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Abstract

In this paper, we introduce the notions of generalized triangle alge-

bras in a generalized residuated lattices and give their examples.
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1 Introduction

Hájek [8] introduced a complete residuated lattice which is an algebraic struc-
ture for many valued logic. Moreover, Georgescu and Popescue [6,7] introduced
a generalized residuated lattice which is induced by two implications. By using
these concepts, information systems and decision rules are investigated [2,9,12].
Deschrijver, et.al. [3-5,10,11] introduced triangle algebras and interval-valued
residuated lattices.

In this paper, we introduce the notions of generalized triangle algebras in
a generalized residuated lattices. These concepts are generalizations of trian-
gle algebras and interval-valued residuated lattices. Moreover, we give their
examples.

Definition 1.1 [6,7] A structure (L,∨,∧,⊙,→,⇒,⊥,⊤) is called a gener-
alized residuated lattice if it satisfies the following conditions:

(GR1) (L,∨,∧,⊤,⊥) is a bounded where ⊤ is the universal upper bound
and ⊥ denotes the universal lower bound;

(GR2) (L,⊙,⊤) is a monoid;
(GR3) it satisfies a residuation , i.e.

a⊙ b ≤ c iff a ≤ b → c iff b ≤ a ⇒ c.
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We call that a generalized residuated lattice has the law of double negation
if a = (a∗)0 = (a0)∗ where a0 = a → ⊥ and a∗ = a ⇒ ⊥.

Remark 1.2 [6,7,12] (1) A generalized residuated lattice is a residuated
lattice (→=⇒) iff ⊙ is commutative.

(2) A left-continuous t-norm ([0, 1],≤,⊙) defined by a → b =
∨{c | a⊙ c ≤

b} is a residuated lattice
(3) A pseudo MV-algebra is a generalized residuated lattice with the law

of double negation.

Lemma 1.3 [4,5] Let (L,∧,∨,⊙,→,⇒,⊥,⊤) be a generalized residuated
lattice with the law of double negation.

For each x, y, z, xi, yi ∈ L, we have the following properties.
(1) If y ≤ z, (x ⊙ y) ≤ (x ⊙ z), x → y ≤ x → z and z → x ≤ y → x for

→∈ {→,⇒}.
(2) x⊙ y ≤ x ∧ y.

(3) x → (
∧

i∈Γ yi) =
∧

i∈Γ(x → yi) and (
∨

i∈Γ xi) → y =
∧

i∈Γ(xi → y) for
→∈ {→,⇒}.

(4) (x⊙ y) → z = x → (y → z) and (x⊙ y) ⇒ z = y ⇒ (x ⇒ z).
(5) (x⊙ y)0 = x → y0 and (x⊙ y)∗ = y ⇒ x∗.

(6) x → (y ⇒ z) = y ⇒ (x → z) and x ⇒ (y → z) = y → (x ⇒ z).
(7) x⊙ (x → y) ≤ y and (x ⇒ y)⊙ x ≤ y.
(8) (x ⇒ y)⊙ (y ⇒ z) ≤ x ⇒ z and (y → z)⊙ (x → y) ≤ x → z.
(9) x → y = ⊤ iff x ≤ y iff x ⇒ y = ⊤.
(10) x → y = y0 ⇒ x0 and x ⇒ y = y∗ → x∗.
(11)

∧

i∈Γ x
∗
i = (

∨

i∈Γ xi)
∗ and

∨

i∈Γ x
∗
i = (

∧

i∈Γ xi)
∗.

(12)
∧

i∈Γ x
0
i = (

∨

i∈Γ xi)
0 and

∨

i∈Γ x
0
i = (

∧

i∈Γ xi)
0.

