Mathematica Aeterna, Vol. 1, 2011, no. 04, 217 - 236

Generalized Ulam-Hyers stability of an AQ-functional equation
in quasi-beta-normed spaces

K.Ravi
Department of Mathematics,Sacred Heart College
Tirupattur - 635 601, TamilNadu, India

shckravi@yahoo.co.in

J.M.Rassias
Pedagogical Department E.E,Section of Mathematics and Informatics
National and Capodistrian University of Athens
4, Agamemnonos Str., Aghia Paraskevi,Athens 15342, Greece

jrassias@primedu.uoa.gr,URL: http: www.primedu.uoa.gr/ jrassias

R. Kodandan
Department of Mathematics

Sreeinivasa Institute of Technology and Management Studies
Chittoor - 517 127, Andhra Pradesh, India,Rkodandan1979@Qrediffmail.com

abstract

In this paper, we introduce and investigate the general solution of a new func-

tional equation

f<x+y+z+w)+f(x+y—z+w)=3ﬂ0+aﬁw+yﬂ%1—®ﬂ—x—w]

a b a b a
(e )+ f(oz = w)

where a,b > 2 and discuss its Generalized Hyers - Ulam - Rassias stability in

Quasi -B-normed spaces.
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1. INTRODUCTION

In 1940, S. M. Ulam [32] , while he was giving a talk before the
mathematics club of the University of wisconsin, he proposed a number of
importent unsolved problems. One of the problem is the stability of functional
equation. In the last five decades the problem was tackled by numerous authors
[1,2,6,8,12,18,22,26]. It’s solutions via various forms of functional equations like

additive, quadratic, cubic and quartic and its mixed forms were discussed.

Ulam’s stability problem states as follows:

Let G be a group and let H be a metric group with metric d(.,.). Given
€ > 0 does there exists a 6 > 0 such that if a function f : G — H satisfies
the inequality d(f(zy), f(z)f(y)) < ¢ for all z,y € G, then there exists a
homomorphism a : G — H with d(f(z),a(x)) < € for all x € G?

In 1941, D.H. Hyers[12] considered the case of approximately additive
mappings f : £ — E’ where F and E’ are Banach spaces. He proved the

following celebrated theorem.

Theorem 1.1 (25). Let E, E' be Banach spaces and let f : E — E' be a
mapping satisfying

If(z+y) = flz) = F)l <e

or all x,y € E. Then the limit a(x) = lim,,_, f@:‘r) exists for all x € E and
2

a: FE — E' is the unique additive mapping satisfying

/() —a(x)]| < €

for all x € E. Moreover, if f(tx) is continuous in t for each fized x € E then

a 1s linear.

From the above property, the additive functional equation f(z +y) =
f(z) + f(y) has Hyers-Ulam stability on (E, E’) or alternatively that it is
stable in the sense of Hyers and Ulam. In 1951, T.Aoki [2] generalized the
Hyers theorem and later in 1978, Th.M.Rassias [25] proved a generalization of
Hyers theorem, which allows the cauchy difference to be unbounded. It states

as follows:
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Theorem 1.2 (25). Let E,E" be two Banach spaces and let 6§ € [0,00) and
p €[0,1). If a function f: E — E' satisfies the inequality

1z +y) = fl) = FI <Ol + [lyl"]

for all x,y € E. Then there exists a unique additive mapping T : E — E’ such

that

20
I1£() - T(@)] < 5=

for all x € E. Moreover, it f(tx) is continuous in t for each fivred x € E then

1E4 1

T s linear.

These ideas become a powerful tool for studying the stability of several
functional equations and they have been called Hyers-Ulam-Rassias stability,
In 1982-84, J.M.Rassias [22] in the above Theorem [25], he replaced the sum

by the product of powers of norms , which is given in the following Theorem .

Theorem 1.3 (22). Let f : E — E' be a mapping from a normed vector space
E into a Banach space E' subject to the inequality

1z +y) = fl@) = @ < ell=l” [[yl” (1.1)

for all z,y € E, where € and p are constants with e >0 and 0 < p < % Then
the limat

exists for all x € F and L : E — E' is the unique additive mapping which

satisfies

I1£() = L)l < 5=

forallx € E. If p <0, then the inequality (1.1) holds for x,y # 0 and (1.2)
forx #0. If p> 3 the inequality (1.1) holds for x,y € E and the limit

A(z) = lim 2" f (£>

n—o00 on

exists for all v € E and A : E — E' is the unique additive mapping which

[ (1.2)

satisfies

2
[EclIng

I1£(2) =A@ < 55—
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for all x € E. If in addition [ : E — E’ is a mapping such that the transfor-
mation t — f(tx) is continuous in t € R for each fivzed x € X, then L is R—

linear mapping.

