Mathematica Aeterna, Vol. 1, 2011, no. 04, 217-236

Generalized Ulam-Hyers stability of an AQ-functional equation in quasi-beta-normed spaces
 K.Ravi
 Department of Mathematics,Sacred Heart College
 Tirupattur - 635 601, TamilNadu, India
 shckravi@yahoo.co.in

J.M.Rassias

Pedagogical Department E.E,Section of Mathematics and Informatics
National and Capodistrian University of Athens
4, Agamemnonos Str., Aghia Paraskevi,Athens 15342, Greece
jrassias@primedu.uoa.gr,URL: http: www.primedu.uoa.gr/ jrassias
R. Kodandan

Department of Mathematics
Sreeinivasa Institute of Technology and Management Studies
Chittoor - 517 127, Andhra Pradesh, India,Rkodandan1979@rediffmail.com

abstract

In this paper, we introduce and investigate the general solution of a new functional equation

$$
\begin{array}{r}
f\left(\frac{x+y}{a}+\frac{z+w}{b}\right)+f\left(\frac{x+y}{a}-\frac{z+w}{b}\right)=\frac{1}{a^{2}}[(1+a) f(x+y)+(1-a) f(-x-y)] \\
+\frac{1}{b^{2}}[f(z+w)+f(-z-w)]
\end{array}
$$

where $a, b \geq 2$ and discuss its Generalized Hyers - Ulam - Rassias stability in Quasi - β-normed spaces.

Mathematics Subject Classification: [2000]: 39B52, 39B82,39B72,47Jxx. Keywords: Generalized Ulam-Hyers stability, Quadratic function, Additive function, Quasi- β-spaces, (β, p)-Banach spaces, Contractively subadditive, Expansively super additive

1. INTRODUCTION

In 1940, S. M. Ulam [32], while he was giving a talk before the mathematics club of the University of wisconsin, he proposed a number of importent unsolved problems. One of the problem is the stability of functional equation. In the last five decades the problem was tackled by numerous authors [$1,2,6,8,12,18,22,26]$. It's solutions via various forms of functional equations like additive, quadratic, cubic and quartic and its mixed forms were discussed.

Ulam's stability problem states as follows:
Let G be a group and let H be a metric group with metric $\mathrm{d}(.,$.$) . Given$ $\epsilon>0$ does there exists a $\delta>0$ such that if a function $f: G \rightarrow H$ satisfies the inequality $d(f(x y), f(x) f(y))<\delta$ for all $x, y \in G$, then there exists a homomorphism $a: G \rightarrow H$ with $d(f(x), a(x))<\epsilon$ for all $x \in G$?

In 1941, D.H. Hyers[12] considered the case of approximately additive mappings $f: E \rightarrow E^{\prime}$ where E and E^{\prime} are Banach spaces. He proved the following celebrated theorem.

Theorem 1.1 (25). Let E, E^{\prime} be Banach spaces and let $f: E \rightarrow E^{\prime}$ be a mapping satisfying

$$
\|f(x+y)-f(x)-f(y)\| \leq \epsilon
$$

for all $x, y \in E$. Then the limit $a(x)=\lim _{n \rightarrow \infty} \frac{f\left(2^{n} x\right)}{2^{n}}$ exists for all $x \in E$ and $a: E \rightarrow E^{\prime}$ is the unique additive mapping satisfying

$$
\|f(x)-a(x)\| \leq \epsilon
$$

for all $x \in E$. Moreover, if $f(t x)$ is continuous in t for each fixed $x \in E$ then a is linear.

From the above property, the additive functional equation $f(x+y)=$ $f(x)+f(y)$ has Hyers-Ulam stability on $\left(E, E^{\prime}\right)$ or alternatively that it is stable in the sense of Hyers and Ulam. In 1951, T.Aoki [2] generalized the Hyers theorem and later in 1978, Th.M.Rassias [25] proved a generalization of Hyers theorem, which allows the cauchy difference to be unbounded. It states as follows:

Theorem 1.2 (25). Let E, E^{\prime} be two Banach spaces and let $\theta \in[0, \infty)$ and $p \in[0,1)$. If a function $f: E \rightarrow E^{\prime}$ satisfies the inequality

$$
\|f(x+y)-f(x)-f(y)\| \leq \theta\left[\|x\|^{p}+\|y\|^{p}\right]
$$

for all $x, y \in E$. Then there exists a unique additive mapping $T: E \rightarrow E^{\prime}$ such that

$$
\|f(x)-T(x)\| \leq \frac{2 \theta}{2-2^{p}}\|x\|^{p}
$$

for all $x \in E$. Moreover, it $f(t x)$ is continuous in t for each fixed $x \in E$ then T is linear.

These ideas become a powerful tool for studying the stability of several functional equations and they have been called Hyers-Ulam-Rassias stability, In 1982-84, J.M.Rassias [22] in the above Theorem [25], he replaced the sum by the product of powers of norms, which is given in the following Theorem .

Theorem 1.3 (22). Let $f: E \rightarrow E^{\prime}$ be a mapping from a normed vector space E into a Banach space E^{\prime} subject to the inequality

$$
\begin{equation*}
\|f(x+y)-f(x)-f(y)\| \leq \epsilon\|x\|^{p}\|y\|^{p} \tag{1.1}
\end{equation*}
$$

for all $x, y \in E$, where ϵ and p are constants with $\epsilon>0$ and $0 \leq p<\frac{1}{2}$. Then the limit

$$
L(x)=\lim _{n \rightarrow \infty} \frac{f\left(2^{n} x\right)}{2^{n}}
$$

exists for all $x \in E$ and $L: E \rightarrow E^{\prime}$ is the unique additive mapping which satisfies

$$
\begin{equation*}
\|f(x)-L(x)\| \leq \frac{\epsilon}{2-2^{2 p}}\|x\|^{2 p} \tag{1.2}
\end{equation*}
$$

for all $x \in E$. If $p<0$, then the inequality (1.1) holds for $x, y \neq 0$ and (1.2) for $x \neq 0$. If $p>\frac{1}{2}$ the inequality (1.1) holds for $x, y \in E$ and the limit

$$
A(x)=\lim _{n \rightarrow \infty} 2^{n} f\left(\frac{x}{2^{n}}\right)
$$

exists for all $x \in E$ and $A: E \rightarrow E^{\prime}$ is the unique additive mapping which satisfies

$$
\|f(x)-A(x)\| \leq \frac{\epsilon}{2^{2 p}-2}\|x\|^{2 p}
$$

for all $x \in E$. If in addition $f: E \rightarrow E^{\prime}$ is a mapping such that the transformation $t \rightarrow f(t x)$ is continuous in $t \in \mathbb{R}$ for each fixed $x \in X$, then L is $\mathbb{R}-$ linear mapping.

