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abstract

In this paper, we introduce and investigate the general solution of a new func-

tional equation
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a2
[(1 + a)f(x+ y) + (1− a)f(−x− y)]

+
1

b2
[f(z + w) + f(−z − w)]

where a, b ≥ 2 and discuss its Generalized Hyers - Ulam - Rassias stability in

Quasi -β-normed spaces.
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1. INTRODUCTION

In 1940, S. M. Ulam [32] , while he was giving a talk before the

mathematics club of the University of wisconsin, he proposed a number of

importent unsolved problems. One of the problem is the stability of functional

equation. In the last five decades the problem was tackled by numerous authors

[1,2,6,8,12,18,22,26]. It’s solutions via various forms of functional equations like

additive, quadratic, cubic and quartic and its mixed forms were discussed.

Ulam’s stability problem states as follows:

Let G be a group and let H be a metric group with metric d(.,.). Given

ε > 0 does there exists a δ > 0 such that if a function f : G → H satisfies

the inequality d(f(xy), f(x)f(y)) < δ for all x, y ∈ G, then there exists a

homomorphism a : G→ H with d(f(x), a(x)) < ε for all x ∈ G?

In 1941, D.H. Hyers[12] considered the case of approximately additive

mappings f : E → E ′ where E and E ′ are Banach spaces. He proved the

following celebrated theorem.

Theorem 1.1 (25). Let E, E ′ be Banach spaces and let f : E → E ′ be a

mapping satisfying

‖f(x+ y)− f(x)− f(y)‖ ≤ ε

for all x, y ∈ E. Then the limit a(x) = limn→∞
f(2nx)

2n
exists for all x ∈ E and

a : E → E ′ is the unique additive mapping satisfying

‖f(x)− a(x)‖ ≤ ε

for all x ∈ E. Moreover, if f(tx) is continuous in t for each fixed x ∈ E then

a is linear.

From the above property, the additive functional equation f(x + y) =

f(x) + f(y) has Hyers-Ulam stability on (E,E ′) or alternatively that it is

stable in the sense of Hyers and Ulam. In 1951, T.Aoki [2] generalized the

Hyers theorem and later in 1978, Th.M.Rassias [25] proved a generalization of

Hyers theorem, which allows the cauchy difference to be unbounded. It states

as follows:
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Theorem 1.2 (25). Let E,E ′ be two Banach spaces and let θ ∈ [0,∞) and

p ∈ [0, 1). If a function f : E → E ′ satisfies the inequality

‖f(x+ y)− f(x)− f(y)‖ ≤ θ [||x||p + ||y||p]

for all x, y ∈ E. Then there exists a unique additive mapping T : E → E ′ such

that

‖f(x)− T (x)‖ ≤ 2θ

2− 2p
||x||p

for all x ∈ E. Moreover, it f(tx) is continuous in t for each fixed x ∈ E then

T is linear.

These ideas become a powerful tool for studying the stability of several

functional equations and they have been called Hyers-Ulam-Rassias stability,

In 1982-84, J.M.Rassias [22] in the above Theorem [25], he replaced the sum

by the product of powers of norms , which is given in the following Theorem .

Theorem 1.3 (22). Let f : E → E ′ be a mapping from a normed vector space

E into a Banach space E ′ subject to the inequality

‖f(x+ y)− f(x)− f(y)‖ ≤ ε ‖x‖p ‖y‖p (1.1)

for all x, y ∈ E, where ε and p are constants with ε > 0 and 0 ≤ p < 1
2
. Then

the limit

L(x) = lim
n→∞

f(2nx)

2n

exists for all x ∈ E and L : E → E ′ is the unique additive mapping which

satisfies

‖f(x)− L(x)‖ ≤ ε

2− 22p
‖x‖2p (1.2)

for all x ∈ E. If p < 0, then the inequality (1.1) holds for x, y 6= 0 and (1.2)

for x 6= 0. If p > 1
2

the inequality (1.1) holds for x, y ∈ E and the limit

A(x) = lim
n→∞

2nf
( x

2n

)
exists for all x ∈ E and A : E → E ′ is the unique additive mapping which

satisfies

‖f(x)− A(x)‖ ≤ ε

22p − 2
‖x‖2p
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for all x ∈ E. If in addition f : E → E ′ is a mapping such that the transfor-

mation t → f(tx) is continuous in t ∈ R for each fixed x ∈ X, then L is R−
linear mapping.

In 1983, Skof proved Hyers-Ulam-Rassias stability problem for qua-

dratic functional equation

f(x+ y) + f(x− y) = 2f(x) + 2f(y). (1.3)

for a class of functions f : A→ B, whereA is a normed space and B is a Banach

space (see [2][14]). Many results are available on various quadratic functional

equations, one can see ([5][7][15][17] [19]). S.M.Jung [15] investegated the

Hyers-Ulam-Rassias stability of the quadratic functional equation on pexider

type

f1(x+ y) + f2(x− y) = 2f3(x) + 2f4(y).