In 1983, Skof proved Hyers-Ulam-Rassias stability problem for qua-

dratic functional equation

flx+y)+ flx—y)=2f(z)+2f(y). (1.3)

for a class of functions f : A — B, where A is a normed space and B is a Banach
space (see [2][14]). Many results are available on various quadratic functional
equations, one can see ([5][7][15][17] [19]). S.M.Jung [15] investegated the

Hyers-Ulam-Rassias stability of the quadratic functional equation on pexider

type
filz +y) + fole —y) = 2f3(2) + 2fa(y).
The generalized Hyers-Ulam-Rassias stability of a quadratic equation
fet+y+2)+fle—y)+fly—2)+ f(z—2)=3f(2) +3f(y) +3f(2)

was discussed by B.H.Bae and K.W.Kim [3]. In 2005, K.W.Jun and H.M.Kim
[18] obtained the general solution of a generalized quadratic and additive type

functional equation of the form

flx+ay) +af(x—y) = flr—ay) +af(zr+y)

for any integer a with a # —1,0,1. J.M.Rassias [?, 24Jerived the stability of

the generalized version of the above quadratic equation

Q(a171 + azr2) + Qf(azr1 — a112) = (CL% + G%) [Q(71) + Q(2)]

which covers a wide range of quadratic functional equations in two variables.
Recently , K.Ravi and R.Kodandan [29] discussed the stability of Additive and

Quadratic functional equation

(o)) (3) )

where z,y # 0, in non-Archimedian spaces.
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In this paper, we introduce and investigate the general solution of a

new functional equation

a

PR ) g (T ) - (S + (- ()

b3 (e w) + f(—z = w)]
(1.4)

and discuss its Generalized Hyers-Ulam-Rassias stability of this equation in
quasi-3-Normed spaces. It may be noted that f(x) = ax®+ bz + ¢ is a solution

of the functional equation (1.4)

Before giving the main results, we will present here some basic facts
concerning quasi--Normed spaces and some prelimenary results. We fix a
real number § with 0 < f < 1 and let K denote either R or C .Let X be
a linear space over K . A quasi-fG-norm || - || is a real-valued function on X
satisfying the following: Let X be a linear space. A quasi-norm || - | is real -
valued function on X satisfying the following:

(i) |z ||> 0 for all z € X and || = ||= 0 if and only if x = 0.

(i) | Az || =|A|? .||z || forall A € K and all z € X.

(iii) There is a constant & > 1 such that ||z +y [[< K (|| 2 ||+ | v ||) for all
x,y € X. The pair (X, || - ||) is called quasi-S-normed space if || - || is a quasi-
B-norm on X. The smallest possible K is called the modulus of concavity of
| - ||-A quasi-/-Banach space is a complete quasi-S-normed space.

A qusi-f-norm || - || is called a (5, p)-norm (0 < p < 1) if

e +y P<[l I+ 1 v [I”

for all z,y € X. In this case, a quasi-5-Banach space is called a (3, p)-Banach
space . We can refer to [3,30] for the concept of quasi-normed spaces and
p-Banach space. Given a p-norm, the formula d(z,y) =|| x +y ||P gives
us a translation invarient metric on X. By the Aoki-Rolewicz theorem [30]
(see also [3]), each quasi-norm is equivalent to some p-norm, since it is much
easier to work with p-norms than quasi-norms. henceforth we restrict our
attention mainly to p-norms. In [31], J.Tabor has investigated a version of the
Hyers-Rassias-Gajda theorem (see[8]) in quasi-Banach spaces. We recall that
a subadditive function is a function ¢ : F; — FE,, having a domain F; and
a codomain (Es, <) that are both closed under additive, with the following
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property:
o(z +y) < ¢(z) + ¢(y), Vo, y € Er.

Now we say that a function ¢ : Fy — FEs is contractively subadditive if there
exists a constant L with 0 < L < 1 such that

o(r +y) < Ligp(x) + o(y)], Yo,y € Er.

