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Abstract

The relationships between the geodesic curves and helix curves on
the hypercylinder on Euclidean space are given in [1]. The inclined
curves on circular cylinder are called ordinary helices.

In this study, for the generalization of ordinary helices on hyper-
cylinder and their relations to geodesic curves were given.
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1 Introduction

E. Miiller defined helices as the curves which have constant angle with a fixed
direction and named then as inclined curves [2].

Various studies are done on helices see for example [3], [4], [5]. Helices on
cylinder in three dimensional are shown to be geodesics [1]. We investigate
whether or not the same property holds in higher dimension. In this paper,
we answer this question.
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2 Preliminaries

An (n —1)-dimensional hypercylindir on n-dimensional Euclidean space E™, is
a point statement set as

n—1
C’:{X:(:El,:@,...,xn)|$Z~€R,1Sign,fozl,xn:k,k‘ER}

=1

This cylinder is also denominated as (n — 1)-cylinder [6].

..................
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- =)

Figure 1: (n-1)-cylinder

C, the outer normals of the (n — 1)-cylinder, can also be considered as the unit
normal vector area on C' (Figure 1).

Accordingly, the N vector area defined as N, = (p1,p2, -.., Pn—1,0) for

P = (p1,p2,...,pn) € C is the unit normal vector area of C. Besides,

(N, en) =0 (1)

[7].
Let the unit tangent vector area of the curve M C E™ be V; and X € x(E")
be the constant unit vector area. If for P € M

<V17X>|p = cos p = constant,p #* g

then the curve M is called an inclined curves on E™, the angle ¢ is called the
incline angle of M and the space Sp{X} is called the incline axis of M. If the
condition ¢ # 7 is cancelled, each curve on E™ becomes an inclined curves on
E™ 7).

If Y is a ¢* vector area on a curve o : [ — E™ and D7Y =0 on « , then
the vector space Y is called a parallel vector area on the curve o . If DrY =0
on a curve « , then the curve « is called a geodesic curve [7].
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3 A THEOREM FOR GEODESICS and HE-
LICES ON EUCLIDEAN SPACE

Theorem 3.1. Let there be a circular cylinder
C= {X = (z1,79,73) € E® |2+ 25 =1, 23 =k, k € R}

on the 3-dimensional Euclidean space E3. For a curve o : I — C on C
to be geodesic, the required and sufficient condition is that the curve « is an
inclined curves on C [1].

Proof. Let a curve a : I — C' on a circular cylinder C be a geodesic curve.
Given that the arc parameter of the curve « is t,

,_da_

S v
dat !

«
And if the angle between V] and 6%3 is (t) for every t then

0
V1, 87x3> = cos p(t).

Here, with the covariant derivative according to Vi,

0 0 dy

Dy, Vi, — Vi, Dy, —) = —sinp(t)—
(Dv, 1’8x3>+< 1, vlax3> sin o )dt
or 5 p
A e
(k1 V3, 8x3> = —sin p(t) o (2)
Since [7]
O//
Vo= T o] = k1
then the expression (2) is
0 dp
N “¥
(@ 5} = —sinpl0) ®)

Since unit velocity curve « is a geodesic, we get

o = AN
and for the cylinder C, using (1),
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Thus, (3) is
dep
t)—/— =0
sin (1)
And therefore,
sin(t) =0
or p
@y _
o 0.
And so,
p(t) =0
or

©(t) = constant.

In that case, the curve « is an inclined curves with an axis of 8%3 on the circular
cylinder C.
Contrarily, let the curve o : I — C' be an inclined curves on C. If

C:{X:(xl,x2,x3)€E3|m%+x§:1,x3:k,k€R},

is a circular cylinder on E? then the axis of this cylinder is 6%3 . Let a curve

« : I — C be an inclined curves with an axis of 8%3 on C. Given that the
parameter of « (arc parameter) is t,

0 70
V1, 873> = cos p(t), p(t) # 5. (p = constant).

Here we get

0
k1Va,—) =0
where covariant derivative according to V; is
av, o0
—, —) =0,k .
<dt’8x3> 071#0
So, we can get
0 d*a
=0,Vo=—=da"
< 2 83U3> 2 dt?
or 5
"
2 \N=0
(@)
and then
9
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Figure 2: Circular helix

using (1) (Figure 2). On the other part,
(", oy =0

and
(N,d) = 0.

In this case, using Figure 3, if

ar

Figure 3: Frenet frame and others

0
N=\—Ad,
(93:3
"— o Ao
“ 'uax;),
then
o = pN.

That is, the inclined curves « is a geodesic.

225
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Theorem 3.2. Given an (n-1)-hypercylinder

n—1
C’:{X:(xl,xQ,...,xn)|35Z-€R,1§i§n,2x?:1,xn:k,k‘€R}

=1

on n-dimensional Euclidean space E", if a curve o : I — C on C is geodesic,
then the curve a is an inclined curves on C.

Proof. o = ‘fl—‘;‘ = Vi where the arc parameter of the curve « is t.

If the angle between V; and %ﬂ is p(t) for every t then

0
V1, %) = cos p(t).

Here, with the covariant derivative according to Vi,

0 0 . dp
Dy Vi, -2 Dy, ) = — e
< V1‘/17 a$n> + <‘/17 |4t (9acn> Sin 90<t> dt
0 dy
k — V= —si t)—. 4
(laVi 5-) = —sin (0 (@)
Since ,
o i
‘/2 = mni? ”Oé H - kl
lo]
then the statement (4) is
o O de
(a ’67> = —sin @(t)a- (5)

n

Since a unit velocity curve « is a geodesic, we get

" = AN
and for the cylinder C, using (1),
0
N,—) =0.
(V. 50-)
Thus, the statement (5) is
dy
inp(t) =2 =0
sin p(t) o
and this is
sinp(t) =0
or J
L)

dt
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So,
©(t) =0 or p(t) = constant.

In that case, the curve « is an inclined curves with an axis of % on C (n-1)-
cylinder.

Corollary 3.3. The geodesic curves on the (n-1)-dimensional hypercylinder
on n-dimensional Fuclidean space E™ are inclined curves.

Note that, the opposite of Theorem 1 is not always true.
Indeed, for the inclined curves «a,

PR
N g
ESp{a,axn}
and

91+
a’ e Sp {a', (,)xn} (Figured).

Cl'.'-"

.,
ey

F |

Figure 4: The vectors o/, o, % and N
n

However, for o and N to be linearly dependent, the dimension of the or-
thogonal space should be 1.

91t
boySp{o/,} =n—2
oz,

However, for n = 3 , it has to be
PR
boySp {a', } =1.
(9.1'3

o” = \N.

Corollary 3.4. An inclined curves on (n-1)-dimensional hypercylinder on
n-dimensional Fuclidean space E™ are not geodesic curves.

Therefore,
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