The generalized Hyers-Ulam-Rassias stability of a quadratic equation

f(x+ y + z) + f(x− y) + f(y − z) + f(z − x) = 3f(x) + 3f(y) + 3f(z)

was discussed by B.H.Bae and K.W.Kim [3]. In 2005, K.W.Jun and H.M.Kim

[18] obtained the general solution of a generalized quadratic and additive type

functional equation of the form

f(x+ ay) + af(x− y) = f(x− ay) + af(x+ y)

for any integer a with a 6= −1, 0, 1. J.M.Rassias [?, 24]erived the stability of

the generalized version of the above quadratic equation

Q(a1x1 + a2x2) +Qf(a2x1 − a1x2) =
(
a21 + a22

)
[Q(x1) +Q(x2)]

which covers a wide range of quadratic functional equations in two variables.

Recently , K.Ravi and R.Kodandan [29] discussed the stability of Additive and

Quadratic functional equation

f

(
xz

y
+
yw

x

)
+ f

(
xz

y
− yw

x

)
= 2f

(
xz

y

)
+ f

(yw
x

)
+ f

(
−yw
x

)
where x, y 6= 0, in non-Archimedian spaces.
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In this paper, we introduce and investigate the general solution of a

new functional equation

f

(
x+ y

a
+
z + w

b

)
+ f

(
x+ y

a
− z + w

b

)
=

1

a2
[(1 + a)f(x+ y) + (1− a)f(−x− y)]

+
1

b2
[f(z + w) + f(−z − w)]

(1.4)

and discuss its Generalized Hyers-Ulam-Rassias stability of this equation in

quasi-β-Normed spaces. It may be noted that f(x) = ax2 + bx+ c is a solution

of the functional equation (1.4)

Before giving the main results, we will present here some basic facts

concerning quasi-β-Normed spaces and some prelimenary results. We fix a

real number β with 0 < β ≤ 1 and let K denote either R or C .Let X be

a linear space over K . A quasi-β-norm ‖ · ‖ is a real-valued function on X

satisfying the following: Let X be a linear space. A quasi-norm ‖ · ‖ is real -

valued function on X satisfying the following:

(i) ‖ x ‖≥ 0 for all x ∈ X and ‖ x ‖= 0 if and only if x = 0.

(ii) ‖ λx ‖ =| λ |β . ‖ x ‖ for all λ ∈ K and all x ∈ X.

(iii) There is a constant K ≥ 1 such that ‖ x + y ‖≤ K (‖ x ‖ + ‖ y ‖) for all

x, y ∈ X. The pair (X, ‖ · ‖) is called quasi-β-normed space if ‖ · ‖ is a quasi-

β-norm on X. The smallest possible K is called the modulus of concavity of

‖ · ‖.A quasi-β-Banach space is a complete quasi-β-normed space.

A qusi-β-norm ‖ · ‖ is called a (β, p)-norm (0 < p ≤ 1) if

‖ x+ y ‖p≤‖ x ‖p + ‖ y ‖p

for all x, y ∈ X. In this case, a quasi-β-Banach space is called a (β, p)-Banach

space . We can refer to [3,30] for the concept of quasi-normed spaces and

p-Banach space. Given a p-norm, the formula d(x, y) =‖ x + y ‖p gives

us a translation invarient metric on X. By the Aoki-Rolewicz theorem [30]

(see also [3]), each quasi-norm is equivalent to some p-norm, since it is much

easier to work with p-norms than quasi-norms. henceforth we restrict our

attention mainly to p-norms. In [31], J.Tabor has investigated a version of the

Hyers-Rassias-Gajda theorem (see[8]) in quasi-Banach spaces. We recall that

a subadditive function is a function φ : E1 → E2, having a domain E1 and

a codomain (E2,≤) that are both closed under additive, with the following
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property:

φ(x+ y) ≤ φ(x) + φ(y),∀x, y ∈ E1.

Now we say that a function φ : E1 → E2 is contractively subadditive if there

exists a constant L with 0 < L < 1 such that

φ(x+ y) ≤ L [φ(x) + φ(y)] ,∀x, y ∈ E1.

Then φ satisfies the following properties φ(2x) ≤ 2Lφ(x) and so φ(2nx) ≤
(2L)nφ(x). It follows by the contractively subadditive condition of φ that

φ(λx) ≤ λLφ(x) and so φ(λix) ≤ (λL)iφ(x), i ∈ N, for all x ∈ E1 and all posi-

tive integer λ ≥ 2. Similarly, we say that function φ : E1 → E2 is expansively

superadditive if there exists a constant L with 0 < L < 1 such that

φ(x+ y) ≥ 1

L
[φ(x) + φ(y)] , ∀x, y ∈ E1.