2 Generalized triangle algebras

Definition 2.1 A structure A = (A,∧,∨,⊙,⇒,→, νi, µi,⊥, ei,⊤) for i ∈
{1, 2} is called a generalized triangle algebra if it satisfies the following condi-
tions:

(R) (A,∧,∨,⊙,⇒,→,⊥,⊤) is a generalized residuated lattice.
(T1) νi(x) ≤ x and νi(x) ≤ νi(νi(x)).
(T2) νi(x ∧ y) = νi(x) ∧ νi(y) and νi(x ∨ y) = νi(x) ∨ νi(y).
(T3) νi(ei) = ⊥.
(T4) νi ◦ µi = µi.
(S1) x ≤ µi(x) and µi(x) ≥ µi(µi(x)).
(S2) µi(x ∧ y) = µi(x) ∧ µi(y) and µi(x ∨ y) = µi(x) ∨ µi(y).
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(S3) µi(ei) = ⊤.
(S4) µi ◦ νi = νi.
(T5) ν1(x ⇒ y) ≤ ν1(x) ⇒ ν1(x) and ν2(x → y) ≤ ν2(x) → ν1(x).
(T6) (ν1(x) ↔ ν1(y))⊙ (µ1(x) ↔ µ1(y)) ≤ (x ↔ y) and (µ2(x) ⇔ µ2(y))⊙

(ν2(x) ⇔ ν2(y)) ≤ (x ⇔ y).
(T7) ν1(x) ⇒ ν1(y) ≤ ν1(ν1(x) ⇒ ν1(y)) and ν2(x) → ν2(y) ≤ ν2(ν2(x) →

ν2(y)).

Remark 2.2 (1) If ⊙ is commutative (or ⇒=→), ν1 = ν2, µ1 = µ2 and
e1 = e2 in Definition 1.4, then (A,∧,∨,⊙,⇒, ν1, µ1,⊥, e1,⊤) is a triangle
algebra in [10].

(2) In Definition 2.1, νi(⊤) = ⊤ and µi(⊥) = ⊥ because νi(⊤) = νi(µi(ei)) =
µi(ei) = ⊤ and µi(⊥) = µi(νi(ei)) = νi(ei) = ⊥.

Theorem 2.3 Let (A,∧,∨,⊙,⇒,→,⊥,⊤) be a generalized residuated lat-
tice with x0∗ = x∗0 = x for each x ∈ A. If there exists e ∈ A such that
e = e0 = e∗ and νi is an operator satisfying the conditions (T1)-(T3), (T5),
(T7),

(ν1(x) ↔ ν1(y))⊙ (ν1(x
0) ⇔ ν1(y

0)) ≤ (x ↔ y),

(ν2(x
∗) ↔ ν2(y

∗))⊙ (ν2(x) ⇔ ν2(y)) ≤ (x ⇔ y),

(νi((νi(x))
0))∗ = (νi((νi(x))

∗))0

and we define
µ1(x) = (ν1(x

0))∗, µ2(x) = (ν2(x
∗))0,

then, for i ∈ {1, 2}, (A,∧,∨,⊙,⇒,→, νi, µi,⊥, ei = e,⊤) is a generalized
triangle algebra.

Proof (S1) Since ν1(x
0) ≤ x0 and ν2(x

∗) ≤ x∗, we have

x = x0∗ ≤ (ν1(x
0))∗ = µ1(x),

x = x∗0 ≤ (ν2(x
∗))0 = µ2(x).

Since ν1(x
0) = (ν1(x

0))∗0 and ν2(x
∗) = (ν2(x

∗))0∗, we have ν1(x
0) ≥ ν1(ν1(x

0)) =
ν1((ν1(x

0))∗0) and ν2(x
∗) ≥ ν2(ν2(x

∗)) = ν2((ν2(x
∗))0∗). Thus

µ1(µ1(x)) = (ν1((ν1(x
0))∗0))∗ ≤ (ν1(x

0))∗ = µ1(x),

µ2(µ2(x)) = (ν2((ν2(x
∗))0∗))0 ≤ (ν2(x

∗))0 = µ2(x).

(S2) Since x0∗ = x∗0 = x for each x ∈ X , we have µ1(x ∧ y) = (ν1((x ∧
y)0))∗ = (ν1(x

0 ∨ y0))∗ = (ν1(x
0))∗ ∧ (ν1(y

0))∗ = µ1(x)∧µ1(y). Other cases are
similarly proved.



452 Yong Chan Kim

(S3)
µ1(e) = (ν1(e

0))∗ = (ν1(e))
∗ = ⊤,

µ2(e) = (ν2(e
∗))0 = (ν2(e))

0 = ⊤.

(T4)

µ1(x) = ν1(x
0) ⇒ ⊥ = ν1(x

0) ⇒ ν1(e)
= ν1(x

0) ⇒ ν1(⊥) ≤ ν1(ν1(x
0) ⇒ ν1(⊥)) (by (T7))

= ν1(ν1(x
0) ⇒ ⊥) = ν1(µ1(x)).