In 1983, Skof proved Hyers-Ulam-Rassias stability problem for quadratic functional equation

$$
\begin{equation*}
f(x+y)+f(x-y)=2 f(x)+2 f(y) . \tag{1.3}
\end{equation*}
$$

for a class of functions $f: A \rightarrow B$, where A is a normed space and B is a Banach space (see [2][14]). Many results are available on various quadratic functional equations, one can see ([5][7][15][17] [19]). S.M.Jung [15] investegated the Hyers-Ulam-Rassias stability of the quadratic functional equation on pexider type

$$
f_{1}(x+y)+f_{2}(x-y)=2 f_{3}(x)+2 f_{4}(y)
$$

The generalized Hyers-Ulam-Rassias stability of a quadratic equation

$$
f(x+y+z)+f(x-y)+f(y-z)+f(z-x)=3 f(x)+3 f(y)+3 f(z)
$$

was discussed by B.H.Bae and K.W.Kim [3]. In 2005, K.W.Jun and H.M.Kim [18] obtained the general solution of a generalized quadratic and additive type functional equation of the form

$$
f(x+a y)+a f(x-y)=f(x-a y)+a f(x+y)
$$

for any integer a with $a \neq-1,0,1$. J.M.Rassias $[?, 24]$ erived the stability of the generalized version of the above quadratic equation

$$
Q\left(a_{1} x_{1}+a_{2} x_{2}\right)+Q f\left(a_{2} x_{1}-a_{1} x_{2}\right)=\left(a_{1}^{2}+a_{2}^{2}\right)\left[Q\left(x_{1}\right)+Q\left(x_{2}\right)\right]
$$

which covers a wide range of quadratic functional equations in two variables. Recently, K.Ravi and R.Kodandan [29] discussed the stability of Additive and Quadratic functional equation

$$
f\left(\frac{x z}{y}+\frac{y w}{x}\right)+f\left(\frac{x z}{y}-\frac{y w}{x}\right)=2 f\left(\frac{x z}{y}\right)+f\left(\frac{y w}{x}\right)+f\left(-\frac{y w}{x}\right)
$$

where $x, y \neq 0$, in non-Archimedian spaces.

In this paper, we introduce and investigate the general solution of a new functional equation

$$
\begin{align*}
f\left(\frac{x+y}{a}+\frac{z+w}{b}\right)+f\left(\frac{x+y}{a}-\frac{z+w}{b}\right)= & \frac{1}{a^{2}}[(1+a) f(x+y)+(1-a) f(-x-y)] \\
& +\frac{1}{b^{2}}[f(z+w)+f(-z-w)] \tag{1.4}
\end{align*}
$$

and discuss its Generalized Hyers-Ulam-Rassias stability of this equation in quasi- β-Normed spaces. It may be noted that $f(x)=a x^{2}+b x+c$ is a solution of the functional equation (1.4)

Before giving the main results, we will present here some basic facts concerning quasi- β-Normed spaces and some prelimenary results. We fix a real number β with $0<\beta \leq 1$ and let \mathbb{K} denote either \mathbb{R} or \mathbb{C}. Let X be a linear space over \mathbb{K}. A quasi- β-norm $\|\cdot\|$ is a real-valued function on X satisfying the following: Let X be a linear space. A quasi-norm $\|\cdot\|$ is real valued function on X satisfying the following:
(i) $\|x\| \geq 0$ for all $x \in X$ and $\|x\|=0$ if and only if $x=0$.
(ii) $\|\lambda x\|=|\lambda|^{\beta}$. $\|x\|$ for all $\lambda \in \mathbb{K}$ and all $x \in X$.
(iii) There is a constant $K \geq 1$ such that $\|x+y\| \leq K(\|x\|+\|y\|)$ for all $x, y \in X$. The pair $(X,\|\cdot\|)$ is called quasi- β-normed space if $\|\cdot\|$ is a quasi-β-norm on X. The smallest possible K is called the modulus of concavity of $\|\cdot\|$.A quasi- β-Banach space is a complete quasi- β-normed space.
A qusi- β-norm $\|\cdot\|$ is called a (β, p)-norm $(0<p \leq 1)$ if

$$
\|x+y\|^{p} \leq\|x\|^{p}+\|y\|^{p}
$$

for all $x, y \in X$. In this case, a quasi- β-Banach space is called a (β, p)-Banach space. We can refer to [3,30] for the concept of quasi-normed spaces and p-Banach space. Given a p-norm, the formula $d(x, y)=\|x+y\|^{p}$ gives us a translation invarient metric on X. By the Aoki-Rolewicz theorem [30] (see also [3]), each quasi-norm is equivalent to some p-norm, since it is much easier to work with p-norms than quasi-norms. henceforth we restrict our attention mainly to p-norms. In [31], J.Tabor has investigated a version of the Hyers-Rassias-Gajda theorem (see[8]) in quasi-Banach spaces. We recall that a subadditive function is a function $\phi: E_{1} \rightarrow E_{2}$, having a domain E_{1} and a codomain $\left(E_{2}, \leq\right)$ that are both closed under additive, with the following
property:

$$
\phi(x+y) \leq \phi(x)+\phi(y), \forall x, y \in E_{1}
$$

Now we say that a function $\phi: E_{1} \rightarrow E_{2}$ is contractively subadditive if there exists a constant L with $0<L<1$ such that

$$
\phi(x+y) \leq L[\phi(x)+\phi(y)], \forall x, y \in E_{1}
$$

Then ϕ satisfies the following properties $\phi(2 x) \leq 2 L \phi(x)$ and so $\phi\left(2^{n} x\right) \leq$ $(2 L)^{n} \phi(x)$. It follows by the contractively subadditive condition of ϕ that $\phi(\lambda x) \leq \lambda L \phi(x)$ and so $\phi\left(\lambda^{i} x\right) \leq(\lambda L)^{i} \phi(x), i \in \mathbb{N}$, for all $x \in E_{1}$ and all positive integer $\lambda \geq 2$. Similarly, we say that function $\phi: E_{1} \rightarrow E_{2}$ is expansively superadditive if there exists a constant L with $0<L<1$ such that

$$
\phi(x+y) \geq \frac{1}{L}[\phi(x)+\phi(y)], \forall x, y \in E_{1} .
$$

Then ϕ satisfies the following properties $\phi(x) \leq \frac{L}{2} \phi(2 x)$ and so $\phi\left(\frac{x}{2^{n}}\right) \leq$ $\left(\frac{L}{2}\right)^{n} \phi(x)$. We observe that an expansively super additive mapping ϕ satisfies the following properties $\phi(\lambda x) \geq\left(\frac{\lambda}{L}\right) \phi(x)$ and so $\phi\left(\frac{x}{\lambda^{i}}\right) \geq\left(\frac{L}{\lambda}\right)^{i} \phi(x), i \in \mathbb{N}$, for all $x \in E_{1}$ and all positive integer $\lambda \geq 2$.

2. Solution of Functional Equation (1.4)

In this Section, let E_{1} and E_{2} denote real vectors spaces, we will prove the following two main theorems.

Theorem 2.1. If $f: E_{1} \rightarrow E_{2}$ is an even function satisfying (1.4) for all $x, y, z, w \in E_{1}$ then f is quadratic.

Proof. Replace (x, y, z, w) by $(0,0,0,0)$ in (1.4), we obtain

$$
\begin{equation*}
f(0)=0 \tag{2.1}
\end{equation*}
$$

The function f is even and therefore $f(-x)=f(x)$ for all $x \in E_{1}$. Using evenness in (1.4) we obtain

$$
\begin{equation*}
f\left(\frac{x+y}{a}+\frac{z+w}{b}\right)+f\left(\frac{x+y}{a}-\frac{z+w}{b}\right)=\frac{2}{a^{2}} f(x+y)+\frac{2}{b^{2}} f(z+w) \tag{2.2}
\end{equation*}
$$

for all $x, y, z, w \in E_{1} \operatorname{Replace}(z, w)$ by $(0,0)$ and using (2.1) in (2.2), we obtain

$$
\begin{equation*}
f\left(\frac{x+y}{a}\right)=\frac{1}{a^{2}} f(x+y), \quad \forall \quad x, y \in E_{1} \tag{2.3}
\end{equation*}
$$

Replacing x by 0 in (2.3), we arrive that

$$
\begin{equation*}
f\left(\frac{y}{a}\right)=\frac{1}{a^{2}} f(y), \quad \forall \quad y \in E_{1} . \tag{2.4}
\end{equation*}
$$