Then ¢ satisfies the following properties ¢(2z) < 2L¢(z) and so ¢(2"x) <
(2L)"¢(x). It follows by the contractively subadditive condition of ¢ that
d(Ar) < AL¢(z) and so ¢p(N'w) < (AL)'¢(z),i € N, for all z € E; and all posi-
tive integer A > 2. Similarly, we say that function ¢ : E; — FE, is expansively
superadditive if there exists a constant L with 0 < L < 1 such that

B +) > 7 [6() + 6(y)] Ve, y € By

Then ¢ satisfies the following properties ¢(z) < £¢(2z) and so ¢ (&) <
(%)n o(z). We observe that an expansively super additive mappipg ¢ satisfies

the following properties ¢(Az) > (%) ¢(x) and so ¢ (%) > (%)Zqﬁ(x),l € N,

for all x € F; and all positive integer A > 2.

2. Solution of Functional Equation (1.4)

In this Section, let E; and E5 denote real vectors spaces, we will prove the

following two main theorems.

Theorem 2.1. If f : Ey — Ey is an even function satisfying (1.4) for all
x,y,z,w € Ey then f is quadratic.

Proof. Replace (x,y, z,w) by (0,0,0,0) in (1.4), we obtain

£(0) = 0. (2.1)

The function f is even and therefore f(—z) = f(x) for all z € E;. Using

evenness in (1.4) we obtain

f<a72:y+zﬁ;w>+f<xl-y_z-zw> :%f(x+y)+b%f(z+w), (2.2)

for all z,y, z, w € E) Replace (z,w) by (0,0) and using (2.1) in (2.2), we obtain

f(x—i_y):%f(x%—y), V xz,y€E. (2.3)

a
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Replacing = by 0 in (2.3), we arrive that

AP
F(2) =i, ¥ yebn (24)
Again replacing y by az in (2.4), we obtain

flaz) = a®f(x), ¥V z€E. (2.5)

Replacing [(z,v), (z,w)] by [(az, ay), (bz, bw)] in (2.2) and using equation (2.5)

, we obtain
fllaety) +GE+w]+fl@z+y) - (E+w)] =2f(z+y)+2f(z +w). (206)
Replacing (z + y, z + w) by (u,v) in (2.6), we obtain
flu+v)+ flu—v) =2f(u) +2f(v). (2.7)
Again replacing (u,v) by (z,y) in (2.7), we obtain
fle+y)+fle—y) =2f(x) +2f(y), YV =zye€ k.
Therefore f : B, — By is quadratic. 0

Theorem 2.2. If f : Ey — Ey be an odd function, satisfying (1.4) for all
x,y € By . Then f 1s additive.

Proof. Using oddness of f and using (2.1) in (1.4) , we obtain

r+y z4w r+y z4w _2
P e (B < e e9)

Replacing (z,w) by (0,0) and using (2.1) in (2.7), we obtain

T+ 1
F(F) = tirn. ¥ sy (29)
Replacing z by y in (2.8) , we obtain
2 1
() =1ren. v ven (2.10)

Replacing 2y by az in (2.10), we arrive

flax)=af(z), V z€ E. (2.11)
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Replacing [(z,y), (z,w)] by [(az,ay), (az,aw)] in (2.8) and using equation
(2.11), we obtain

flle+y) + o]+ fllz+y) - rw)]=2f(z+y), ¥V zyzwe k.

(2.12)
Replacing (z + vy, z + w) by (u,v) in (2.11), we obtain
flut+v)+ f(u—v)=2f(u). (2.13)
Interchanging u ,v and using oddness in (2.13), we obtain
flu+v) = f(u—v)=2f(v). (2.14)
Adding (2.13) and (2.14) , we get
flu4v) = f(u)+ f(v). (2.15)
Replacing (u,v) by (z,y) in(2.15), we obtain
flet+y)=fl@)+fly), ¥V xzye k.
Therefore the mapping f : Ey — Fs is additive. 0

3. HYERS - ULAM - RASSIAS STABILITY OF EQUATION (1.4)

In this Section, we assume that F; is a linear space over K and Fs is a
(8,p) Banach space with p-norm ||. ||, . Let K be the modulus of concavity
of [|. ||, Now we are going to investigate the modified Ulam-Hyers Stability
of the functional equation (1.4). For notational convenience, we denote for
a given mapping f : E; — FEy and a scalar u € K | the difference operator
D,f:Ey x Ey x By x By = E, of equation (1.4) by

px + py u2+uw) ny </wf+uy B u2+uw)

D, f(x,y,z,w):f< - + 2 2

_% [(a+Dpflz+y) + (a— Duf(—z —y)]