Then φ satisfies the following properties φ(x) ≤ L
2
φ(2x) and so φ

(
x
2n

)
≤(

L
2

)n
φ(x). We observe that an expansively super additive mapping φ satisfies

the following properties φ(λx) ≥
(
λ
L

)
φ(x) and so φ

(
x
λi

)
≥
(
L
λ

)i
φ(x), i ∈ N,

for all x ∈ E1 and all positive integer λ ≥ 2.

2. Solution of Functional Equation (1.4)

In this Section, let E1 and E2 denote real vectors spaces, we will prove the

following two main theorems.

Theorem 2.1. If f : E1 → E2 is an even function satisfying (1.4) for all

x, y, z, w ∈ E1 then f is quadratic.

Proof. Replace (x, y, z, w) by (0, 0, 0, 0) in (1.4), we obtain

f(0) = 0. (2.1)

The function f is even and therefore f(−x) = f(x) for all x ∈ E1. Using

evenness in (1.4) we obtain

f

(
x+ y

a
+
z + w

b

)
+ f

(
x+ y

a
− z + w

b

)
=

2

a2
f(x+ y) +

2

b2
f(z+w), (2.2)

for all x, y, z, w ∈ E1 Replace (z, w) by (0, 0) and using (2.1) in (2.2), we obtain

f

(
x+ y

a

)
=

1

a2
f(x+ y), ∀ x, y ∈ E1. (2.3)
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Replacing x by 0 in (2.3), we arrive that

f
(y
a

)
=

1

a2
f(y), ∀ y ∈ E1. (2.4)

Again replacing y by ax in (2.4), we obtain

f(ax) = a2f(x), ∀ x ∈ E1. (2.5)

Replacing [(x, y), (z, w)] by [(ax, ay), (bz, bw)] in (2.2) and using equation (2.5)

, we obtain

f [(x+ y) + (z + w)] + f [(x+ y)− (z + w)] = 2f(x+ y) + 2f(z + w). (2.6)

Replacing (x+ y, z + w) by (u, v) in (2.6), we obtain

f(u+ v) + f(u− v) = 2f(u) + 2f(v). (2.7)

Again replacing (u, v) by (x, y) in (2.7), we obtain

f(x+ y) + f(x− y) = 2f(x) + 2f(y), ∀ x, y ∈ E1.

Therefore f : E1 → E2 is quadratic. �

Theorem 2.2. If f : E1 → E2 be an odd function, satisfying (1.4) for all

x, y ∈ E1 . Then f is additive.

Proof. Using oddness of f and using (2.1) in (1.4) , we obtain

f

(
x+ y

a
+
z + w

b

)
+ f

(
x+ y

a
− z + w

b

)
=

2

a
f(x+ y). (2.8)

Replacing (z, w) by (0, 0) and using (2.1) in (2.7), we obtain

f

(
x+ y

a

)
=

1

a
f(x+ y), ∀ x, y ∈ E1. (2.9)

Replacing x by y in (2.8) , we obtain

f

(
2y

a

)
=

1

a
f(2y), ∀ y ∈ E1. (2.10)

Replacing 2y by ax in (2.10), we arrive

f(ax) = af(x), ∀ x ∈ E1. (2.11)
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Replacing [(x, y), (z, w)] by [(ax, ay), (az, aw)] in (2.8) and using equation

(2.11), we obtain

f [(x+ y) + (z + w)] + f [(x+ y)− (z + w)] = 2f(x+ y), ∀ x, y, z, w ∈ E1.

(2.12)

Replacing (x+ y, z + w) by (u, v) in (2.11), we obtain

f(u+ v) + f(u− v) = 2f(u). (2.13)

Interchanging u ,v and using oddness in (2.13), we obtain

f(u+ v)− f(u− v) = 2f(v). (2.14)

Adding (2.13) and (2.14) , we get

f(u+ v) = f(u) + f(v). (2.15)

Replacing (u, v) by (x, y) in(2.15), we obtain

f(x+ y) = f(x) + f(y), ∀ x, y ∈ E1.