Again replacing y by $a x$ in (2.4), we obtain

$$
\begin{equation*}
f(a x)=a^{2} f(x), \quad \forall \quad x \in E_{1} . \tag{2.5}
\end{equation*}
$$

Replacing $[(x, y),(z, w)]$ by $[(a x, a y),(b z, b w)]$ in (2.2) and using equation (2.5) , we obtain

$$
\begin{equation*}
f[(x+y)+(z+w)]+f[(x+y)-(z+w)]=2 f(x+y)+2 f(z+w) . \tag{2.6}
\end{equation*}
$$

Replacing $(x+y, z+w)$ by (u, v) in (2.6), we obtain

$$
\begin{equation*}
f(u+v)+f(u-v)=2 f(u)+2 f(v) . \tag{2.7}
\end{equation*}
$$

Again replacing (u, v) by (x, y) in (2.7), we obtain

$$
f(x+y)+f(x-y)=2 f(x)+2 f(y), \quad \forall \quad x, y \in E_{1} .
$$

Therefore $f: E_{1} \rightarrow E_{2}$ is quadratic.
Theorem 2.2. If $f: E_{1} \rightarrow E_{2}$ be an odd function, satisfying (1.4) for all $x, y \in E_{1}$. Then f is additive.

Proof. Using oddness of f and using (2.1) in (1.4), we obtain

$$
\begin{equation*}
f\left(\frac{x+y}{a}+\frac{z+w}{b}\right)+f\left(\frac{x+y}{a}-\frac{z+w}{b}\right)=\frac{2}{a} f(x+y) . \tag{2.8}
\end{equation*}
$$

Replacing (z, w) by $(0,0)$ and using (2.1) in (2.7), we obtain

$$
\begin{equation*}
f\left(\frac{x+y}{a}\right)=\frac{1}{a} f(x+y), \quad \forall \quad x, y \in E_{1} . \tag{2.9}
\end{equation*}
$$

Replacing x by y in (2.8), we obtain

$$
\begin{equation*}
f\left(\frac{2 y}{a}\right)=\frac{1}{a} f(2 y), \quad \forall \quad y \in E_{1} . \tag{2.10}
\end{equation*}
$$

Replacing $2 y$ by ax in (2.10), we arrive

$$
\begin{equation*}
f(a x)=a f(x), \quad \forall \quad x \in E_{1} . \tag{2.11}
\end{equation*}
$$

Replacing $[(x, y),(z, w)]$ by $[(a x, a y),(a z, a w)]$ in (2.8) and using equation (2.11), we obtain
$f[(x+y)+(z+w)]+f[(x+y)-(z+w)]=2 f(x+y), \quad \forall \quad x, y, z, w \in E_{1}$.

Replacing $(x+y, z+w)$ by (u, v) in (2.11), we obtain

$$
\begin{equation*}
f(u+v)+f(u-v)=2 f(u) \tag{2.13}
\end{equation*}
$$

Interchanging u, v and using oddness in (2.13), we obtain

$$
\begin{equation*}
f(u+v)-f(u-v)=2 f(v) \tag{2.14}
\end{equation*}
$$

Adding (2.13) and (2.14), we get

$$
\begin{equation*}
f(u+v)=f(u)+f(v) \tag{2.15}
\end{equation*}
$$

Replacing (u, v) by (x, y) in(2.15), we obtain

$$
f(x+y)=f(x)+f(y), \quad \forall \quad x, y \in E_{1} .
$$

Therefore the mapping $f: E_{1} \rightarrow E_{2}$ is additive.

3. HYERS - ULAM - RASSIAS STABILITY OF EQUATION (1.4)

In this Section, we assume that E_{1} is a linear space over \mathbb{K} and E_{2} is a (β, p) Banach space with p-norm $\|\cdot\|_{E_{2}}$. Let K be the modulus of concavity of $\|.\|_{E_{2}}$ Now we are going to investigate the modified Ulam-Hyers Stability of the functional equation (1.4). For notational convenience, we denote for a given mapping $f: E_{1} \rightarrow E_{2}$ and a scalar $\mu \in \mathbb{K}$, the difference operator $D_{\mu} f: E_{1} \times E_{1} \times E_{1} \times E_{1} \rightarrow E_{2}$ of equation (1.4) by

$$
\begin{array}{r}
D_{\mu} f(x, y, z, w)=f\left(\frac{\mu x+\mu y}{a}+\frac{\mu z+\mu w}{b}\right)+f\left(\frac{\mu x+\mu y}{a}-\frac{\mu z+\mu w}{b}\right) \\
-\frac{1}{a^{2}}[(a+1) \mu f(x+y)+(a-1) \mu f(-x-y)] \\
-\frac{1}{b^{2}}[\mu f(z+w)+\mu f(-z-w)]
\end{array}
$$

for all $x, y, z, w \in E_{1}$.

Generalized Ulam-Hyers stability of an AQ-functional equation
Theorem 3.1. Assume that there exists a mapping $\phi: E_{1} \times E_{1} \times E_{1} \times E_{1} \rightarrow$ $[0, \infty)$ for which an odd mapping $f: E_{1} \rightarrow E_{2}$ satisfies the inequality

$$
\begin{equation*}
\left\|D_{1} f(x, y, z, w)\right\|_{E_{2}} \leq \phi(x, y, z, w) \tag{3.1}
\end{equation*}
$$

for all $x, y, z, w \in E_{1}$, and that the map ϕ is contractively subadditive with a constant L satisfying $a^{1-\beta} L<1$. Then there exists a unique additive mapping $A: E_{1} \rightarrow E_{2}$ which satisfies (1.4) and the inequality

$$
\begin{equation*}
\|f(x)-A(x)\|_{E_{2}} \leq\left(\frac{a}{2}\right)^{\beta} \frac{\phi(x, 0,0,0)}{\sqrt[p]{\left(\frac{a^{\beta-1}}{L}\right)^{p}-1}} \tag{3.2}
\end{equation*}
$$

for all $x \in E_{1}$.

Proof. Using oddness and (2.1) in (3.1), we obtain

$$
\begin{equation*}
\left\|f\left(\frac{x+y}{a}+\frac{z+w}{b}\right)+f\left(\frac{x+y}{a}-\frac{z+w}{b}\right)-\frac{2}{a} f(x+y)\right\|_{E_{2}} \leq \phi(x, y, z, w) . \tag{3.3}
\end{equation*}
$$

For all $x, y, z, w \in E_{1}$. Replace (y, z, w) by $(0,0,0)$ in (3.3), we obtain

$$
\begin{equation*}
\left\|2 f\left(\frac{x}{a}\right)-\frac{2}{a} f(x)\right\|_{E_{2}} \leq \phi(x, 0,0,0), \quad \forall x \in E_{1} \tag{3.4}
\end{equation*}
$$

