GEODESICS AND HELICES ON EUCLIDEAN SPACE Gülay KORU YÜCEKAYA

Gazi University, Gazi Education Faculty, Mathematics Education Department
06500, Teknikokullar-Ankara, Turkey
gkoru@gazi.edu.tr

H. Hilmi HACISALİHOĞLU

Ankara University, Faculty of Sciences
Department of Mathematics
06100, Tandoğan-Ankara, Turkey
hacisali@science.ankara.edu.tr

Abstract

The relationships between the geodesic curves and helix curves on the hypercylinder on Euclidean space are given in [1]. The inclined curves on circular cylinder are called ordinary helices.

In this study, for the generalization of ordinary helices on hypercylinder and their relations to geodesic curves were given.

Mathematics Subject Classification: 53A04, 53A05, 53C22
Keywords: Circular cylinder, Hypercylinder, Inclined curves, Geodesic curves

1 Introduction

E. Müller defined helices as the curves which have constant angle with a fixed direction and named then as inclined curves [2].
Various studies are done on helices see for example [3], [4], [5]. Helices on cylinder in three dimensional are shown to be geodesics [1]. We investigate whether or not the same property holds in higher dimension. In this paper, we answer this question.

2 Preliminaries

An ($n-1$)-dimensional hypercylindir on n-dimensional Euclidean space E^{n}, is a point statement set as

$$
C=\left\{X=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \mid x_{i} \in R, 1 \leq i \leq n, \sum_{i=1}^{n-1} x_{i}^{2}=1, x_{n}=k, k \in R\right\}
$$

This cylinder is also denominated as $(n-1)$-cylinder [6].

Figure 1: (n-1)-cylinder
C, the outer normals of the ($n-1$)-cylinder, can also be considered as the unit normal vector area on C (Figure 1).
Accordingly, the N vector area defined as $N_{p}=\left(p_{1}, p_{2}, \ldots, p_{n-1}, 0\right)$ for $P=\left(p_{1}, p_{2}, \ldots, p_{n}\right) \in C$ is the unit normal vector area of C . Besides,

$$
\begin{equation*}
\left\langle N, e_{n}\right\rangle=0 \tag{1}
\end{equation*}
$$

[7].
Let the unit tangent vector area of the curve $M \subset E^{n}$ be V_{1} and $X \in \chi\left(E^{n}\right)$ be the constant unit vector area. If for $P \in M$

$$
\left.\left\langle V_{1}, X\right\rangle\right|_{p}=\cos \varphi=\text { constant }, \varphi \neq \frac{\pi}{2}
$$

then the curve M is called an inclined curves on E^{n}, the angle φ is called the incline angle of M and the space $S p\{X\}$ is called the incline axis of M . If the condition $\varphi \neq \frac{\pi}{2}$ is cancelled, each curve on E^{n} becomes an inclined curves on $E^{n+1}[7]$.

If Y is a c^{∞} vector area on a curve $\alpha: I \longrightarrow E^{n}$ and $D_{T} Y=0$ on α, then the vector space Y is called a parallel vector area on the curve α. If $D_{T} Y=0$ on a curve α, then the curve α is called a geodesic curve [7].

3 A THEOREM FOR GEODESICS and HELICES ON EUCLIDEAN SPACE

Theorem 3.1. Let there be a circular cylinder

$$
C=\left\{X=\left(x_{1}, x_{2}, x_{3}\right) \in E^{3} \mid x_{1}^{2}+x_{2}^{2}=1, x_{3}=k, k \in R\right\}
$$

on the 3 -dimensional Euclidean space E^{3}. For a curve $\alpha: I \longrightarrow C$ on C to be geodesic, the required and sufficient condition is that the curve α is an inclined curves on C [1].

Proof. Let a curve $\alpha: I \longrightarrow C$ on a circular cylinder C be a geodesic curve. Given that the arc parameter of the curve α is t ,

$$
\alpha^{\prime}=\frac{d \alpha}{d t}=V_{1}
$$

And if the angle between V_{1} and $\frac{\partial}{\partial x_{3}}$ is $\varphi(t)$ for every t then

$$
\left\langle V_{1}, \frac{\partial}{\partial x_{3}}\right\rangle=\cos \varphi(t)
$$

Here, with the covariant derivative according to V_{1},

$$
\left\langle D_{V_{1}} V_{1}, \frac{\partial}{\partial x_{3}}\right\rangle+\left\langle V_{1}, D_{V_{1}} \frac{\partial}{\partial x_{3}}\right\rangle=-\sin \varphi(t) \frac{d \varphi}{d t}
$$

or

$$
\begin{equation*}
\left\langle k_{1} V_{2}, \frac{\partial}{\partial x_{3}}\right\rangle=-\sin \varphi(t) \frac{d \varphi}{d t} . \tag{2}
\end{equation*}
$$