µ2(x) = ν2(x
∗) → ⊥ = ν2(x

∗) → ν2(e)
= ν2(x

∗) → ν2(⊥) ≤ ν2(ν2(x
∗) → ν2(⊥)) (by (T7))

= ν2(ν2(x
∗) → ⊥) = ν2(µ2(x)).

(S4) Since µ1(x
∗) = (ν1(x))

∗ and ν1(µ1(x
∗)) = ν1((ν1(x))

∗) = µ1(x
∗),

µ1(ν1(x)) = (ν1(ν1(x))
0)∗ = (ν1(ν1(x))

∗)0

= (µ1(x
∗))0 = ν1(x).

Since µ2(x
0) = (ν2(x))

0 and ν2(µ2(x
0)) = ν2((ν2(x))

0) = µ2(x
0),

µ2(ν2(x)) = (ν2(ν2(x))
∗)0 = (ν2(ν2(x))

0)∗

= (µ2(x
0))∗ = ν2(x).

(T6)
(ν1(x) ↔ ν1(y))⊙ (µ1(x) ↔ µ1(y))
= (ν1(x) ↔ ν1(y))⊙ ((ν1(x

0))∗ ↔ (ν1(y
0))∗)

= (ν1(x) ↔ ν1(y))⊙ (ν1(x
0) ⇔ ν1(y

0)) ≤ (x ↔ y),
(µ2(x) ⇔ µ2(y))⊙ (ν2(x) ⇔ ν2(y))
= ((ν2(x

∗))0 ⇔ (ν2(y
∗))0)⊙ (ν2(x) ⇔ ν2(y))

= (ν2(x
∗) ↔ ν2(y

∗))⊙ (ν2(x) ⇔ ν2(y)) ≤ (x ⇔ y).

Hence, for i ∈ {1, 2}, (A,∧,∨,⊙,⇒,→, νi, µi,⊥, ei = e,⊤) is a generalized
triangle algebra.

Theorem 2.4 Let (A,∧,∨,⊙,⇒,→,⊥,⊤) be a generalized residuated lat-
tice with x0∗ = x∗0 = x for each x ∈ A. If there exists e ∈ A such that
e = e0 = e∗ and µi is an operator satisfying the conditions (S1)-(S3),

µ1(µ1(y)⊙ (µ1(x
0))∗) ≤ µ1(y)⊙ (µ1(x

0))∗ ≤ µ1(y ⊙ x)

µ2((µ2(x
∗))0 ⊙ µ2(y)) ≤ (µ2(x

∗))0 ⊙ µ2(y) ≤ µ2(x⊙ y),

((µ1(x
0)) ⇔ µ1(y

0))⊙ (µ1(x) ↔ µ1(y)) ≤ (x ↔ y),
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(µ2(x) ⇔ µ2(y))⊙ (µ2(x
∗) ↔ µ2(y

∗)) ≤ (x ⇔ y),

(µi((µi(x))
∗))0 = (µi((µi(x))

0))∗,

and we define

ν1(x) = (µ1(x
0))∗, ν2(x) = (µ2(x

∗))0,

then, for i ∈ {1, 2}, (A,∧,∨,⊙,⇒,→, νi, µi,⊥, ei = e,⊤) is a generalized
triangle algebra.

Proof (T1) Since µ1(x
0) ≥ x0 and µ2(x

∗) ≥ x∗, we have

x = x0∗ ≥ (µ1(x
0))∗ = ν1(x),

x = x∗0 ≥ (µ2(x
∗))0 = ν2(x).

By (S1), we have

ν1(ν1(x)) = (µ1((µ1(x
∗))0∗))0 ≤ (µ1(x

∗))0 = ν1(x),

ν2(ν2(x)) = (µ2((µ2(x
0))∗0))∗ ≤ (µ2(x

0))∗ = ν2(x).

(T2) Since x0∗ = x∗0 = x for each x ∈ X , we have ν1(x ∧ y) = (µ1((x ∧
y)∗))0 = (µ1(x

∗∨ y∗))0 = (µ1(x
∗))0∧ (µ1(y

∗))0 = ν1(x)∧ ν1(y). Other cases are
similarly proved.

