GEODESICS AND HELICES ON EUCLIDEAN SPACE

Gülay KORU YÜCEKAYA

Gazi University, Gazi Education Faculty, Mathematics Education Department 06500, Teknikokullar-Ankara, Turkey gkoru@gazi.edu.tr

H. Hilmi HACISALİHOĞLU

Ankara University, Faculty of Sciences Department of Mathematics 06100, Tandoğan-Ankara, Turkey hacisali@science.ankara.edu.tr

Abstract

The relationships between the geodesic curves and helix curves on the hypercylinder on Euclidean space are given in [1]. The inclined curves on circular cylinder are called ordinary helices.

In this study, for the generalization of ordinary helices on hypercylinder and their relations to geodesic curves were given.

Mathematics Subject Classification: 53A04, 53A05, 53C22

Keywords: Circular cylinder, Hypercylinder, Inclined curves, Geodesic curves

1 Introduction

E. Müller defined helices as the curves which have constant angle with a fixed direction and named then as inclined curves [2].

Various studies are done on helices see for example [3], [4], [5]. Helices on cylinder in three dimensional are shown to be geodesics [1]. We investigate whether or not the same property holds in higher dimension. In this paper, we answer this question.

2 Preliminaries

An (n-1)-dimensional hypercylindir on n-dimensional Euclidean space E^n , is a point statement set as

$$C = \left\{ X = (x_1, x_2, ..., x_n) \mid x_i \in R, 1 \le i \le n, \sum_{i=1}^{n-1} x_i^2 = 1, x_n = k, k \in R \right\}$$

This cylinder is also denominated as (n-1)-cylinder [6].

Figure 1: (n-1)-cylinder

C, the outer normals of the (n-1)-cylinder, can also be considered as the unit normal vector area on C (Figure 1).

Accordingly, the N vector area defined as $N_p = (p_1, p_2, ..., p_{n-1}, 0)$ for $P = (p_1, p_2, ..., p_n) \in C$ is the unit normal vector area of C. Besides,

$$\langle N, e_n \rangle = 0 \tag{1}$$

[7].

Let the unit tangent vector area of the curve $M \subset E^n$ be V_1 and $X \in \chi(E^n)$ be the constant unit vector area. If for $P \in M$

$$\langle V_1, X \rangle|_p = \cos \varphi = constant, \varphi \neq \frac{\pi}{2}$$

then the curve M is called an inclined curves on E^n , the angle φ is called the incline angle of M and the space $Sp\{X\}$ is called the incline axis of M. If the condition $\varphi \neq \frac{\pi}{2}$ is cancelled, each curve on E^n becomes an inclined curves on E^{n+1} [7].

If Y is a c^{∞} vector area on a curve $\alpha : I \longrightarrow E^n$ and $D_T Y = 0$ on α , then the vector space Y is called a parallel vector area on the curve α . If $D_T Y = 0$ on a curve α , then the curve α is called a geodesic curve [7].

3 A THEOREM FOR GEODESICS and HE-LICES ON EUCLIDEAN SPACE

Theorem 3.1. Let there be a circular cylinder

$$C = \left\{ X = (x_1, x_2, x_3) \in E^3 \mid x_1^2 + x_2^2 = 1, x_3 = k, k \in R \right\}$$

on the 3-dimensional Euclidean space E^3 . For a curve $\alpha : I \longrightarrow C$ on C to be geodesic, the required and sufficient condition is that the curve α is an inclined curves on C [1].

Proof. Let a curve $\alpha : I \longrightarrow C$ on a circular cylinder C be a geodesic curve. Given that the arc parameter of the curve α is t,

$$\alpha' = \frac{d\alpha}{dt} = V_1.$$

And if the angle between V_1 and $\frac{\partial}{\partial x_3}$ is $\varphi(t)$ for every t then

$$\langle V_1, \frac{\partial}{\partial x_3} \rangle = \cos \varphi(t).$$

Here, with the covariant derivative according to V_1 ,

$$\langle D_{V_1}V_1, \frac{\partial}{\partial x_3} \rangle + \langle V_1, D_{V_1}\frac{\partial}{\partial x_3} \rangle = -\sin\varphi(t)\frac{d\varphi}{dt}$$

or

$$\langle k_1 V_2, \frac{\partial}{\partial x_3} \rangle = -\sin \varphi(t) \frac{d\varphi}{dt}.$$
 (2)