Since [7]

$$
V_{2}=\frac{\alpha^{\prime \prime}}{\left\|\alpha^{\prime \prime}\right\|},\left\|\alpha^{\prime \prime}\right\|=k_{1}
$$

then the expression (2) is

$$
\begin{equation*}
\left\langle\alpha^{\prime \prime}, \frac{\partial}{\partial x_{3}}\right\rangle=-\sin \varphi(t) \frac{d \varphi}{d t} . \tag{3}
\end{equation*}
$$

Since unit velocity curve α is a geodesic, we get

$$
\alpha^{\prime \prime}=\lambda N
$$

and for the cylinder C, using (1),

$$
\left\langle N, \frac{\partial}{\partial x_{3}}\right\rangle=0
$$

Thus, (3) is

$$
\sin \varphi(t) \frac{d \varphi}{d t}=0
$$

And therefore,

$$
\sin \varphi(t)=0
$$

or

$$
\frac{d \varphi}{d t}=0
$$

And so,

$$
\varphi(t)=0
$$

or

$$
\varphi(t)=\text { constant }
$$

In that case, the curve α is an inclined curves with an axis of $\frac{\partial}{\partial x_{3}}$ on the circular cylinder C.
Contrarily, let the curve $\alpha: I \longrightarrow C$ be an inclined curves on C . If

$$
C=\left\{X=\left(x_{1}, x_{2}, x_{3}\right) \in E^{3} \mid x_{1}^{2}+x_{2}^{2}=1, x_{3}=k, k \in R\right\}
$$

is a circular cylinder on E^{3} then the axis of this cylinder is $\frac{\partial}{\partial x_{3}}$. Let a curve $\alpha: I \longrightarrow C$ be an inclined curves with an axis of $\frac{\partial}{\partial x_{3}}$ on C. Given that the parameter of α (arc parameter) is t ,

$$
\left\langle V_{1}, \frac{\partial}{\partial x_{3}}\right\rangle=\cos \varphi(t), \varphi(t) \neq \frac{\pi}{2},(\varphi=\text { constant }) .
$$

Here we get

$$
\left\langle k_{1} V_{2}, \frac{\partial}{\partial x_{3}}\right\rangle=0
$$

where covariant derivative according to V_{1} is

$$
\left\langle\frac{d V_{1}}{d t}, \frac{\partial}{\partial x_{3}}\right\rangle=0, k_{1} \neq 0
$$

So, we can get

$$
\left\langle V_{2}, \frac{\partial}{\partial x_{3}}\right\rangle=0, V_{2}=\frac{d^{2} \alpha}{d t^{2}}=\alpha^{\prime \prime}
$$

or

$$
\left\langle\alpha^{\prime \prime}, \frac{\partial}{\partial x_{3}}\right\rangle=0
$$

and then

$$
\left\langle N, \frac{\partial}{\partial x_{3}}\right\rangle=0
$$

Figure 2: Circular helix
using (1) (Figure 2). On the other part,

$$
\left\langle\alpha^{\prime \prime}, \alpha^{\prime}\right\rangle=0
$$

and

$$
\left\langle N, \alpha^{\prime}\right\rangle=0 .
$$

In this case, using Figure 3, if

Figure 3: Frenet frame and others

$$
\begin{aligned}
& N=\lambda \frac{\partial}{\partial x_{3}} \wedge \alpha^{\prime}, \\
& \alpha^{\prime \prime}=\mu \frac{\partial}{\partial x_{3}} \wedge \alpha^{\prime}
\end{aligned}
$$

then

$$
\alpha^{\prime \prime}=\mu N .
$$

That is, the inclined curves α is a geodesic.

Theorem 3.2. Given an (n-1)-hypercylinder

$$
C=\left\{X=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \mid x_{i} \in R, 1 \leq i \leq n, \sum_{i=1}^{n-1} x_{i}^{2}=1, x_{n}=k, k \in R\right\}
$$

on n-dimensional Euclidean space E^{n}, if a curve $\alpha: I \rightarrow C$ on C is geodesic, then the curve α is an inclined curves on C.