Therefore the mapping f : E1 → E2 is additive. �

3. HYERS - ULAM - RASSIAS STABILITY OF EQUATION (1.4)

In this Section, we assume that E1 is a linear space over K and E2 is a

(β, p) Banach space with p-norm ‖. ‖E2
. Let K be the modulus of concavity

of ‖. ‖E2
Now we are going to investigate the modified Ulam-Hyers Stability

of the functional equation (1.4). For notational convenience, we denote for

a given mapping f : E1 → E2 and a scalar µ ∈ K , the difference operator

Dµf : E1 × E1 × E1 × E1 → E2 of equation (1.4) by

Dµ f(x, y, z, w) = f

(
µx+ µy

a
+
µz + µw

b

)
+ f

(
µx+ µy

a
− µz + µw

b

)
− 1

a2
[(a+ 1)µf(x+ y) + (a− 1)µf(−x− y)]

− 1

b2
[µf(z + w) + µf(−z − w)]

for all x, y, z, w ∈ E1 .
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Theorem 3.1. Assume that there exists a mapping φ : E1 ×E1 ×E1 ×E1 →
[0,∞) for which an odd mapping f : E1 → E2 satisfies the inequality

‖D1f(x, y, z, w)‖E2
≤ φ(x, y, z, w) (3.1)

for all x, y, z, w ∈ E1, and that the map φ is contractively subadditive with a

constant L satisfying a1−βL < 1. Then there exists a unique additive mapping

A : E1 → E2 which satisfies (1.4) and the inequality

‖f(x)− A(x)‖E2
≤
(a

2

)β φ(x, 0, 0, 0)

p

√(
aβ−1

L

)p
− 1

(3.2)

for all x ∈ E1.

Proof. Using oddness and (2.1) in (3.1), we obtain∥∥∥∥f (x+ y

a
+
z + w

b

)
+ f

(
x+ y

a
− z + w

b

)
− 2

a
f(x+ y)

∥∥∥∥
E2

≤ φ(x, y, z, w).

(3.3)

For all x, y, z, w ∈ E1. Replace (y, z, w) by (0, 0, 0) in (3.3), we obtain∥∥∥∥2f
(x
a

)
− 2

a
f(x)

∥∥∥∥
E2

≤ φ(x, 0, 0, 0), ∀x ∈ E1. (3.4)

Again replacing x by ax in (3.4) and simplifing, we get∥∥∥∥f(x)− 1

a
f(ax)

∥∥∥∥
E2

≤ 1

2β
φ(ax, 0, 0, 0) (3.5)

for all x ∈ E1. Therefore it follows from in (3.5) that when we replace aix in

the place of x and by iterative method∥∥∥∥f(alx)

al
− f(amx)

am

∥∥∥∥p
E2

≤
m−1∑
i=l

(aL)p

2βpaβpi

∥∥∥∥f(aix)− f(ai+1x)

a

∥∥∥∥p
E2

≤ (aL)p

2βp

m−1∑
i=l

1

aβpi
φ(aix, 0, 0, 0)p

≤ (aL)p

2βp

m−1∑
i=l

(aL)pi

aβpi
φ(x, 0, 0, 0)p

≤ (aL)p

2βp
φ(x, 0, 0, 0)p

m−1∑
i=l

(
a1−βL

)pi
. (3.6)
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for all x ∈ E1 and for any m > l ≥ 0 . Thus it follows that a sequence{
f(amx)
am

}
is a cauchy in E2 and so it converges. Therefore we see that a

mapping A : E1 → E2 defined by A(x) = limm→∞
f(amx)
am

is well defined for all

x ∈ E1. In addition it is clear from (3.1) that the following inequality

‖D1A(x, y, z, w)‖pE2
= lim

m→∞

‖D1f(amx, amy, amz, amw)‖pE2

aβpm

≤ lim
m→∞

‖φ(amx, amy, amz, amw)‖pE2

aβpm

≤ lim
m→∞

(a1−βL)βpmφ(x, y, z, w)p = 0

holds for all x, y, z, w ∈ E1 and so the mapping A is additive. Taking the limit

m→∞ in (3.6) with l = 0, we find that

‖f(x)− A(x)‖pE2
≤
(
aL

2β

)p
φ(x, 0, 0, 0)p

∞∑
i=0

(
a1−βL

)pi
≤
(
aL

2β

)p
φ(x, 0, 0, 0)p

1

1− (a1−βL)p

therefore, we get

‖f(x)− A(x)‖E2
≤
(a

2

)β φ(x, 0, 0, 0)

p

√(
aβ−1

L

)p
− 1

.