Again replacing x by $a x$ in (3.4) and simplifing, we get

$$
\begin{equation*}
\left\|f(x)-\frac{1}{a} f(a x)\right\|_{E_{2}} \leq \frac{1}{2^{\beta}} \phi(a x, 0,0,0) \tag{3.5}
\end{equation*}
$$

for all $x \in E_{1}$. Therefore it follows from in (3.5) that when we replace $a^{i} x$ in the place of x and by iterative method

$$
\begin{align*}
\left\|\frac{f\left(a^{l} x\right)}{a^{l}}-\frac{f\left(a^{m} x\right)}{a^{m}}\right\|_{E_{2}}^{p} & \leq \sum_{i=l}^{m-1} \frac{(a L)^{p}}{2^{\beta p} a^{\beta p i}}\left\|f\left(a^{i} x\right)-\frac{f\left(a^{i+1} x\right)}{a}\right\|_{E_{2}}^{p} \\
& \leq \frac{(a L)^{p}}{2^{\beta p}} \sum_{i=l}^{m-1} \frac{1}{a^{\beta p i}} \phi\left(a^{i} x, 0,0,0\right)^{p} \\
& \leq \frac{(a L)^{p}}{2^{\beta p}} \sum_{i=l}^{m-1} \frac{(a L)^{p i}}{a^{\beta p i}} \phi(x, 0,0,0)^{p} \\
& \leq \frac{(a L)^{p}}{2^{\beta p}} \phi(x, 0,0,0)^{p} \sum_{i=l}^{m-1}\left(a^{1-\beta} L\right)^{p i} \tag{3.6}
\end{align*}
$$

for all $x \in E_{1}$ and for any $m>l \geq 0$. Thus it follows that a sequence $\left\{\frac{f\left(a^{m} x\right)}{a^{m}}\right\}$ is a cauchy in E_{2} and so it converges. Therefore we see that a mapping $A: E_{1} \rightarrow E_{2}$ defined by $A(x)=\lim _{m \rightarrow \infty} \frac{f\left(a^{m} x\right)}{a^{m}}$ is well defined for all $x \in E_{1}$. In addition it is clear from (3.1) that the following inequality

$$
\begin{aligned}
\left\|D_{1} A(x, y, z, w)\right\|_{E_{2}}^{p}= & \lim _{m \rightarrow \infty} \frac{\left\|D_{1} f\left(a^{m} x, a^{m} y, a^{m} z, a^{m} w\right)\right\|_{E_{2}}^{p}}{a^{\beta p m}} \\
& \leq \lim _{m \rightarrow \infty} \frac{\left\|\phi\left(a^{m} x, a^{m} y, a^{m} z, a^{m} w\right)\right\|_{E_{2}}^{p}}{a^{\beta p m}} \\
& \leq \lim _{m \rightarrow \infty}\left(a^{1-\beta} L\right)^{\beta p m} \phi(x, y, z, w)^{p}=0
\end{aligned}
$$

holds for all $x, y, z, w \in E_{1}$ and so the mapping A is additive. Taking the limit $m \rightarrow \infty$ in (3.6) with $l=0$, we find that

$$
\begin{aligned}
\|f(x)-A(x)\|_{E_{2}}^{p} & \leq\left(\frac{a L}{2^{\beta}}\right)^{p} \phi(x, 0,0,0)^{p} \sum_{i=0}^{\infty}\left(a^{1-\beta} L\right)^{p i} \\
& \leq\left(\frac{a L}{2^{\beta}}\right)^{p} \phi(x, 0,0,0)^{p} \frac{1}{1-\left(a^{1-\beta} L\right)^{p}}
\end{aligned}
$$

therefore, we get

$$
\|f(x)-A(x)\|_{E_{2}} \leq\left(\frac{a}{2}\right)^{\beta} \frac{\phi(x, 0,0,0)}{\sqrt[p]{\left(\frac{a^{\beta-1}}{L}\right)^{p}-1}}
$$

To prove uniqueness, we assume now that there is another function $A^{\prime}: E_{1} \rightarrow$ E_{2} which satisfies (1.4) and the inequality (3.2) then it follows that $A^{\prime}(a x)=$ $a A^{\prime}(x), A^{\prime}\left(a^{m} x\right)=a^{m} A^{\prime}(x)$ for all $x \in E_{1}$ and all $m \in N$. Thus

$$
\begin{aligned}
\left\|\frac{f\left(a^{m} x\right)}{a^{m}}\right\|_{E_{2}}= & \frac{1}{a^{\beta m}}\left\|f\left(a^{m} x\right)-A^{\prime}\left(a^{m} x\right)\right\|_{E_{2}} \\
& \leq \frac{a L}{a^{\beta m}}\left(\frac{a}{2}\right)^{\beta} \frac{\phi\left(a^{m} x, 0,0,0\right)}{\sqrt[p]{a^{\beta p}-(a L)^{p}}} \\
& \leq(a L)\left(\frac{a}{2}\right)^{\beta}\left(a^{1-\beta} L\right)^{m} \frac{\phi(x, 0,0,0)}{\sqrt[p]{a^{\beta p}-(a L)^{p}}}
\end{aligned}
$$

for all $x \in E_{1}$ and all $m \in N$. Allow $m \rightarrow \infty$, we get

$$
\left\|A(x)-A^{\prime}(x)\right\|=0
$$

Generalized Ulam-Hyers stability of an AQ-functional equation
for all $x \in E_{1}$, which completes the proof of uniqueness.

Theorem 3.2. Assume that there exists a mapping $\phi: E_{1} \times E_{1} \times E_{1} \times E_{1} \rightarrow$ $[0, \infty)$ for which an odd mapping $f: E_{1} \rightarrow E_{2}$ satisfies the inequality

$$
\begin{equation*}
\left\|D_{1} f(x, y, z, w)\right\|_{E_{2}} \leq \phi(x, y, z, w) \tag{3.7}
\end{equation*}
$$

for all $x, y, z, w \in E_{1}$, and that the map ϕ is expansively superadditive with a constant L satisfying $a^{\beta-1} L<1$. Then there exists a unique mapping A : $E_{1} \rightarrow E_{2}$ which satisfies (1.4) and the inequality

$$
\begin{equation*}
\|f(x)-A(x)\|_{E_{2}} \leq\left(\frac{a}{2}\right)^{\beta} \frac{\phi(x, 0,0,0)}{\sqrt[p]{1-\left(a^{\beta-1} L\right)^{p}}} \tag{3.8}
\end{equation*}
$$

for all $x \in E_{1}$.

Proof. From (3.4), we obtain

$$
\begin{equation*}
\left\|f(x)-a f\left(\frac{x}{a}\right)\right\| \leq\left(\frac{a}{2}\right)^{\beta} \phi(x, 0,0,0) \tag{3.9}
\end{equation*}
$$

it follows from (3.9) with $\frac{x}{a^{i}}$ in place of x and iterative method that

$$
\begin{align*}
\left\|a^{l} f\left(\frac{x}{a^{l}}\right)-a^{m} f\left(\frac{x}{a^{m}}\right)\right\|_{E_{2}}^{p} & \leq \sum_{i=l}^{m-1} a^{\beta p i}\left\|f\left(\frac{x}{a^{i}}\right)-a f\left(\frac{x}{a^{i+1}}\right)\right\|_{E_{2}}^{p} \\
& \leq\left(\frac{a}{2}\right)^{\beta p} \sum_{i=l}^{m-1} a^{\beta p i} \phi\left(\frac{x}{a^{i}}, 0,0,0\right)^{p} \\
& \leq\left(\frac{a}{2}\right)^{\beta p} \phi(x, 0,0,0) \sum_{i=l}^{m-1}\left(a^{\beta-1} L\right)^{p i} \tag{3.10}
\end{align*}
$$

for all $x \in E_{1}$ and for any $m>l \geq 0$. Therefore we see that a mapping $A: E_{1} \rightarrow E_{2}$ defined by

$$
A(x)=\lim _{m \rightarrow \infty} a^{m} f\left(\frac{x}{a^{m}}\right)
$$

is well defined for all $x \in E_{1}$. Taking the limit $m \rightarrow \infty$ in (3.10) with $l=0$, we find that the mapping A satisfying the inequality (3.8) near the approximate mapping $f: E_{1} \rightarrow E_{2}$ of (1.4). The remaining proof is similar to that of Theorem 3.1.

