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Abstract

The relationships between the geodesic curves and helix curves on
the hypercylinder on Euclidean space are given in [1]. The inclined
curves on circular cylinder are called ordinary helices.

In this study, for the generalization of ordinary helices on hyper-
cylinder and their relations to geodesic curves were given.
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1 Introduction

E. Müller defined helices as the curves which have constant angle with a fixed
direction and named then as inclined curves [2].
Various studies are done on helices see for example [3], [4], [5]. Helices on
cylinder in three dimensional are shown to be geodesics [1]. We investigate
whether or not the same property holds in higher dimension. In this paper,
we answer this question.
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2 Preliminaries

An (n−1)-dimensional hypercylindir on n-dimensional Euclidean space En, is
a point statement set as

C =

{
X = (x1, x2, ..., xn) | xi ∈ R, 1 ≤ i ≤ n,

n−1∑
i=1

x2i = 1, xn = k, k ∈ R
}

This cylinder is also denominated as (n− 1)-cylinder [6].

Figure 1: (n-1)-cylinder

C, the outer normals of the (n−1)-cylinder, can also be considered as the unit
normal vector area on C (Figure 1).
Accordingly, the N vector area defined as Np = (p1, p2, ..., pn−1, 0) for
P = (p1, p2, ..., pn) ∈ C is the unit normal vector area of C. Besides,

〈N, en〉 = 0 (1)

[7].
Let the unit tangent vector area of the curve M ⊂ En be V1 and X ∈ χ(En)

be the constant unit vector area. If for P ∈M

〈V1, X〉|p = cosϕ = constant, ϕ 6= π

2

then the curve M is called an inclined curves on En, the angle ϕ is called the
incline angle of M and the space Sp{X} is called the incline axis of M. If the
condition ϕ 6= π

2
is cancelled, each curve on En becomes an inclined curves on

En+1 [7].
If Y is a c∞ vector area on a curve α : I −→ En and DTY = 0 on α , then

the vector space Y is called a parallel vector area on the curve α . If DTY = 0
on a curve α , then the curve α is called a geodesic curve [7].

¨ ˙ ˘222 Gülay KORU YUCEKAYA and H. Hilmi HACISALIHOGLU



3 A THEOREM FOR GEODESICS and HE-

LICES ON EUCLIDEAN SPACE

Theorem 3.1. Let there be a circular cylinder

C =
{
X = (x1, x2, x3) ∈ E3 | x21 + x22 = 1, x3 = k, k ∈ R

}
on the 3-dimensional Euclidean space E3. For a curve α : I −→ C on C

to be geodesic, the required and sufficient condition is that the curve α is an
inclined curves on C [1].

Proof. Let a curve α : I −→ C on a circular cylinder C be a geodesic curve.
Given that the arc parameter of the curve α is t,

α′ =
dα

dt
= V1.

And if the angle between V1 and ∂
∂x3

is ϕ(t) for every t then

〈V1,
∂

∂x3
〉 = cosϕ(t).

Here, with the covariant derivative according to V1,

〈DV1V1,
∂

∂x3
〉+ 〈V1, DV1

∂

∂x3
〉 = − sinϕ(t)

dϕ

dt

or

〈k1V2,
∂

∂x3
〉 = − sinϕ(t)

dϕ

dt
. (2)

Since [7]

V2 =
α′′

‖α′′‖
, ‖α′′‖ = k1

then the expression (2) is

〈α′′, ∂

∂x3
〉 = − sinϕ(t)

dϕ

dt
. (3)

Since unit velocity curve α is a geodesic, we get

α′′ = λN

and for the cylinder C, using (1),

〈N, ∂

∂x3
〉 = 0.
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Thus, (3) is

sinϕ(t)
dϕ

dt
= 0.

And therefore,
sinϕ(t) = 0

or
dϕ

dt
= 0.

And so,
ϕ(t) = 0

or
ϕ(t) = constant.