(T3)

ν1(e) = (µ1(e
∗))0 = (µ1(e))

0 = ⊥,

ν2(e) = (µ2(e
0))∗ = (µ2(e))

∗ = ⊥.

(S4) Since µ1(µ1(e)⊙ (µ1(x
0))∗) ≤ µ1(e)⊙ (µ1(x

0))∗, we have

ν1(x) = (µ1(x
0))∗ ≥ µ1((µ1(x

0))∗ = µ1(ν1(x))

Since µ2((µ2(x
∗))0 ⊙ µ2(e)) ≤ (µ2(x

∗))0 ⊙ µ2(e), we have

ν2(x) = (µ2(x
∗))0 ≥ µ2((µ2(x

∗))0 = µ2(ν2(x))

(T4) Since ν1(x
∗) = (µ1(x))

∗ and µ1(ν1(x
∗)) = µ1((µ1(x))

∗) = ν1(x
∗),

ν1(µ1(x)) = (µ1(µ1(x))
0)∗ = (µ1(µ1(x))

∗)0

= (ν1(x
∗))0 = µ1(x).

Since ν2(x
0) = (µ2(x))

0 and µ2(ν2(x
0)) = µ2((µ2(x))

0) = ν2(x
0),

ν2(µ2(x)) = (µ2(µ2(x))
∗)0 = (µ2(µ2(x))

0)∗

= (ν2(x
0))∗ = µ2(x).
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(T5) Since y0 ⊙ x = (x ⇒ y)0, we have

µ1(y
0)⊙ (µ1(x

0))∗ ≤ µ1(y
0 ⊙ x)

⇔ (µ1(x
0))∗ ⇒ (µ1(y

0))∗ ≥ (µ1(y
0 ⊙ x))∗

⇔ (µ1(x
0))∗ ⇒ (µ1(y

0))∗ ≥ (µ1((x ⇒ y)0)∗

⇔ ν1(x) ⇒ ν1(y) ≥ ν1(x ⇒ y).

Since x⊙ y∗ = (x → y)∗, we have

(µ2(x
∗))0 ⊙ µ2(y

∗) ≤ µ2(x⊙ y∗)
⇔ (µ2(x

∗))0 → (µ2(y
∗))0 ≥ (µ2(x⊙ y∗))0

⇔ (µ2(x
∗))0 → (µ2(y

∗))0 ≥ (µ2(x⊙ y∗))0

⇔ ν2(x) → ν2(y) ≥ (µ2((x⊙ y∗)0∗))0 = (µ2((x → y)∗))0

⇔ ν2(x) → ν2(y) ≥ ν2(x → y).

(T6)

(ν1(x) ↔ ν1(y))⊙ (µ1(x) ↔ µ1(y))
= ((µ1(x

0))∗ ↔ (µ1(y
0))∗)⊙ (µ1(x) ↔ µ1(y))

= ((µ1(x
0)) ⇔ (µ1(y

0)))⊙ (µ1(x) ↔ µ1(y)) ≤ (x ↔ y),
(µ2(x) ⇔ µ2(y))⊙ (ν2(x) ⇔ ν2(y))
= (µ2(x) ⇔ µ2(y))⊙ ((µ2(x

∗))0 ⇔ (µ2(y
∗))0)

= (µ2(x) ⇔ µ2(y))⊙ (µ2(x
∗) ↔ µ2(y

∗)) ≤ (x ⇔ y).

(T7) Since b⊙ a = (a ⇒ b∗)0, we have

µ1(µ1(y
0)⊙ (µ1(x

0))∗) ≤ µ1(y
0)⊙ (µ1(x

0))∗

⇔ µ1(((µ1(x
0))∗ ⇒ µ1(y

0)∗)0) ≤ µ1(y
0)⊙ (µ1(x

0))∗

⇔ µ1(((ν1(x) ⇒ ν1(y))
0) ≤ µ1(y

0)⊙ (µ1(x
0))∗

⇔ (µ1(x
0))∗ ⇒ (µ1(y

0))∗ ≤ µ1(((ν1(x) ⇒ ν1(y))
0)∗

⇔ ν1(x) ⇒ ν2(y) ≤ ν1(ν1(x) ⇒ ν1(y)),

Since (µ2(x
∗))0 ⊙ µ2(y

∗) = ((µ2(x
∗))0 → µ2(y

∗)0)∗, we have

µ2((µ2(x
∗))0 ⊙ µ2(y

∗)) ≤ (µ2(x
∗))0 ⊙ µ2(y

∗)
⇔ µ2(((µ2(x

∗))0 → µ2(y
∗)0)∗) ≤ (µ2(x

∗))0 ⊙ µ2(y
∗)