Theorem 3.3. Assume that an odd mapping $f: E_{1} \rightarrow E_{2}$ satisfies

$$
\left\|D_{1} f(x, y, z, w)\right\|_{E_{2}} \leq \phi(x, y, z, w)
$$

for all $x, y, z, w \in E_{1}$. If a mapping $\phi: E_{1} \times E_{1} \times E_{1} \times E_{1} \rightarrow[0, \infty)$ satisfies

$$
\Phi(x, 0,0,0)=\sum_{i=0}^{\infty} \frac{K^{i} \phi\left(a^{i+1} x, 0,0,0\right)}{a^{\beta i}}<\infty \text { and } \lim _{m \rightarrow \infty} \frac{K^{m} \phi\left(a^{m} x, 0,0,0\right)}{a^{\beta m}}=0
$$

for all $x, y, z, w \in E_{1}$. Then there exists a unique additive mapping $A: E_{1} \rightarrow$ E_{2} such that A satisfies (1.4) and the inequality

$$
\|f(x)-A(x)\|_{E_{2}} \leq \frac{K}{2^{\beta}} \Phi(x, 0,0,0), \forall x \in E_{1} .
$$

Proof. It follows from (3.5) with $a^{i} x$ in place of x and iterative method that

$$
\begin{equation*}
\left\|f(x)-f\left(\frac{a^{m} x}{a^{m}}\right)\right\|_{E_{2}} \leq \frac{K}{2^{\beta}} \sum_{i=0}^{m-2} \frac{K^{i} \phi\left(a^{i+1} x, 0,0,0\right)}{a^{\beta i}}+\frac{1}{2^{\beta}} \frac{K^{m-1} \phi\left(a^{m} x, 0,0,0\right)}{a^{\beta(m-1)}} \tag{3.11}
\end{equation*}
$$

or all $x \in E_{1}$ and for any $m>1$, which is considered to be (3.5) for $m=1$. In fact, we see by computation

$$
\begin{aligned}
\left\|f(x)-\frac{f\left(a^{m+1} x\right)}{a^{m+1}}\right\|_{E_{2}} \leq & K\left\|f(x)-\frac{f(a x)}{a}\right\|_{E_{2}}+\frac{K}{a^{\beta}}\left\|f(x)-\frac{f\left(a^{m+1} x\right)}{a^{m}}\right\|_{E_{2}} \\
\leq & \frac{K}{2^{\beta}} \phi(a x, 0,0,0)+\frac{K^{2}}{(2 a)^{\beta}} \sum_{i=0}^{m-2} \frac{K^{i} \phi\left(a^{i+2} x, 0,0,0\right)}{a^{\beta i}} \\
& +\frac{K^{m}}{(2 a)^{\beta}} \frac{\phi\left(a^{m+1} x, 0,0,0\right)}{a^{\beta(m-1)}} \\
\leq & \frac{K}{2^{\beta}} \sum_{j=0}^{m-1} \frac{K^{j} \phi\left(a^{j+1} x, 0,0,0\right)}{a^{\beta j}}+\frac{K^{m}}{2^{\beta}} \frac{\phi\left(a^{m+1} x, 0,0,0\right)}{a^{\beta m}}
\end{aligned}
$$

for all $x \in E_{1}$, which proves the inequality (3.11) for $m+1$ by induction.
Thus follows that a sequence $\left\{\frac{f\left(a^{m} x\right)}{a^{m}}\right\}$ is cauchy in E_{2} and it converges.Therefore we see that a mapping $A: E_{1} \rightarrow E_{2}$ defined by $A(x)=\lim _{m \rightarrow \infty} \frac{f\left(a^{m}\right)}{a^{m}}$ is well defined for all $x \in E_{1}$. The remaining proof is similar to that of Theorem 3.1.

Theorem 3.4. Assume that an odd mapping $f: E_{1} \rightarrow E_{2}$ satisfies

$$
\left\|D_{1} f(x, y, z, w)\right\|_{E_{2}} \leq \phi(x, y, z, w)
$$

for all $x, y, z, w \in E_{1}$. If a mapping $\phi: E_{1} \times E_{1} \times E_{1} \times E_{1} \rightarrow[0, \infty)$ satisfies
$\Phi(x, 0,0,0)=\sum_{i=0}^{\infty}\left(a^{\beta} K\right)^{i} \phi\left(\frac{x}{a^{i}}, 0,0,0\right)<\infty$ and $\lim _{m \rightarrow \infty}\left(a^{\beta} K\right)^{m} \phi\left(\frac{x}{a^{m}}, 0,0,0\right)=0$.
for all $x, y, z, w \in E_{1}$. Then there exists a unique additive mapping $A: E_{1} \rightarrow$ E_{2} such that A satisfies (1.4) and the inequality

$$
\|f(x)-A(x)\|_{E_{2}} \leq K\left(\frac{a}{2}\right)^{\beta} \Phi(x, 0,0,0)
$$

for all $x \in E_{1}$.

Proof. It follows from(3.9) with $\frac{x}{a^{i}}$ and the similar method to (3.11) that

$$
\begin{aligned}
\left\|f(x)-a^{m} f\left(\frac{x}{a^{m}}\right)\right\|_{E_{2}} \leq K\left(\frac{a}{2}\right)^{\beta} \sum_{i=0}^{m-2} & \left(a^{m} K\right)^{i} \phi\left(\frac{x}{a^{i}}, 0,0,0\right) \\
& +\left(\frac{a}{2}\right)^{\beta}\left(a^{\beta} K\right)^{m-1} \phi\left(\frac{x}{a^{m-1}}, 0,0,0\right)
\end{aligned}
$$

for all $x \in E_{1}$ and for any $m>1$. Therefore we see that a mapping $A: E_{1} \rightarrow E_{2}$ defined by $A(x)=\lim _{m \rightarrow \infty} a^{m} f\left(\frac{x}{a^{m}}\right)$ is well defined for all $x \in E_{1}$. The remaining proof is similar to that of Theorem 3.3.

Corollary 3.5. Let E_{1} be a quasi- α-normed linear space with quasi- α-norm $\|$.$\| . if there exists a fixed real number r \in R$ such that an odd mapping $f: E_{1} \rightarrow E_{2}$ satisfies the functional inequality

$$
\left\|D_{1} f(x, y, z, w)\right\|_{E_{2}} \leq \theta\left(\|x\|^{r}+\|y\|^{r}+\|z\|^{r}+\|w\|^{r}\right)
$$

for all $x, y, z, w \in E_{1}\left(E_{1} \backslash\{0\}\right.$ if $\left.r \leq 0\right)$, then there exists a unique additive mapping $A: E_{1} \rightarrow E_{2}$ which satisfies Eq.(1.4) and the inequality

$$
\|f(x)-A(x)\| \leq \begin{cases}\frac{K \theta}{2^{\beta}} \frac{a^{\alpha r}}{1-K a^{\alpha r-\beta}} & \text { if } K a^{\alpha r}<a^{\beta} \\ \left(\frac{K \theta a^{\beta}}{2^{\beta}}\right) \frac{1}{1-K a^{\beta-\alpha r}} & \text { if } K a^{\beta}<a^{\alpha r}\end{cases}
$$

for all $x \in E_{1}\left(E_{1} \backslash\{0\}\right.$ if $\left.r \leq 0\right)$.

Proof. By replacing $\phi(x, y, z, w)$ by $\left(\|x\|^{r}+\|y\|^{r}+\|z\|^{r}+\|w\|^{r}\right)$ in Theorem 3.1 and Theorem 3.2, we obtain above result.