Since [7]

$$V_2 = \frac{\alpha''}{\|\alpha''\|}, \|\alpha''\| = k_1$$

then the expression (2) is

$$\langle \alpha'', \frac{\partial}{\partial x_3} \rangle = -\sin \varphi(t) \frac{d\varphi}{dt}.$$
 (3)

Since unit velocity curve α is a geodesic, we get

$$\alpha'' = \lambda N$$

and for the cylinder C, using (1),

$$\langle N, \frac{\partial}{\partial x_3} \rangle = 0.$$

Thus, (3) is

$$\sin\varphi(t)\frac{d\varphi}{dt} = 0.$$

And therefore,

$$\sin\varphi(t) = 0$$

or

$$\frac{d\varphi}{dt} = 0.$$

And so,

$$\varphi(t) = 0$$

or

$$\varphi(t) = constant.$$

In that case, the curve α is an inclined curves with an axis of $\frac{\partial}{\partial x_3}$ on the circular cylinder C.

Contrarily, let the curve $\alpha: I \longrightarrow C$ be an inclined curves on C. If

$$C = \left\{ X = (x_1, x_2, x_3) \in E^3 \mid x_1^2 + x_2^2 = 1, x_3 = k, k \in R \right\},\$$

is a circular cylinder on E^3 then the axis of this cylinder is $\frac{\partial}{\partial x_3}$. Let a curve $\alpha : I \longrightarrow C$ be an inclined curves with an axis of $\frac{\partial}{\partial x_3}$ on C. Given that the parameter of α (arc parameter) is t,

$$\langle V_1, \frac{\partial}{\partial x_3} \rangle = \cos \varphi(t), \varphi(t) \neq \frac{\pi}{2}, (\varphi = constant).$$

Here we get

$$\langle k_1 V_2, \frac{\partial}{\partial x_3} \rangle = 0$$

where covariant derivative according to V_1 is

$$\langle \frac{dV_1}{dt}, \frac{\partial}{\partial x_3} \rangle = 0, k_1 \neq 0.$$

So, we can get

$$\langle V_2, \frac{\partial}{\partial x_3} \rangle = 0, V_2 = \frac{d^2 \alpha}{dt^2} = \alpha''$$

or

$$\langle \alpha'', \frac{\partial}{\partial x_3} \rangle = 0$$

and then

$$\langle N, \frac{\partial}{\partial x_3} \rangle = 0$$

Figure 2: Circular helix

using (1) (Figure 2). On the other part,

$$\langle \alpha'', \alpha' \rangle = 0$$

and

$$\langle N, \alpha' \rangle = 0$$

In this case, using Figure 3, if

Figure 3: Frenet frame and others

$$N = \lambda \frac{\partial}{\partial x_3} \wedge \alpha',$$
$$\alpha'' = \mu \frac{\partial}{\partial x_3} \wedge \alpha'$$

then

$$\alpha'' = \mu N.$$

That is, the inclined curves α is a geodesic.

Theorem 3.2. Given an (n-1)-hypercylinder

$$C = \left\{ X = (x_1, x_2, ..., x_n) \mid x_i \in R, 1 \le i \le n, \sum_{i=1}^{n-1} x_i^2 = 1, x_n = k, k \in R \right\}$$

on n-dimensional Euclidean space E^n , if a curve $\alpha : I \to C$ on C is geodesic, then the curve α is an inclined curves on C.