To prove uniqueness, we assume now that there is another function A
′
: E1 →

E2 which satisfies (1.4) and the inequality (3.2) then it follows that A
′
(ax) =

aA
′
(x) ,A

′
(amx) = amA

′
(x) for all x ∈ E1 and all m ∈ N . Thus∥∥∥∥f(amx)

am

∥∥∥∥
E2

=
1

aβm

∥∥∥f(amx)− A′(amx)
∥∥∥
E2

≤ aL

aβm

(a
2

)β φ(amx, 0, 0, 0)
p
√
aβp − (aL)p

≤ (aL)
(a

2

)β (
a1−βL

)m φ(x, 0, 0, 0)
p
√
aβp − (aL)p

for all x ∈ E1 and all m ∈ N . Allow m→∞, we get∥∥∥A(x)− A′(x)
∥∥∥ = 0
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for all x ∈ E1, which completes the proof of uniqueness. �

Theorem 3.2. Assume that there exists a mapping φ : E1 ×E1 ×E1 ×E1 →
[0,∞) for which an odd mapping f : E1 → E2 satisfies the inequality

‖D1f(x, y, z, w)‖E2
≤ φ(x, y, z, w) (3.7)

for all x, y, z, w ∈ E1, and that the map φ is expansively superadditive with

a constant L satisfying aβ−1L < 1. Then there exists a unique mapping A :

E1 → E2 which satisfies (1.4) and the inequality

‖f(x)− A(x)‖E2
≤
(a

2

)β φ(x, 0, 0, 0)
p
√

1− (aβ−1L)p
(3.8)

for all x ∈ E1 .

Proof. From (3.4), we obtain∥∥∥f(x)− af
(x
a

)∥∥∥ ≤ (a
2

)β
φ(x, 0, 0, 0) (3.9)

it follows from (3.9) with x
ai

in place of x and iterative method that

∥∥∥alf ( x
al

)
− amf

( x

am

)∥∥∥p
E2

≤
m−1∑
i=l

aβpi
∥∥∥f ( x

ai

)
− af

( x

ai+1

)∥∥∥p
E2

≤
(a

2

)βp m−1∑
i=l

aβpiφ
( x
ai
, 0, 0, 0

)p
≤
(a

2

)βp
φ(x, 0, 0, 0)

m−1∑
i=l

(
aβ−1L

)pi
(3.10)

for all x ∈ E1 and for any m > l ≥ 0. Therefore we see that a mapping

A : E1 → E2 defined by

A(x) = lim
m→∞

amf
( x

am

)
is well defined for all x ∈ E1. Taking the limit m→∞ in (3.10) with l = 0, we

find that the mapping A satisfying the inequality (3.8) near the approximate

mapping f : E1 → E2 of (1.4). The remaining proof is similar to that of

Theorem 3.1. �
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Theorem 3.3. Assume that an odd mapping f : E1 → E2 satisfies

‖D1f(x, y, z, w)‖E2
≤ φ(x, y, z, w)

for all x, y, z, w ∈ E1. If a mapping φ : E1 × E1 × E1 × E1 → [0,∞) satisfies

Φ(x, 0, 0, 0) =
∞∑
i=0

Kiφ(ai+1x, 0, 0, 0)

aβi
<∞ and lim

m→∞

Kmφ(amx, 0, 0, 0)

aβm
= 0

for all x, y, z, w ∈ E1. Then there exists a unique additive mapping A : E1 →
E2 such that A satisfies (1.4) and the inequality

‖f(x)− A(x)‖E2
≤ K

2β
Φ(x, 0, 0, 0),∀x ∈ E1.

Proof. It follows from (3.5) with aix in place of x and iterative method that∥∥∥∥f(x)− f
(
amx

am

)∥∥∥∥
E2

≤ K

2β

m−2∑
i=0

Kiφ(ai+1x, 0, 0, 0)

aβi
+

1

2β
Km−1φ(amx, 0, 0, 0)

aβ(m−1)

(3.11)

or all x ∈ E1 and for any m > 1, which is considered to be (3.5) for m = 1. In

fact, we see by computation∥∥∥∥f(x)− f(am+1x)

am+1

∥∥∥∥
E2

≤ K

∥∥∥∥f(x)− f(ax)

a

∥∥∥∥
E2

+
K

aβ

∥∥∥∥f(x)− f(am+1x)

am

∥∥∥∥
E2

≤ K

2β
φ(ax, 0, 0, 0) +

K2

(2a)β

m−2∑
i=0

Kiφ(ai+2x, 0, 0, 0)

aβi

+
Km

(2a)β
φ(am+1x, 0, 0, 0)

aβ(m−1)

≤ K

2β

m−1∑
j=0

Kjφ(aj+1x, 0, 0, 0)

aβj
+
Km

2β
φ(am+1x, 0, 0, 0)

aβm
,

for all x ∈ E1,which proves the inequality (3.11) for m+ 1 by induction.