Proof. $\alpha^{\prime}=\frac{d \alpha}{d t}=V_{1}$ where the arc parameter of the curve α is t . If the angle between V_{1} and $\frac{\partial}{\partial x_{n}}$ is $\varphi(t)$ for every t then

$$
\left\langle V_{1}, \frac{\partial}{\partial x_{n}}\right\rangle=\cos \varphi(t)
$$

Here, with the covariant derivative according to V_{1},

$$
\begin{align*}
& \left\langle D_{V_{1}} V_{1}, \frac{\partial}{\partial x_{n}}\right\rangle+\left\langle V_{1}, D_{V_{1}} \frac{\partial}{\partial x_{n}}\right\rangle=-\sin \varphi(t) \frac{d \varphi}{d t} \\
& \left\langle k_{1} V_{2}, \frac{\partial}{\partial x_{n}}\right\rangle=-\sin \varphi(t) \frac{d \varphi}{d t} . \tag{4}
\end{align*}
$$

Since

$$
V_{2}=\frac{\alpha^{\prime \prime}}{\left\|\alpha^{\prime \prime}\right\|},\left\|\alpha^{\prime \prime}\right\|=k_{1}
$$

then the statement (4) is

$$
\begin{equation*}
\left\langle\alpha^{\prime \prime}, \frac{\partial}{\partial x_{n}}\right\rangle=-\sin \varphi(t) \frac{d \varphi}{d t} . \tag{5}
\end{equation*}
$$

Since α unit velocity curve α is a geodesic, we get

$$
\alpha^{\prime \prime}=\lambda N
$$

and for the cylinder C, using (1),

$$
\left\langle N, \frac{\partial}{\partial x_{n}}\right\rangle=0
$$

Thus, the statement (5) is

$$
\sin \varphi(t) \frac{d \varphi}{d t}=0
$$

and this is

$$
\sin \varphi(t)=0
$$

or

$$
\frac{d \varphi}{d t}=0 .
$$

So,

$$
\varphi(t)=0 \text { or } \varphi(t)=\text { constant } .
$$

In that case, the curve α is an inclined curves with an axis of $\frac{\partial}{\partial x_{n}}$ on $\mathrm{C}(\mathrm{n}-1)$ cylinder.

Corollary 3.3. The geodesic curves on the (n-1)-dimensional hypercylinder on n-dimensional Euclidean space E^{n} are inclined curves.

Note that, the opposite of Theorem 1 is not always true. Indeed, for the inclined curves α,

$$
N \in S p\left\{\alpha^{\prime}, \frac{\partial}{\partial x_{n}}\right\}^{\perp}
$$

and

$$
\alpha^{\prime \prime} \in S p\left\{\alpha^{\prime}, \frac{\partial}{\partial x_{n}}\right\}^{\perp}(\text { Figure } 4)
$$

Figure 4: The vectors $\alpha^{\prime}, \alpha^{\prime \prime}, \frac{\partial}{\partial x_{n}}$ and N
However, for $\alpha^{\prime \prime}$ and N to be linearly dependent, the dimension of the orthogonal space should be 1 .

$$
\operatorname{boySp}\left\{\alpha^{\prime}, \frac{\partial}{\partial x_{n}}\right\}^{\perp}=n-2
$$

However, for $n=3$, it has to be

$$
\operatorname{boySp}\left\{\alpha^{\prime}, \frac{\partial}{\partial x_{3}}\right\}^{\perp}=1
$$

Therefore,

$$
\alpha^{\prime \prime}=\lambda N .
$$

Corollary 3.4. An inclined curves on (n-1)-dimensional hypercylinder on n-dimensional Euclidean space E^{n} are not geodesic curves.

References

[1] Koru, G., On The Inclined Curves, Gazi University Institute of Science Master Thesis, Ankara, 1992.
[2] Blaschke, W., Einführung in Die Differential Geometrie, Spiringer-Verlag, p:28-32, Berlin, Göttingen, Heidelberg, 1950.
[3] Özdamar, E., Hacısalihoğlu, H.H., A Characterizations of the Inclined Curves E^{n}., Communications de la Faculte des Sciences de L'Universite D'Ankara Serie A, Tome 23, p:109-125, Ankara, 1974.
[4] Öztürk, R., Characterizations for High Dimensional Spaces the Inclined Curves., Karadeniz Technical University Institute of Science Ph.D. Thesis, Trabzon, 1980.
[5] Görgülü, A., Hacısalihoğlu, H.H., Surfaces Which Contain Inclined Curves as Geodesics., Communications de la Faculte des Sciences de L'Universite D'Ankara Serie A, Tome 42, p:39-49, Ankara, 1993.
[6] Hacısalihoğlu, H.H., Analytic Geometry in 2 and 3 Dimensiaonal Spaces, 2 nd. Ed., Gazi University Arts and Sciences Faculty Publications, No.6, Ankara, 1984.
[7] Hacısalihoğlu, H.H., Differential Geometry, 1st. Ed., İnönü University Arts and Sciences Faculty Publications, Mat. No.2, Malatya, 1983.

Received: March, 2013