Theorem 3.6. Assume that there exists a mapping $\varphi: E_{1} \times E_{1} \times E_{1} \times E_{1} \rightarrow$ $[0, \infty)$ for which an even mapping $f: E_{1} \rightarrow E_{2}$ satisfies the inequality

$$
\begin{equation*}
\left\|D_{1} f(x, y, z, w)\right\|_{E_{2}} \leq \varphi(x, y, z, w) \tag{3.12}
\end{equation*}
$$

for all $x, y, z \in E_{1}$ and that the map ϕ is contractively subadditive with a constant L satisfying $a^{1-2 \beta} L<1$. Then there exists a unique quadratic mapping $Q: E_{1} \rightarrow E_{2}$ which satisfies (1.4) and the inequality

$$
\begin{equation*}
\|f(x)-Q(x)\|_{E_{2}} \leq\left(\frac{a^{2}}{2}\right)^{\beta} \frac{\varphi(x, 0,0,0)}{\sqrt[p]{\left(\frac{a^{2 \beta-1}}{L}\right)^{p}-1}} \tag{3.13}
\end{equation*}
$$

for all $x \in E_{1}$.

Proof. Using evenness in (3.12), we obtain

$$
\begin{equation*}
\left\|f\left(\frac{x+y}{a}+\frac{z+w}{b}\right)+f\left(\frac{x+y}{a}-\frac{z+w}{b}\right)-\frac{2}{a^{2}} f(x+y)-\frac{2}{a^{2}} f(z+w)\right\|_{E_{2}} \leq \varphi(x, y, z, w) \tag{3.14}
\end{equation*}
$$

For all $x, y, z, w \in E_{1}$. Replace (y, z, w) by $(0,0,0)$ in (3.14), we obtain

$$
\begin{equation*}
\left\|2 f\left(\frac{x}{a}\right)-\frac{2}{a^{2}} f(x)\right\|_{E_{2}} \leq \varphi(x, 0,0,0), \quad \forall x \in E_{1} \tag{3.15}
\end{equation*}
$$

Again replacing x by $a x$ in (3.15) and simplifing, we get

$$
\begin{equation*}
\left\|f(x)-\frac{1}{a^{2}} f(a x)\right\|_{E_{2}} \leq \frac{1}{2^{\beta}} \varphi(a x, 0,0,0) \tag{3.16}
\end{equation*}
$$

for all $x \in E_{1}$. Therefore it follows from in (3.16) that when we replace $a^{i} x$ in the place of x and by iterative method

$$
\begin{align*}
\left\|\frac{f\left(a^{l} x\right)}{a^{2 l}}-\frac{f\left(a^{m} x\right)}{a^{2 m}}\right\|_{E_{2}}^{p} & \leq \sum_{i=l}^{m-1} \frac{(a L)^{p}}{2^{\beta p} a^{2 \beta p i}}\left\|f\left(a^{i} x\right)-\frac{f\left(a^{i+1} x\right)}{a^{2}}\right\|_{E_{2}}^{p} \\
& \leq \frac{(a L)^{p}}{2^{\beta p}} \sum_{i=l}^{m-1} \frac{1}{a^{\beta p i}} \varphi\left(a^{i} x, 0,0,0\right)^{p} \\
& \leq \frac{(a L)^{p}}{2^{\beta p}} \sum_{i=l}^{m-1} \frac{(a L)^{p i}}{a^{2 \beta p i}} \varphi(x, 0,0,0)^{p} \\
& \leq \frac{(a L)^{p}}{2^{\beta p}} \varphi(x, 0,0,0)^{p} \sum_{i=l}^{m-1}\left(a^{1-2 \beta} L\right)^{p i} \tag{3.17}
\end{align*}
$$

for all $x \in E_{1}$ and for any $m>l \geq 0$. Thus it follows that a sequence $\left\{\frac{f\left(a^{m} x\right)}{a^{2 m}}\right\}$ is a cauchy sequence in E_{2} and so it converges. Therefore we see that a mapping $A: E_{1} \rightarrow E_{2}$ defined by $Q(x)=\lim _{m \rightarrow \infty} \frac{f\left(a^{m} x\right)}{a^{2 m}}$ is well defined for all $x \in E_{1}$. In addition it is clear from (3.12) that the following inequality

$$
\begin{aligned}
\left\|D_{1} Q(x, y, z, w)\right\|_{E_{2}}^{p}= & \lim _{m \rightarrow \infty} \frac{\left\|D_{1} f\left(a^{m} x, a^{m} y, a^{m} z, a^{m} w\right)\right\|_{E_{2}}^{p}}{a^{2 \beta p m}} \\
& \leq \lim _{m \rightarrow \infty} \frac{\left\|\varphi\left(a^{m} x, a^{m} y, a^{m} z, a^{m} w\right)\right\|_{E_{2}}^{p}}{a^{2 \beta p m}} \\
& \leq \lim _{m \rightarrow \infty}\left(a^{1-2 \beta} L\right)^{\beta p m} \varphi(x, y, z, w)^{p}=0
\end{aligned}
$$

holds for all $x, y, z, w \in E_{1}$ and so the mapping Q is quadratic. Taking the limit $m \rightarrow \infty$ in (3.17) with $l=0$, we find that

$$
\begin{aligned}
\|f(x)-Q(x)\|_{E_{2}}^{p} & \leq\left(\frac{a L}{2^{\beta}}\right)^{p} \varphi(x, 0,0,0)^{p} \sum_{i=0}^{\infty}\left(a^{1-2 \beta} L\right)^{p i} \\
& \leq\left(\frac{a L}{2^{\beta}}\right)^{p} \varphi(x, 0,0,0)^{p} \frac{1}{1-\left(a^{1-2 \beta} L\right)^{p}}
\end{aligned}
$$

therefore, we get

$$
\|f(x)-Q(x)\|_{E_{2}} \leq\left(\frac{a}{2}\right)^{\beta} \frac{\varphi(x, 0,0,0)}{\sqrt[p]{\left(\frac{a^{2 \beta-1}}{L}\right)^{p}-1}}
$$

To prove uniqueness, we assume now that there is another function $Q^{\prime}: E_{1} \rightarrow$ E_{2} which satisfies (1.4) and the inequality (3.13) then it follows that $Q^{\prime}(a x)=$ $a Q^{\prime}(x), Q^{\prime}\left(a^{m} x\right)=a^{m} Q^{\prime}(x)$ for all $x \in E_{1}$ and all $m \in N$. Thus

$$
\begin{aligned}
\left\|\frac{f\left(a^{m} x\right)}{a^{m}}\right\|_{E_{2}}= & \frac{1}{a^{2 \beta m}}\left\|f\left(a^{m} x\right)-Q^{\prime}\left(a^{m} x\right)\right\|_{E_{2}} \\
& \leq\left(\frac{a L}{a^{2 \beta m}}\right)^{m}\left(\frac{a^{2}}{2}\right)^{\beta} \frac{\varphi\left(a^{m} x, 0,0,0\right)}{\sqrt[p]{a^{\beta p}-(a L)^{p}}} \\
& \leq(a L)\left(\frac{a}{2}\right)^{\beta}\left(a^{1-2 \beta} L\right)^{m} \frac{\varphi(x, 0,0,0)}{\sqrt[p]{a^{2 \beta p}-(a L)^{p}}}
\end{aligned}
$$

for all $x \in E_{1}$ and all $m \in N$. Allow $m \rightarrow \infty$, we get

$$
\left\|Q(x)-Q^{\prime}(x)\right\|=0
$$

for all $x \in E_{1}$, which completes the proof of uniqueness.
Theorem 3.7. Assume that there exists a mapping $\varphi: E_{1} \times E_{1} \times E_{1} \times E_{1} \rightarrow$ $[0, \infty)$ for which an even mapping $f: E_{1} \rightarrow E_{2}$ satisfies the inequality (3.12) and that the map φ is expansively superadditive with a constant L satisfying $a^{2 \beta-1} L<1$. Then there exists a unique quadratic mapping $Q: E_{1} \rightarrow E_{2}$ which satisfies (1.4) and the inequality

$$
\begin{equation*}
\|f(x)-Q(x)\|_{E_{2}} \leq\left(\frac{a^{2}}{2}\right)^{\beta} \frac{\varphi(x, 0,0,0)}{\sqrt[p]{\left(1-a^{2 \beta-1}\right)^{p}}} \tag{3.18}
\end{equation*}
$$

for all $x \in E_{1}$.