Thus follows that a sequence
{
f(amx)
am

}
is cauchy in E2 and it converges.Therefore

we see that a mapping A : E1 → E2 defined by A(x) = limm→∞
f(am)
am

is well

defined for all x ∈ E1. The remaining proof is similar to that of Theorem

3.1. �

Theorem 3.4. Assume that an odd mapping f : E1 → E2 satisfies

‖D1f(x, y, z, w)‖E2
≤ φ(x, y, z, w)
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for all x, y, z, w ∈ E1. If a mapping φ : E1 × E1 × E1 × E1 → [0,∞) satisfies

Φ(x, 0, 0, 0) =
∞∑
i=0

(
aβK

)i
φ
( x
ai
, 0, 0, 0

)
<∞ and lim

m→∞

(
aβK

)m
φ
( x

am
, 0, 0, 0

)
= 0.

for all x, y, z, w ∈ E1. Then there exists a unique additive mapping A : E1 →
E2 such that A satisfies (1.4) and the inequality

‖f(x)− A(x)‖E2
≤ K

(a
2

)β
Φ(x, 0, 0, 0),

for all x ∈ E1.

Proof. It follows from(3.9) with x
ai

and the similar method to (3.11) that∥∥∥f(x)− amf
( x

am

)∥∥∥
E2

≤ K
(a

2

)β m−2∑
i=0

(amK)i φ
( x
ai
, 0, 0, 0

)
+
(a

2

)β (
aβK

)m−1
φ
( x

am−1
, 0, 0, 0

)
for all x ∈ E1 and for anym > 1. Therefore we see that a mapping A : E1 → E2

defined by A(x) = limm→∞ a
mf
(
x
am

)
is well defined for all x ∈ E1. The

remaining proof is similar to that of Theorem 3.3. �

Corollary 3.5. Let E1 be a quasi-α-normed linear space with quasi-α-norm

‖ . ‖. if there exists a fixed real number r ∈ R such that an odd mapping

f : E1 → E2 satisfies the functional inequality

‖D1f(x, y, z, w)‖E2
≤ θ (‖x‖r + ‖y‖r + ‖z‖r + ‖w‖r)

for all x, y, z, w ∈ E1 (E1\ {0} if r ≤ 0), then there exists a unique additive

mapping A : E1 → E2 which satisfies Eq.(1.4) and the inequality

‖f(x)− A(x)‖ ≤


Kθ
2β

aαr

1−Kaαr−β if Kaαr < aβ,(
Kθaβ

2β

)
1

1−Kaβ−αr if Kaβ < aαr,

for all x ∈ E1 (E1\ {0} if r ≤ 0).

Proof. By replacing φ(x, y, z, w) by (‖x‖r + ‖y‖r + ‖z‖r + ‖w‖r) in Theorem

3.1 and Theorem 3.2, we obtain above result. �
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Theorem 3.6. Assume that there exists a mapping ϕ : E1 ×E1 ×E1 ×E1 →
[0,∞) for which an even mapping f : E1 → E2 satisfies the inequality

‖D1f(x, y, z, w)‖E2
≤ ϕ(x, y, z, w) (3.12)

for all x, y, z ∈ E1 and that the map φ is contractively subadditive with a con-

stant L satisfying a1−2βL < 1. Then there exists a unique quadratic mapping

Q : E1 → E2 which satisfies (1.4) and the inequality

‖f(x)−Q(x)‖E2
≤
(
a2

2

)β
ϕ(x, 0, 0, 0)

p

√(
a2β−1

L

)p
− 1

, (3.13)

for all x ∈ E1 .

Proof. Using evenness in (3.12), we obtain∥∥∥∥f (x+ y

a
+
z + w

b

)
+ f

(
x+ y

a
− z + w

b

)
− 2

a2
f(x+ y)− 2

a2
f(z + w)

∥∥∥∥
E2

≤ ϕ(x, y, z, w).

(3.14)

For all x, y, z, w ∈ E1. Replace (y, z, w) by (0, 0, 0) in (3.14), we obtain∥∥∥∥2f
(x
a

)
− 2

a2
f(x)

∥∥∥∥
E2

≤ ϕ(x, 0, 0, 0), ∀x ∈ E1. (3.15)

Again replacing x by ax in (3.15) and simplifing, we get∥∥∥∥f(x)− 1

a2
f(ax)

∥∥∥∥
E2

≤ 1

2β
ϕ(ax, 0, 0, 0) (3.16)

for all x ∈ E1.Therefore it follows from in (3.16) that when we replace aix in

the place of x and by iterative method∥∥∥∥f(alx)

a2l
− f(amx)

a2m

∥∥∥∥p
E2

≤
m−1∑
i=l

(aL)p

2βpa2βpi

∥∥∥∥f(aix)− f(ai+1x)

a2

∥∥∥∥p
E2

≤ (aL)p

2βp

m−1∑
i=l

1

aβpi
ϕ(aix, 0, 0, 0)p

≤ (aL)p

2βp

m−1∑
i=l

(aL)pi

a2βpi
ϕ(x, 0, 0, 0)p

≤ (aL)p

2βp
ϕ(x, 0, 0, 0)p

m−1∑
i=l

(
a1−2βL

)pi
. (3.17)
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for all x ∈ E1 and for any m > l ≥ 0. Thus it follows that a sequence{
f(amx)
a2m