3 (e w) + pf(—2 — w)]

for all x,y,z,w € E; .
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Theorem 3.1. Assume that there exists a mapping ¢ : By X Ey X Ey x E; —
[0,00) for which an odd mapping f : Ey — Fy satisfies the inequality

||D1f(x,y,z,w)||E2 qu(x,y,z,w) (31)

for all x,y,z,w € Eq, and that the map ¢ is contractively subadditive with a
constant L satisfying a'~PL < 1. Then there exists a unique additive mapping

A : Ey — Ey which satisfies (1.4) and the inequality

a\B  ¢(z,0,0,0)
1£(@) = A@)ls, < (5) (3:2)
() -
L
for all x € E}.
Proof. Using oddness and (2.1) in (3.1), we obtain
r+y z4w r+y z4w 2
a b a b a B,
(3.3)
For all x,y, z,w € E;. Replace (y, z,w) by (0,0,0) in (3.3), we obtain
x 2
o < . .
H2f (a) ~f(a) = 6(2,0,0,0), Ve B (3.4)
Again replacing = by az in (3.4) and simplifing, we get
1 1
Hf(fv) L) < Loter,0,0,0 (35)
a B, 2

for all x € E;. Therefore it follows from in (3.5) that when we replace a’z in

the place of x and by iterative method

Hf(zjx) flama)||” _ = (al)

— e

2
(aL)? = (aL)” )
(aL)p m—1
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for all x € F; and for any m > [ > 0 . Thus it follows that a sequence
{%} is a cauchy in F, and so it converges. Therefore we see that a
mapping A : F; — Ey defined by A(z) = lim,, s % is well defined for all
x € E. In addition it is clear from (3.1) that the following inequality
|DLf(a™x,a™y, ™z, a™w) |,

ID1A(z, y, z,w)]|[, = lim

m—o0 afpm

lp(a™x,a™y, a™z, a™w) H%Z

o

< Jim o

< Tim (@ PLY" (g, 2, w) = 0
m—0o0

holds for all z,y, z,w € F; and so the mapping A is additive. Taking the limit
m — o0 in (3.6) with [ = 0, we find that

1500~ A, < (5) ote.0.0.00 3 (@)

al » 1
< (25) ¢(Z’,0,0,0) 1 — (alfﬁL)P

therefore, we get

- < (3 LS
a5L—1 1

To prove uniqueness, we assume now that there is another function 4’ : E; —
E, which satisfies (1.4) and the inequality (3.2) then it follows that A'(az) =
aA'(x) ,A'(a™z) = a™A'(x) for all x € E; and all m € N. Thus

Hf(z:x) aﬂm Hf a™r) (amx)‘ .
o (5) S
o) o 28

for all z € Fy and all m € N. Allow m — oo, we get

/

HA(:U) A (x)H ~0
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for all x € Fq, which completes the proof of uniqueness. O

Theorem 3.2. Assume that there exists a mapping ¢ : B4 X E1 X Fy X E; —
[0,00) for which an odd mapping f : Ey — FEs satisfies the inequality

||D1f(a:,y,z,w)||E2 S(b('rayVZ?w) (37)

for all x,y,z,w € Fy, and that the map ¢ is expansively superadditive with
a constant L satisfying a® 'L < 1. Then there exists a unique mapping A :

Ey — Es which satisfies (1.4) and the inequality

I7(0) = A, < (5) A 59
forall x € Ey .
Proof. From (3.4), we obtain
bor-ar (< (@) sennn

it follows from (3.9) with % in place of x and iterative method that

m—1
() ot Gl =S I () or ()
< ()" 5o (o)

< <g)ﬂp 6(2,0,0,00 3" (a® )" (3.10)

p

Es

for all z € E; and for any m > | > 0. Therefore we see that a mapping
A Fy — E5 defined by

A(x) = lim a™f <i>

m—00o a™

is well defined for all x € E;. Taking the limit m — oo in (3.10) with [ = 0, we
find that the mapping A satisfying the inequality (3.8) near the approximate
mapping f : By — E, of (1.4). The remaining proof is similar to that of
Theorem 3.1. 0J
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Theorem 3.3. Assume that an odd mapping f : E1 — E5 satisfies

||D1f(957?/,27w)||E2 < gb(x,y,z,w)
for all x,y,z,w € Ey. If a mapping ¢ : By X Ey x Ey x Ey — [0,00) satisfies
— K'¢(a"2,0,0,0 K™¢(a™x,0,0,0
Z gb(a' x,77)<OOCLTLd lim ¢(CL x)aa)

a,/Bi m—00 ame

=0

®(x,0,0,0) =
i=0
for all x,y,z,w € Ey. Then there exists a unique additive mapping A : Ey —
Ey such that A satisfies (1.4) and the inequality

K
1f(z) = A(2) ||, < Q—ﬁ@(x,O,O,O),V:U € b.