Proof. From (3.15), we obtain

$$
\begin{equation*}
\left\|f(x)-a^{2} f\left(\frac{x}{a}\right)\right\| \leq\left(\frac{a^{2}}{2}\right)^{\beta} \varphi(x, 0,0,0) \tag{3.19}
\end{equation*}
$$

it follows from (3.19) with $\frac{x}{a^{i}}$ in place of x and iterative method that

$$
\begin{align*}
\left\|a^{2 l} f\left(\frac{x}{a^{l}}\right)-a^{2 m} f\left(\frac{x}{a^{m}}\right)\right\|_{E_{2}}^{p} & \leq \sum_{i=l}^{m-1} a^{2 \beta p i}\left\|f\left(\frac{x}{a^{i}}\right)-a^{2} f\left(\frac{x}{a^{i+1}}\right)\right\|_{E_{2}}^{p} \\
& \leq\left(\frac{a^{2}}{2}\right)^{\beta p} \sum_{i=l}^{m-1} a^{2 \beta p i} \varphi\left(\frac{x}{a^{i}}, 0,0,0\right)^{p} \\
& \leq\left(\frac{a^{2}}{2}\right)^{\beta p} \varphi(x, 0,0,0) \sum_{i=l}^{m-1}\left(a^{2 \beta-1} L\right)^{p i} \tag{3.20}
\end{align*}
$$

for all $x \in E_{1}$ and for any $m>l \geq 0$. Therefore we see that a mapping $Q: E_{1} \rightarrow E_{2}$ defined by

$$
Q(x)=\lim _{m \rightarrow \infty} a^{2 m} f\left(\frac{x}{a^{m}}\right)
$$

is well defined for all $x \in E_{1}$. Taking the limit $m \rightarrow \infty$ in (3.20) with $l=0$, we find that the mapping Q satisfing the inequality (3.18) near the approximate mapping $f: E_{1} \rightarrow E_{2}$ of (1.4). The remaining proof is similar to that of Theorem 3.6.

Theorem 3.8. Assume that an even mapping $f: E_{1} \rightarrow E_{2}$ satisfies

$$
\left\|D_{1} f(x, y, z, w)\right\|_{E_{2}} \leq \varphi(x, y, z, w)
$$

Generalized Ulam-Hyers stability of an AQ-functional equation
for all $x, y, z, w \in E_{1}$. If a mapping $\varphi: E_{1} \times E_{1} \times E_{1} \times E_{1} \rightarrow[0, \infty)$ satisfies

$$
\Psi(x, 0,0,0)=\sum_{i=0}^{\infty} \frac{K^{i} \varphi\left(a^{i+1} x, 0,0,0\right)}{a^{2 \beta i}}<\infty \text { and } \lim _{m \rightarrow \infty} \frac{K^{m} \varphi\left(a^{m} x, 0,0,0\right)}{a^{2 \beta m}}=0
$$

for all $x, y, z, w \in E_{1}$. Then there exists a unique quadratic mapping $Q: E_{1} \rightarrow$ E_{2} such that Q satisfies (1.4) and the inequality

$$
\|f(x)-Q(x)\|_{E_{2}} \leq \frac{K}{2^{\beta}} \Psi(x, 0,0,0), \forall x \in E_{1} .
$$

Proof. It follows from (3.16) with $a^{i} x$ in place of x and iterative method that

$$
\begin{equation*}
\left\|f(x)-f\left(\frac{a^{m} x}{a^{2 m}}\right)\right\|_{E_{2}} \leq \frac{K}{2^{\beta}} \sum_{i=0}^{m-2} \frac{K^{i} \phi\left(a^{i+1} x, 0,0,0\right)}{a^{\beta i}}+\frac{1}{2^{\beta}} \frac{K^{m-1} \phi\left(a^{m} x, 0,0,0\right)}{a^{\beta(m-1)}} \tag{3.21}
\end{equation*}
$$

for all $x \in E_{1}$ and for any $m>1$, which is considered to be (3.9) for $m=1$. In fact, we see by computation

$$
\begin{aligned}
\left\|f(x)-\frac{f\left(a^{m+1} x\right)}{a^{2(m+1)}}\right\|_{E_{2}} \leq & K\left\|f(x)-\frac{f(a x)}{a^{2}}\right\|_{E_{2}}+\frac{K}{a^{2 \beta}}\left\|f(a x)-\frac{f\left(a^{2(m+1)} x\right)}{a^{m}}\right\|_{E_{2}} \\
\leq & \frac{K}{2^{\beta}} \varphi(a x, 0,0,0)+\frac{K^{2}}{\left(2 a^{2}\right)^{\beta}} \sum_{i=0}^{m-2} \frac{K^{i} \varphi\left(a^{i+2} x, 0,0,0\right)}{a^{2 \beta i}} \\
& \quad+\frac{K^{m}}{(2 a)^{\beta}} \frac{\varphi\left(a^{m+1} x, 0,0,0\right)}{a^{2 \beta(m-1)}} \\
\leq & \frac{K}{2^{\beta}} \sum_{j=0}^{m-1} \frac{K^{j} \varphi\left(a^{j+1} x, 0,0,0\right)}{a^{2 \beta j}}+\frac{K^{m}}{2^{\beta}} \frac{\varphi\left(a^{m+1} x, 0,0,0\right)}{a^{2 \beta m}}
\end{aligned}
$$

for all $x \in E_{1}$, which proves the inequality (3.21) for $m+1$ by induction.
Thus follows that a sequence $\left\{\frac{f\left(a^{m} x\right)}{a^{m}}\right\}$ is cauchy in E_{2} and it converges. Therefore we see that a mapping $A: E_{1} \rightarrow E_{2}$ defined by $A(x)=\lim _{m \rightarrow \infty} \frac{f\left(a^{m}\right)}{a^{m}}$ is well defined for all $x \in E_{1}$. The remaining proof is similar to that of theorem 3.6.

Theorem 3.9. Assume that an even mapping $f: E_{1} \rightarrow E_{2}$ satisfies

$$
\left\|D_{1} f(x, y, z, w)\right\|_{E_{2}} \leq \phi(x, y, z, w)
$$

for all $x, y, z, w \in E_{1}$. If a mapping $\phi: E_{1} \times E_{1} \times E_{1} \times E_{1} \rightarrow[0, \infty)$ satisfies

$$
\Psi(x, 0,0,0)=\sum_{i=0}^{\infty}\left(a^{2 \beta} K\right)^{i} \phi\left(\frac{x}{a^{i}}, 0,0,0\right)<\infty \text { and } \lim _{m \rightarrow \infty}\left(a^{2 \beta} K\right)^{m} \phi\left(\frac{x}{a^{m}}, 0,0,0\right)=0
$$

For all $x, y, z, w \in E_{1}$. Then there exists a unique quadratic mapping $Q: E_{1} \rightarrow$ E_{2} such that Q satisfies (1.4) and the inequality

$$
\|f(x)-Q(x)\|_{E_{2}} \leq K\left(\frac{a^{2}}{2}\right)^{\beta} \Psi(x, 0,0,0)
$$

For all $x \in E_{1}$
Proof. It follows from(3.19) with $\frac{x}{a^{i}}$ and the similar method to (3.21) that

$$
\begin{aligned}
\left\|f(x)-a^{2 m} f\left(\frac{x}{a^{m}}\right)\right\|_{E_{2}} & \leq K\left(\frac{a^{2}}{2}\right)^{\beta} \sum_{i=0}^{m-2}\left(a^{2 m} K\right)^{i} \varphi\left(\frac{x}{a^{i}}, 0,0,0\right) \\
& +\left(\frac{a^{2}}{2}\right)^{\beta}\left(a^{2 \beta} K\right)^{m-1} \varphi\left(\frac{x}{a^{m-1}}, 0,0,0\right)
\end{aligned}
$$

for all $x \in E_{1}$ and for any $m>1$. Therefore we see that a mapping $Q: E_{1} \rightarrow E_{2}$ defined by $Q(x)=\lim _{m \rightarrow \infty} a^{m} f\left(\frac{x}{a^{m}}\right)$ is well defined for all $x \in E_{1}$. The remaining proof is similar to that of Theorem 3.8.