}
is a cauchy sequence in E2 and so it converges. Therefore we see

that a mapping A : E1 → E2 defined by Q(x) = limm→∞
f(amx)
a2m

is well defined

for all x ∈ E1. In addition it is clear from (3.12) that the following inequality

‖D1Q(x, y, z, w)‖pE2
= lim

m→∞

‖D1f(amx, amy, amz, amw)‖pE2

a2βpm

≤ lim
m→∞

‖ϕ(amx, amy, amz, amw)‖pE2

a2βpm

≤ lim
m→∞

(a1−2βL)βpmϕ(x, y, z, w)p = 0

holds for all x, y, z, w ∈ E1 and so the mapping Q is quadratic. Taking the

limit m→∞ in (3.17) with l = 0, we find that

‖f(x)−Q(x)‖pE2
≤
(
aL

2β

)p
ϕ(x, 0, 0, 0)p

∞∑
i=0

(
a1−2βL

)pi
≤
(
aL

2β

)p
ϕ(x, 0, 0, 0)p

1

1− (a1−2βL)p

therefore, we get

‖f(x)−Q(x)‖E2
≤
(a

2

)β ϕ(x, 0, 0, 0)

p

√(
a2β−1

L

)p
− 1

.

To prove uniqueness, we assume now that there is another function Q
′
: E1 →

E2 which satisfies (1.4) and the inequality (3.13) then it follows that Q
′
(ax) =

aQ
′
(x) ,Q

′
(amx) = amQ

′
(x) for all x ∈ E1 and all m ∈ N . Thus∥∥∥∥f(amx)

am

∥∥∥∥
E2

=
1

a2βm

∥∥∥f(amx)−Q′(amx)
∥∥∥
E2

≤
(
aL

a2βm

)m(
a2

2

)β
ϕ(amx, 0, 0, 0)
p
√
aβp − (aL)p

≤ (aL)
(a

2

)β (
a1−2βL

)m ϕ(x, 0, 0, 0)
p
√
a2βp − (aL)p

for all x ∈ E1 and all m ∈ N . Allow m→∞, we get∥∥∥Q(x)−Q′(x)
∥∥∥ = 0
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for all x ∈ E1, which completes the proof of uniqueness. �

Theorem 3.7. Assume that there exists a mapping ϕ : E1 ×E1 ×E1 ×E1 →
[0,∞) for which an even mapping f : E1 → E2 satisfies the inequality (3.12)

and that the map ϕ is expansively superadditive with a constant L satisfying

a2β−1L < 1. Then there exists a unique quadratic mapping Q : E1 → E2 which

satisfies (1.4) and the inequality

‖f(x)−Q(x)‖E2
≤
(
a2

2

)β
ϕ(x, 0, 0, 0)

p
√

(1− a2β−1)p
(3.18)

for all x ∈ E1.

Proof. From (3.15), we obtain∥∥∥f(x)− a2f
(x
a

)∥∥∥ ≤ (a2
2

)β
ϕ(x, 0, 0, 0) (3.19)

it follows from (3.19) with x
ai

in place of x and iterative method that∥∥∥a2lf ( x
al

)
− a2mf

( x

am

)∥∥∥p
E2

≤
m−1∑
i=l

a2βpi
∥∥∥f ( x

ai

)
− a2f

( x

ai+1

)∥∥∥p
E2

≤
(
a2

2

)βp m−1∑
i=l

a2βpiϕ
( x
ai
, 0, 0, 0

)p
≤
(
a2

2

)βp
ϕ(x, 0, 0, 0)

m−1∑
i=l

(
a2β−1L

)pi
(3.20)

for all x ∈ E1 and for any m > l ≥ 0. Therefore we see that a mapping

Q : E1 → E2 defined by

Q(x) = lim
m→∞

a2mf
( x

am

)
is well defined for all x ∈ E1. Taking the limit m→∞ in (3.20) with l = 0, we

find that the mapping Q satisfing the inequality (3.18) near the approximate

mapping f : E1 → E2 of (1.4). The remaining proof is similar to that of

Theorem 3.6. �

Theorem 3.8. Assume that an even mapping f : E1 → E2 satisfies

‖D1f(x, y, z, w)‖E2
≤ ϕ(x, y, z, w)
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for all x, y, z, w ∈ E1. If a mapping ϕ : E1 × E1 × E1 × E1 → [0,∞) satisfies

Ψ(x, 0, 0, 0) =
∞∑
i=0

Kiϕ (ai+1x, 0, 0, 0)

a2βi
<∞ and lim

m→∞

Kmϕ (amx, 0, 0, 0)

a2βm
= 0

for all x, y, z, w ∈ E1. Then there exists a unique quadratic mapping Q : E1 →
E2 such that Q satisfies (1.4) and the inequality

‖f(x)−Q(x)‖E2
≤ K

2β
Ψ(x, 0, 0, 0),∀x ∈ E1.