Proof. $\alpha' = \frac{d\alpha}{dt} = V_1$ where the arc parameter of the curve α is t. If the angle between V_1 and $\frac{\partial}{\partial x_n}$ is $\varphi(t)$ for every t then

$$\langle V_1, \frac{\partial}{\partial x_n} \rangle = \cos \varphi(t)$$

Here, with the covariant derivative according to V_1 ,

$$\langle D_{V_1} V_1, \frac{\partial}{\partial x_n} \rangle + \langle V_1, D_{V_1} \frac{\partial}{\partial x_n} \rangle = -\sin \varphi(t) \frac{d\varphi}{dt} \langle k_1 V_2, \frac{\partial}{\partial x_n} \rangle = -\sin \varphi(t) \frac{d\varphi}{dt}.$$

$$(4)$$

Since

$$V_2 = \frac{\alpha''}{\|\alpha''\|}, \|\alpha''\| = k_1$$

then the statement (4) is

$$\langle \alpha'', \frac{\partial}{\partial x_n} \rangle = -\sin \varphi(t) \frac{d\varphi}{dt}.$$
 (5)

Since α unit velocity curve α is a geodesic, we get

$$\alpha'' = \lambda N$$

and for the cylinder C, using (1),

$$\langle N, \frac{\partial}{\partial x_n} \rangle = 0.$$

Thus, the statement (5) is

$$\sin\varphi(t)\frac{d\varphi}{dt} = 0$$

and this is

$$\sin\varphi(t) = 0$$

or

$$\frac{d\varphi}{dt} = 0$$

.

So,

$$\varphi(t) = 0 \text{ or } \varphi(t) = constant.$$

In that case, the curve α is an inclined curves with an axis of $\frac{\partial}{\partial x_n}$ on C (n-1)-cylinder.

Corollary 3.3. The geodesic curves on the (n-1)-dimensional hypercylinder on n-dimensional Euclidean space E^n are inclined curves.

Note that, the opposite of Theorem 1 is not always true. Indeed, for the inclined curves α ,

$$N \in Sp\left\{\alpha', \frac{\partial}{\partial x_n}\right\}^{\perp}$$

and

$$\alpha'' \in Sp\left\{\alpha', \frac{\partial}{\partial x_n}\right\}^{\perp} (Figure 4).$$

Figure 4: The vectors $\alpha', \alpha'', \frac{\partial}{\partial x_n}$ and N

However, for α'' and N to be linearly dependent, the dimension of the orthogonal space should be 1.

$$boySp\left\{\alpha',\frac{\partial}{\partial x_n}\right\}^{\perp} = n - 2$$

However, for n = 3, it has to be

$$boySp\left\{\alpha', \frac{\partial}{\partial x_3}\right\}^{\perp} = 1.$$

Therefore,

$$\alpha'' = \lambda N.$$

Corollary 3.4. An inclined curves on (n-1)-dimensional hypercylinder on *n*-dimensional Euclidean space E^n are not geodesic curves.

References

- Koru, G., On The Inclined Curves, Gazi University Institute of Science Master Thesis, Ankara, 1992.
- [2] Blaschke, W., Einführung in Die Differential Geometrie, Spiringer-Verlag, p:28-32, Berlin, Göttingen, Heidelberg, 1950.
- [3] Ozdamar, E., Hacısalihoğlu, H.H., A Characterizations of the Inclined Curves Eⁿ., Communications de la Faculte des Sciences de L'Universite D'Ankara Serie A, Tome 23, p:109-125, Ankara, 1974.
- [4] Oztürk, R., Characterizations for High Dimensional Spaces the Inclined Curves., Karadeniz Technical University Institute of Science Ph.D. Thesis, Trabzon, 1980.
- [5] Görgülü, A., Hacısalihoğlu, H.H., Surfaces Which Contain Inclined Curves as Geodesics., Communications de la Faculte des Sciences de L'Universite D'Ankara Serie A, Tome 42, p:39-49, Ankara, 1993.
- [6] Hacısalihoğlu, H.H., Analytic Geometry in 2 and 3 Dimensiaonal Spaces, 2 nd. Ed., Gazi University Arts and Sciences Faculty Publications, No.6, Ankara, 1984.
- [7] Hacısalihoğlu, H.H., Differential Geometry, 1st. Ed., Inönü University Arts and Sciences Faculty Publications, Mat. No.2, Malatya, 1983.

Received: March, 2013