Proof. Tt follows from (3.5) with a’x in place of z and iterative method that

-1 ()
(3.11)

or all x € E) and for any m > 1, which is considered to be (3.5) for m = 1. In

m—

o K KiG(a5,0,0,0) 1 K™ g(a™,0,0,0)
<32 +

By a/gi 2_/3 aﬂ(m* 1)

fact, we see by computation

m+1 m+1
Eo E, Es
K? &2 Kig(a?z,0,0,0)
< 58 (ax,0,0,0) + (0 2 e

K™ ¢(a™1z,0,0,0)
(2@),8 qB(m=1)

K%b aJHx 0,0,0)  K™¢(a™z,0,0,0)
o8 Z T o8 e )

+

<

for all x € Fy,which proves the inequality (3.11) for m + 1 by induction.

Thus follows that a sequence { ! (a 2) } is cauchy in E5 and it converges. Therefore

we see that a mapping A : By — FE, defined by A(x) = lim,, oo ! (aa*n) is well

m

defined for all x € E;. The remaining proof is similar to that of Theorem
3.1. OJ

Theorem 3.4. Assume that an odd mapping f : E1 — Es satisfies

Hle(xaya Zaw)”EQ < ¢(a:,y,z,w)
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for all x,y,z,w € Ey. If a mapping ¢ : By X Ey x Ey x Ey — [0,00) satisfies

oo

(2,0,0,0) = Y (a"K)" 6 (,0,0,0) < 00 and lim (aK)" 6 (-.0,0,0) = 0.

- M—00
=0

for all x,y,z,w € Ey. Then there exists a unique additive mapping A : Ey —
Ey such that A satisfies (1.4) and the inequality

a\ B
£(2) = A@)l, < K (5) ©(,0,0,0),

for all x € Fj.

Proof. 1t follows from(3.9) with % and the similar method to (3.11) that
a\ B (T
<K(3) D@ K) 6 (=.00.0)

#(5) @R (i 0.00)

for all x € E and for any m > 1. Therefore we see that a mapping A : E; — Ey
defined by A(z) = lim,, e amf( g2 ) is well defined for all x € FE;. The

am™m

| =ans (G)]

Es

remaining proof is similar to that of Theorem 3.3. 0

Corollary 3.5. Let E; be a quasi-a-normed linear space with quasi-a-norm
| .|l if there exists a fived real number r € R such that an odd mapping

f: E1 — FE5 satisfies the functional inequality
1D f (2, 2,w) | g, < O Uzll” + lyll” + lz[" + lwl")

for all z,y,z,w € Ey (Ey\{0}if r <0), then there ezists a unique additive
mapping A : By — Ey which satisfies Eq.(1.4) and the inequality

Ko orTr .
IIf(x) — A(z)]| < z_ﬁm if Kaor < o
~ <K9a5> 1 Zf Ka,B < aaT’

28 1-KaP—ar

for all x € Ey (E1\ {0} if r <0).

Proof. By replacing ¢(z,y, z,w) by ([lz]" + llyll" + [|z[]" + [[w[]") in Theorem

3.1 and Theorem 3.2, we obtain above result. O
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Theorem 3.6. Assume that there exists a mapping ¢ : B3 X E; X By X B} —

[0,00) for which an even mapping f : E1 — Es satisfies the inequality

||D1f<x’y7z’w)“E2 < @(Iﬂyu Z,UJ) (312)

for all x,y,z € E1 and that the map ¢ is contractively subadditive with a con-
stant L satisfying a'=2°L < 1. Then there exists a unique quadratic mapping
Q : By — E, which satisfies (1.4) and the inequality

(I2

g A
|V@»—@mmm,g<5) p(,0,0,0)

a28-1\P ’
()

(3.13)

forallx € Ey .