Corollary 3.10. Let E_{1} be a quasi- α-normed linear space with quasi- α-norm $\|$.$\| . if there exists a fixed r \in R$ such that an even mapping $f: E_{1} \rightarrow E_{2}$ satisfies the functional inequality

$$
\left\|D_{1} f(x, y, z, w)\right\|_{E_{2}} \leq \theta\left(\|x\|^{r}+\|y\|^{r}+\|z\|^{r}+\|w\|^{r}\right)
$$

for all $x, y, z, w \in E_{1}\left(E_{1} \backslash\{0\}\right.$ if $\left.r \leq 0\right)$, then there exists a unique quadratic mapping $Q: E_{1} \rightarrow E_{2}$ which satisfies $E q .(1.4)$ and the inequality

$$
\|f(x)-Q(x)\| \leq \begin{cases}\frac{K \theta}{2^{\beta}} \frac{a^{2 \alpha r}}{1-K a^{\alpha r-2 \beta}} & \text { if } K a^{\alpha r}<a^{2 \beta} \\ \left(\frac{K \theta a^{2 \beta}}{2^{\beta}}\right) \frac{1}{1-K a^{2 \beta-\alpha r}} & \text { if } K a^{2 \beta}<a^{\alpha r}\end{cases}
$$

for all $x \in E_{1}\left(E_{1} \backslash\{0\}\right.$ if $\left.r \leq 0\right)$,

Proof. Replacing $\varphi(x, y, z, w)$ by $\left(\|x\|^{r}+\|y\|^{r}+\|z\|^{r}+\|w\|^{r}\right)$ in Theorem 3.6 and Theorem 3.7, we obtain above result.

References

[1] J. Aczel, J. Dhombres, Functional Equations in Several Variables, Cambridge University Press, 1989.
[2] T. Aoki, On the stability of linear transformation in Banach spaces, J.Math.Soc.Japan 2 (1950) 64-66.
[3] J.H. Bae, K.W. Jun, On the generalized Hyers-Ulam-Rassias stability of quadratic functional equation, Bull. Korean. Math. Soc., 38 (2001), 325-336.
[4] Y. Benyamini, J. Lindenstrauss, Geometric Nonlinear Functional Analysis, Vol.1, Colloq. Publ., Vol. 48, Amer. Math. Soc., Providence, RI, 2000.
[5] I.S. Chang, E.H. Lee and H.M. Kim, On Hyers- Ulam- Rassias stability of a quadratic functional equation, Math. Ineqal. Appl. Vol 6 No. 1 (2003), 87-95.
[6] P.W. Cholewa, Remarks on the stability of functional equations, Aequations Math. 27 (1984), 76-86.
[7] S. Czerwik, On the stability of the quadratic mappings in normed spaces, Abh. Math. Sem. Univ. Hamburg. 62 (1992), 59-64.
[8] Z. Gajda, On the stability of additive mappings, Int.J. Math. Sci. 57 (1991), 223-237.
[9] Z. Gajda, R.Ger, Subadditive multifunctions and Hyers-Ulam stability,in:General inequalities,vol.5,in:Intrenet.Schriftenreiche Number. Math.,vol.80,Birkhauser,BaselBoston,MA,1987.
[10] P. Gavruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl. 184 (1994), 431-436.
[11] P. Gavruta, An answer to aquestion of John M.Rassias concerning the stability of Cauchy equation,in:Advance in equations and inequalities,in:Hadronic Math. Ser., Hadronic press.USA,1999.pp. 67-71.
[12] D.H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci., U.S.A.,27 (1941) 222-224.
[13] D.H. Hyers, G. Isac, Th.M. Rassias, Stability of Functional Equations in Several Variables,, Birkhauser, Basel, 1998.
[14] D.H. Hyers, Th.M. Rassias, Approximate homomorphisms, Aequationes Math. 44 (1992), 125-153.
[15] S.M. Jung, Quadratic functional equations of pexider type, Int. J. Math. and Math. Sci. 24 (5), (2000), 351-359.
[16] K.W. Jun and Y.H. Lee, On the Hyers-Ulam-Rassias stability of a pexiderized quadratic inequality, Math. Ineq. Appl., 4(1) (2001), 93-118.
[17] K.W. Jun and H.M. Kim, On the Hyers-Ulam-Rassias stability of a generalized quadratic and additive functional equation, Bull. Koeran. Math. Soc. 42, (1) (2005), 133-148.
[18] K.W. Jun and H.M. Kim, On the stability of an n-dimensional quadratic and additive type functional equation, Math. Ineq. Appl 9(1) (2006), 153-165.
[19] Pl. Kannappan,Quadratic functional equation and inner product spaces, Results Math. 27 (1995), 368-372.
[20] A. Najati, M.B. Moghimi, Stability of a functional equation deriving from quadratic and additive functions in quasi-Banach spaces, J. Math. Anal. Appl. 2007, Doi, 101016/j.j.Maa 2007.03.104.
[21] A. Najati,A.Ranjibari, Stability of homomorphisms for a 3D Cauchy-Jensen type functional equation on C^{*}-terney algebras, J. Math. Anal.Appl. 341 (2008), 62-79.
[22] J.M. Rassias, On approximately of approximately linear mappings by linear mappings, J. Funct. Anal. USA, 46 (1982), 126-130.
[23] J.M. Rassias, On the stability of Euler-Lagrange functional equation, Chinese J. Math. 20 (1992), 185-190.
[24] J.M. Rassias, Hyers-Ulam stability for a quadratic functional equation in several variables, J. Indian. Math. Soc. 68 (1-24), (2001), 65-73.
[25] Th.M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), 297-300.
[26] Th.M. Rassias, On the stability of the quadratic functional equation and its applications, Studia. Univ. Babes-Bolyai XLIII (1998), 89-124.
[27] Th.M. Rassias, On the stability of functional equations and a problem of Ulam, Acta. Appl. Math. 62 (2000), 23-170.
[28] Th.M. Rassias, On the stability of functional equations in Banach spaces, J. Math. Anal. Appl. 251 (2000), 264-284.
[29] K.Ravi and R.Kodandan, Stability of Additive and Quadratic Functional Equation in Non-Archimedean Spaces, International Review of Pure and Applied Mathematics. Volime 6. No. 1 (2010), 149-160.
[30] S. Rolewicz, Metric Linear spaces, PWN-Polish Sci. Publ., Warszawa, Reidel, Dordrecht, 1984.
[31] J. Tober, Stability of cauchy functional equation in quasi-Banach spaces, Ann.Polon. Math. 83 (2004), 243-255.
[32] S.M. Ulam, Problems in Modern Mathematics, Science Ed., Wiley, New York, 1964.

