Xi
AZ = ∇ZAXi

at the point q for each vector field Xi. From this it follows that Xi(λj)Xj =
Xj(λi)Xi and Xi(λ)Z = Z(λi)Xi. By linear independence of the vector fields
X1, X2, · · · , Xn−1, Z we have that Xi (λj) = 0 for i 6= j and Z (λi) = 0 for all
i.

On the other hand

∇ZAXi = Xi (λ)Z + λ∇Xi
Z

Given the equality ∇Xi
AZ = ∇ZAXi ∇Xi

Z = λiXi we find that

λ2iXi + Z (λi)Xi = Xi (λ)Z + λλiXi.
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Since Z(λi) = 0, Xi(λ) = 0 at the point q, this implies that, if λi 6= 0, then
λi = λ. In particular, this implies that if λi 6= 0, then X(λi) = X(λ) = 0 and
Z(λ) = Z(λi) = 0 for all i.

Thus, in the neighborhood U at the point q of all nonzero eigenvalues of
the matrix A are equal to constant λ. If λ = 0, then all principal curvatures
of the level surface are equal to zero.

Suppose now that X, Y - the vertical fields on U , which coincide with
the vectors V1, V2 at the point q. We can write the vector fields X, Y in the
following form

X =
∑

i

ϕiXi, Y =
∑

i

ψiXi.

Then we have that

hi(X,X) = 〈AX,X〉 =
∑

ϕ2
iλi,

hi(Y, Y ) = 〈AY, Y 〉 =
∑

ψ2
i λi,

hi(X, Y ) = 〈AX, Y 〉 =
∑

ϕiψiλi.

Simple computation shows that

det

(
hi(X,X) hi(X, Y )
hi(X, Y ) hi(Y, Y )

)
=
∑

i<j

λiλjλij ,

where λij = (ϕiψj − ϕjψi)
2 ≥ 0. Since all nonzero principal curvatures λi are

equal to λ, we find that all the sectional curvatures of the surface L in the
direction of the plane σ, defined by the vectors V1, V2, positive - in the case of
K̃σ > 0 and non-negative - in the case of K̃σ = 0

The theorem is proved.
Note. Sectional curvatures of leaves are not necessarily constant.
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