Proof. Using evenness in (3.12), we obtain

r+y z4w r+y z4w 2 2
(3.14)
For all z,y, z,w € E;. Replace (y, z,w) by (0,0,0) in (3.14), we obtain
2
Hzf (f) — S /@) <¢(,00,0), VieE. (3.15)
a a B,
Again replacing = by az in (3.15) and simplifing, we get
1 1
\M@—ﬁmm@sﬁmm@um (3.16)

for all z € Ey.Therefore it follows from in (3.16) that when we replace a’x in
the place of x and by iterative method
1 m p m—1 p
Hf(ax) fla™z) <y (al)”
a2l - 28p ¢ 2Bpi

E> i=l

p

f(ai'HQZ)

a?

fla'z) —

a2m

Es
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for all z € F; and for any m > [ > 0. Thus it follows that a sequence
{%} is a cauchy sequence in Fy and so it converges. Therefore we see
that a mapping A : Fy — Ey defined by Q(z) = lim,;, o % is well defined
for all x € F4. In addition it is clear from (3.12) that the following inequality

_ ID1f(a™z, a™y, a™z, a™w)|[p,

”D1Q<x Y, 2, U))H oo a2Bpm
et gz arw)ly,
- m1—1’>Ic1>o a?ﬂpm

< lim (a' L) p(x,y, z,w)" =0

holds for all z,y,z,w € F; and so the mapping @ is quadratic. Taking the
limit m — oo in (3.17) with [ = 0, we find that

I50) - Qs < (5 ) ele0.0.07 Y (@ 2L)”

i=0
al\? 1
p
< (25) (,0(.’13',070,0) 1— (al,QBL)p

therefore, we get

a\? ¢(x,0,0,0)
17) - Q) < (5) -
a28-1\P 1
(*) -
To prove uniqueness, we assume now that there is another function Q' : E; —

E, which satisfies (1.4) and the inequality (3.13) then it follows that Q' (azx) =
aQ'(z) ,Q (a™z) = a™Q’ (m) for all x € Fy and all m € N. Thus

H f (a:w')

frs -t

_(aL\" (@ ? olamz,0,0,0)
— \a2bm 2 afp — (aL)P
a\? , | m  ¢(z,0,0,0)
< d 1-28 )y Vo Yy
- (aL> <2> (a L) azﬁp - (aL)p

for all z € Fy and all m € N. Allow m — oo, we get

|@ - Q@] =0

a2ﬁm
Es
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for all x € Fq, which completes the proof of uniqueness. O

Theorem 3.7. Assume that there exists a mapping ¢ : F3 X By x Ey X E] —
[0,00) for which an even mapping f : Ey — Ey satisfies the inequality (3.12)
and that the map ¢ is expansively superadditive with a constant L satisfying
a*®~'L < 1. Then there exists a unique quadratic mapping Q : By — Ey which
satisfies (1.4) and the inequality

a2\’ oz
I7) - @l < (5 ) e (3.18)

1— a1y

forall z € F.

Proof. From (3.15), we obtain

Hf(x) —a’f (g) H < (%Q)Bcp(x, 0,0,0) (3.19)

it follows from (3.19) with % in place of = and iterative method that

m—1
o () =1 (%) o 520 () =t ()

a2 Bp m—1 ‘ T »
<(5) Y ee (500 0)
— ( 2 ) a 80 aZ7 ) Y

i=l

a2 Bp m—1
< <5> (£,0,0,0) Y (a*7'L)"  (3.20)

i=l

p

Es

for all z € E; and for any m > | > 0. Therefore we see that a mapping
Q : Fy — FE, defined by

Q(z) = lim a®™f ( :E >

m—00 a™
is well defined for all x € E;. Taking the limit m — oo in (3.20) with [ = 0, we
find that the mapping @ satisfing the inequality (3.18) near the approximate
mapping f : E; — E, of (1.4). The remaining proof is similar to that of
Theorem 3.6. U

Theorem 3.8. Assume that an even mapping f : E1 — E5 satisfies

Hle(xayasz”‘EQ < g@(x,y, z,w)
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for all x,y,z,w € Ey. If a mapping ¢ : E1 X By X E; X E; — [0,00) satisfies

O gei(oitl K™ (g™
\I!(:U,O,O,O):ZK(p(a 1{707070)<ooand lim vla I’O’O’O):()

— a2ﬁz M—00 a25m
1=

forall x,y, z,w € Ey. Then there exists a unique quadratic mapping Q) : Fy —
Ey such that Q) satisfies (1.4) and the inequality

1£(2) = Q@) < 55(2,0,0,0), 2 € B,

Proof. Tt follows from (3.16) with a’z in place of 2 and iterative method that

=2 Klgb( i+12.0,0,0) 1 K™ ¢(a™z,0,0,0)
f(l‘) - an aPt + 2_5 qB(m=1)
(3.21)
for all z € E; and for any m > 1, which is considered to be (3.9) for m = 1.