Proof. It follows from (3.16) with aix in place of x and iterative method that∥∥∥∥f(x)− f
(
amx

a2m

)∥∥∥∥
E2

≤ K

2β

m−2∑
i=0

Kiφ(ai+1x, 0, 0, 0)

aβi
+

1

2β
Km−1φ(amx, 0, 0, 0)

aβ(m−1)

(3.21)

for all x ∈ E1 and for any m > 1, which is considered to be (3.9) for m = 1.

In fact, we see by computation∥∥∥∥f(x)− f(am+1x)

a2(m+1)

∥∥∥∥
E2

≤ K

∥∥∥∥f(x)− f(ax)

a2

∥∥∥∥
E2

+
K

a2β

∥∥∥∥f(ax)− f(a2(m+1)x)

am

∥∥∥∥
E2

≤ K

2β
ϕ(ax, 0, 0, 0) +

K2

(2a2)β

m−2∑
i=0

Kiϕ(ai+2x, 0, 0, 0)

a2βi

+
Km

(2a)β
ϕ(am+1x, 0, 0, 0)

a2β(m−1)

≤ K

2β

m−1∑
j=0

Kjϕ(aj+1x, 0, 0, 0)

a2βj
+
Km

2β
ϕ(am+1x, 0, 0, 0)

a2βm
,

for all x ∈ E1, which proves the inequality (3.21) for m+ 1 by induction.

Thus follows that a sequence
{
f(amx)
am

}
is cauchy in E2 and it converges.Therefore

we see that a mapping A : E1 → E2 defined by A(x) = limm→∞
f(am)
am

is well

defined for all x ∈ E1. The remaining proof is similar to that of theorem

3.6. �

Theorem 3.9. Assume that an even mapping f : E1 → E2 satisfies

‖D1f(x, y, z, w)‖E2
≤ φ(x, y, z, w)
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for all x, y, z, w ∈ E1. If a mapping φ : E1 × E1 × E1 × E1 → [0,∞) satisfies

Ψ(x, 0, 0, 0) =
∞∑
i=0

(
a2βK

)i
φ
( x
ai
, 0, 0, 0

)
<∞ and lim

m→∞

(
a2βK

)m
φ
( x

am
, 0, 0, 0

)
= 0.

For all x, y, z, w ∈ E1. Then there exists a unique quadratic mapping Q : E1 →
E2 such that Q satisfies (1.4) and the inequality

‖f(x)−Q(x)‖E2
≤ K

(
a2

2

)β
Ψ(x, 0, 0, 0).

For all x ∈ E1

Proof. It follows from(3.19) with x
ai

and the similar method to (3.21) that∥∥∥f(x)− a2mf
( x

am

)∥∥∥
E2

≤ K

(
a2

2

)β m−2∑
i=0

(
a2mK

)i
ϕ
( x
ai
, 0, 0, 0

)
+

(
a2

2

)β (
a2βK

)m−1
ϕ
( x

am−1
, 0, 0, 0

)
for all x ∈ E1 and for anym > 1. Therefore we see that a mapping Q : E1 → E2

defined by Q(x) = limm→∞ a
mf
(
x
am

)
is well defined for all x ∈ E1. The

remaining proof is similar to that of Theorem 3.8. �

Corollary 3.10. Let E1 be a quasi-α-normed linear space with quasi-α-norm

‖ . ‖. if there exists a fixed r ∈ R such that an even mapping f : E1 → E2

satisfies the functional inequality

‖D1f(x, y, z, w)‖E2
≤ θ (‖x‖r + ‖y‖r + ‖z‖r + ‖w‖r)

for all x, y, z, w ∈ E1 (E1\ {0} if r ≤ 0), then there exists a unique quadratic

mapping Q : E1 → E2 which satisfies Eq.(1.4) and the inequality

‖f(x)−Q(x)‖ ≤


Kθ
2β

a2αr

1−Kaαr−2β if Kaαr < a2β,(
Kθa2β

2β

)
1

1−Ka2β−αr if Ka2β < aαr,

for all x ∈ E1 (E1\ {0} if r ≤ 0),

Proof. Replacing ϕ(x, y, z, w) by (‖x‖r + ‖y‖r + ‖z‖r + ‖w‖r) in Theorem 3.6

and Theorem 3.7, we obtain above result. �
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