In that case, the curve α is an inclined curves with an axis of ∂
∂x3

on the circular
cylinder C.
Contrarily, let the curve α : I −→ C be an inclined curves on C. If

C =
{
X = (x1, x2, x3) ∈ E3 | x21 + x22 = 1, x3 = k, k ∈ R

}
,

is a circular cylinder on E3 then the axis of this cylinder is ∂
∂x3

. Let a curve

α : I −→ C be an inclined curves with an axis of ∂
∂x3

on C. Given that the
parameter of α (arc parameter) is t,

〈V1,
∂

∂x3
〉 = cosϕ(t), ϕ(t) 6= π

2
, (ϕ = constant).

Here we get

〈k1V2,
∂

∂x3
〉 = 0

where covariant derivative according to V1 is

〈dV1
dt
,
∂

∂x3
〉 = 0, k1 6= 0.

So, we can get

〈V2,
∂

∂x3
〉 = 0, V2 =

d2α

dt2
= α′′

or

〈α′′, ∂

∂x3
〉 = 0

and then

〈N, ∂

∂x3
〉 = 0
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Figure 2: Circular helix

using (1) (Figure 2). On the other part,

〈α′′, α′〉 = 0

and
〈N,α′〉 = 0.

In this case, using Figure 3, if

Figure 3: Frenet frame and others

N = λ
∂

∂x3
∧ α′,

α′′ = µ
∂

∂x3
∧ α′

then
α′′ = µN.

That is, the inclined curves α is a geodesic.
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Theorem 3.2. Given an (n-1)-hypercylinder

C =

{
X = (x1, x2, ..., xn) | xi ∈ R, 1 ≤ i ≤ n,

n−1∑
i=1

x2i = 1, xn = k, k ∈ R
}

on n-dimensional Euclidean space En, if a curve α : I → C on C is geodesic,
then the curve α is an inclined curves on C.

Proof. α′ = dα
dt

= V1 where the arc parameter of the curve α is t.
If the angle between V1 and ∂

∂xn
is ϕ(t) for every t then

〈V1,
∂

∂xn
〉 = cosϕ(t).

Here, with the covariant derivative according to V1,

〈DV1V1,
∂

∂xn
〉+ 〈V1, DV1

∂

∂xn
〉 = − sinϕ(t)

dϕ

dt

〈k1V2,
∂

∂xn
〉 = − sinϕ(t)

dϕ

dt
. (4)

Since

V2 =
α′′

‖α′′‖
, ‖α′′‖ = k1

then the statement (4) is

〈α′′, ∂

∂xn
〉 = − sinϕ(t)

dϕ

dt
. (5)

Since α unit velocity curve α is a geodesic, we get

α′′ = λN

and for the cylinder C, using (1),

〈N, ∂

∂xn
〉 = 0.

Thus, the statement (5) is

sinϕ(t)
dϕ

dt
= 0

and this is
sinϕ(t) = 0

or
dϕ

dt
= 0.

¨ ˙ ˘226 Gülay KORU YUCEKAYA and H. Hilmi HACISALIHOGLU



So,
ϕ(t) = 0 or ϕ(t) = constant.

In that case, the curve α is an inclined curves with an axis of ∂
∂xn

on C (n-1)-
cylinder.

Corollary 3.3. The geodesic curves on the (n-1)-dimensional hypercylinder
on n-dimensional Euclidean space En are inclined curves.

Note that, the opposite of Theorem 1 is not always true.
Indeed, for the inclined curves α,

N ∈ Sp
{
α′,

∂

∂xn

}⊥
and

α′′ ∈ Sp
{
α′,

∂

∂xn

}⊥
(Figure4).

Figure 4: The vectors α′, α′′, ∂
∂xn

and N

However, for α′′ and N to be linearly dependent, the dimension of the or-
thogonal space should be 1.

boySp

{
α′,

∂

∂xn

}⊥
= n− 2

However, for n = 3 , it has to be

boySp

{
α′,

∂

∂x3

}⊥
= 1.

Therefore,
α′′ = λN.

Corollary 3.4. An inclined curves on (n-1)-dimensional hypercylinder on
n-dimensional Euclidean space En are not geodesic curves.
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