In fact, we see by computation

am+1x) f(aa:) f(a2(m+1)x)
PR R T 2 [ 4 TP
H q2(m+1) . @@ | g a2B a .
K K? KZ (a"22,0,0,0)
< Q—ﬂgo(ax,O 0,0) + D Z o
Km @(am“x, 0,0,0)
+ (2@)/3 q2B(m—1)
< K Klp(@i2,0,0,0) | K™ p(a™+12,0,0,0)
— 928 a2Bi 28 a2Bm ’
§=0
for all x € Fy, which proves the inequality (3.21) for m + 1 by induction.
Thus follows that a sequence { fla"z) } is cauchy in E5 and it converges.Therefore

we see that a mapping A : Ey — FEj defined by A(x) = lim,, oo ! (aam) is well

m

defined for all x € F;. The remaining proof is similar to that of theorem
3.6. OJ

Theorem 3.9. Assume that an even mapping f : By — Es satisfies

Hle(xaya Zaw)”EQ < ¢(a:,y,z,w)
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for all x,y,z,w € Ey. If a mapping ¢ : By X Ey x Ey x Ey — [0,00) satisfies

¥(z,0,0,0) = i (a*K)" ¢ (+.0.0,0) < oc and lim (a*'K)" ¢ (=-,0,0,0) = 0.
=0

Forallx,y,z,w € Ey. Then there exists a unique quadratic mapping QQ : E; —
Esy such that Q satisfies (1.4) and the inequality

2

a B8
1£(2) - Q@) < K (5) ¥(2.0.0,0).

For all x € E4

Proof. 1t follows from(3.19) with % and the similar method to (3.21) that

2

<K (4 6§(2mz()i (£.0.0,0)
E2_ ? pa a 2 57 s Vs
L(z B( K)o (s 0,0,0)
2 a SO am_17 ) Y

for all x € E; and for any m > 1. Therefore we see that a mapping @ : Fy, — Ey

defined by Q(z) = lim,, o a™f (aim) is well defined for all x € E;. The

remaining proof is similar to that of Theorem 3.8. U

[ et (55|

Corollary 3.10. Let F; be a quasi-a-normed linear space with quasi-a-norm
| . |l. if there exists a fivzed r € R such that an even mapping f : Ey — FE

satisfies the functional inequality
DL f (2, y, 2, w)l| g, < O ()l + lyll” + llzl]" + [[wl]")
for all z,y,z,w € Ey (E41\{0}if r <0), then there exists a unique quadratic
mapping Q : By — Ey which satisfies Eq.(1.4) and the inequality
Ko a?or Zf Ka® < a?ﬂ’

) — . < 28 1-Kqaor—2P
||f( ) Q( )H — <K9a2ﬁ) 1 Zf KCLQB <a0”’7

28 1—Ka?f—ar

for all x € Ey (E1\ {0} if r <0),

Proof. Replacing ¢(x,y, z,w) by (||z]|” + |ly|” + |z|I" + |Jw]|") in Theorem 3.6

and Theorem 3.7, we obtain above result. O



Generalized Ulam-Hyers stability of an AQ-functional equation

(1]

2]

8]

(4]

[5]

[14]

[15]

[16]

REFERENCES

J. Aczel, J. Dhombres, Functional Equations in Several Variables, Cambridge Uni-
versity Press, 1989.

T. Aoki, On the stability of linear transformation in Banach spaces, J.Math.Soc.Japan
2 (1950) 64-66.

J.H. Bae, K.W. Jun, On the generalized Hyers-Ulam-Rassias stability of quadratic
functional equation, Bull. Korean. Math. Soc., 38 (2001), 325-336.

Y. Benyamini, J. Lindenstrauss, Geometric Nonlinear Functional Analysis, Vol.1,
Collog. Publ., Vol. 48, Amer. Math. Soc., Providence, RI, 2000.

I.S. Chang, E.H. Lee and H.M. Kim, On Hyers- Ulam- Rassias stability of a
quadratic functional equation, Math. Ineqal. Appl. Vol 6 No. 1 (2003), 87-95.

P.W. Cholewa, Remarks on the stability of functional equations, Aequations Math.
27 (1984), 76-86.

S. Czerwik, On the stability of the quadratic mappings in normed spaces, Abh. Math.
Sem. Univ. Hamburg. 62 (1992), 59-64.

Z. Gajda, On the stability of additive mappings, Int.J. Math. Sci. 57 (1991), 223-237.
Z. Gajda, R.Ger, Subadditive multifunctions and Hyers-Ulam stability,in:General
inequalities,vol.5,in:Intrenet.Schriftenreiche Number. Math.,vol.80,Birkhauser,Basel-
Boston,MA,1987.

P. Gavruta, A generalization of the Hyers-Ulam-Rassias stability of approzimately
additive mappings, J. Math. Anal. Appl. 184 (1994), 431-436.

P. Gavruta, An answer to aquestion of John M.Rassias concerning the stability
of Cauchy equation,in:Advance in equations and inequalities,in:Hadronic Math. Ser.,
Hadronic press.USA,1999.pp. 67-71.

D.H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci.,
U.S.A.,27 (1941) 222-224.

D.H. Hyers, G. Isac, Th.M. Rassias, Stability of Functional Equations in Several
Variables,, Birkhauser, Basel, 1998.

D.H. Hyers, Th.M. Rassias, Approzimate homomorphisms, Aequationes Math.44
(1992), 125-153.

S.M. Jung, Quadratic functional equations of pexider type, Int. J. Math. and Math.
Sci. 24 (5), (2000), 351-359.

K. W. Jun and Y.H. Lee, On the Hyers-Ulam-Rassias stability of a periderized
quadratic inequality, Math. Ineq. Appl., 4(1) (2001), 93-118.

235



236

[17]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

28]

[29]

[30]

[31]

[32]

K. Ravi, J.M.Rassias and R. Kodandan

K.W. Jun and HM. Kim, On the Hyers-Ulam-Rassias stability of a generalized
quadratic and additive functional equation, Bull. Koeran. Math. Soc. 42, (1) (2005),
133-148.

K.W. Jun and H.M. Kim, On the stability of an n-dimensional quadratic and
additive type functional equation, Math. Ineq. Appl 9(1) (2006), 153-165.

Pl. Kannappan,Quadratic functional equation and inner product spaces, Results
Math. 27 (1995), 368-372.

A. Najati, M.B. Moghimi, Stability of a functional equation deriving from quadratic
and additive functions in quasi-Banach spaces, J. Math. Anal. Appl. 2007, Doi, 10-
1016/j.j.Maa 2007.03.104.

A. Najati,A.Ranjibari, Stability of homomorphisms for a 3D Cauchy-Jensen type
functional equation on C*-terney algebras, J. Math. Anal.Appl.341 (2008), 62-79.
J.M. Rassias, On approzximately of approrimately linear mappings by linear map-
pings, J. Funct. Anal. USA, 46 (1982), 126-130.

J.M. Rassias, On the stability of Euler-Lagrange functional equation, Chinese J.
Math. 20 (1992), 185-190.

J.M. Rassias, Hyers-Ulam stability for a quadratic functional equation in several
variables, J. Indian. Math. Soc. 68 (1-24), (2001), 65-73.

Th.M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer.
Math. Soc. 72 (1978), 297-300.

Th.M. Rassias, On the stability of the quadratic functional equation and its applica-
tions, Studia. Univ. Babes-Bolyai XLIII (1998), 89-124.

Th.M. Rassias, On the stability of functional equations and a problem of Ulam, Acta.
Appl. Math. 62 (2000), 23-170.

Th.M. Rassias, On the stability of functional equations in Banach spaces, J. Math.
Anal. Appl. 251 (2000), 264-284.

K.Ravi and R.Kodandan, Stability of Additive and Quadratic Functional Equation
in Non-Archimedean Spaces, International Review of Pure and Applied Mathematics.
Volime 6. No. 1 (2010), 149-160.

S. Rolewicz, Metric Linear spaces, PWN-Polish Sci. Publ., Warszawa, Reidel, Dor-
drecht, 1984.

J. Tober, Stability of cauchy functional equation in quasi-Banach spaces, Ann.Polon.
Math. 83 (2004), 243-255.

S.M. Ulam, Problems in Modern Mathematics, Science Ed., Wiley, New York, 1964.



	1. INTRODUCTION
	2. Solution of Functional Equation (1.4)
	3. HYERS - ULAM - RASSIAS STABILITY OF EQUATION (1.4)
	References