⇔ µ2(((ν2(x) → ν2(y))
∗) ≤ (µ2(x

∗))0 ⊙ µ2(y
∗)

⇔ (µ2(x
∗))0 → (µ2(y

∗))0 ≤ µ2(((ν2(x) → ν2(y))
∗)0

⇔ ν2(x) → ν2(y) ≤ ν2(ν2(x) → ν2(y)).

Example 2.5 Let K = {(x, y) ∈ R2 | x > 0} be a set and we define an
operation ⊗ : K ×K → K as follows:

(x1, y1)⊗ (x2, y2) = (x1x2, x1y2 + y1).
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Then (K,⊗) is a group with e = (1, 0), (x, y)−1 = ( 1
x
,− y

x
).

We have a positive cone P = {(a, b) ∈ R2 | a = 1, b ≥ 0 , or a > 1} because
P ∩ P−1 = {(1, 0)}, P ⊙ P ⊂ P , (a, b)−1 ⊙ P ⊙ (a, b) = P and P ∪ P−1 = K.
For (x1, y1), (x2, y2) ∈ K, we define

(x1, y1) ≤ (x2, y2) ⇔ (x1, y1)
−1 ⊙ (x2, y2) ∈ P, (x2, y2)⊙ (x1, y1)

−1 ∈ P

⇔ x1 < x2 or x1 = x2, y1 ≤ y2.

Then (K,≤ ⊗) is a lattice-group.
The structure (L,⊙,⇒,→, (1

2
, 1), (1, 0)) is a generalized residuated lattice

with strong negation where ⊥ = (1
2
, 1) is the least element and ⊤ = (1, 0) is

the greatest element from the following statements:

(x1, y1)⊙ (x2, y2) = (x1, y1)⊗ (x2, y2) ∨ (1
2
, 1) = (x1x2, x1y2 + y1) ∨ (1

2
, 1),

(x1, y1) ⇒ (x2, y2) = ((x1, y1)
−1 ⊗ (x2, y2)) ∧ (1, 0) = (x2

x1

, y2−y1
x1

) ∧ (1, 0),

(x1, y1) → (x2, y2) = ((x2, y2)⊗ (x1, y1)
−1) ∧ (1, 0) = (x2

x1

,−x2y1
x1

+ y2) ∧ (1, 0).

Furthermore, we have (x, y) = (x, y)∗◦ = (x, y)◦∗ from:

(x, y)∗ = (x, y) ⇒ (
1

2
, 1) = (

1

2x
,
1− y

x
),

(x, y)∗◦ = (
1

2x
,
1− y

x
) → (

1

2
, 1) = (x, y).

(1) There exists e = ( 1√
2
, 2 −

√
2) = e0 = e∗. For i ∈ {1, 2}, let νi be an

operator satisfying the conditions in Theorem 2.3. Define

µ1(x) = (ν1(x
0))∗, µ2(x) = (ν2(x

∗))0.

For i ∈ {1, 2}, (L,∧,∨,⊙,⇒,→, νi, µi,⊥, ei = e,⊤) is a generalized triangle
structure.

(2) There exists e = ( 1√
2
, 2 −

√
2) = e0 = e∗. For i ∈ {1, 2}, let µi be an

operator satisfying the conditions in Theorem 2.4. Define

ν1(x) = (µ1(x
0))∗, ν2(x) = (µ2(x

∗))0.

For i ∈ {1, 2}, (L,∧,∨,⊙,⇒,→, νi, µi,⊥, ei = e,⊤) is a generalized triangle
structure.

(3) We define

L[2] = {[(x1, y1), (x2, y2)] | ((x1, y1), (x2, y2)) ∈ L× L, (x1, y1) ≤ (x2, y2)}

e = [(
1

2
, 1), (1, 0)] = [⊥,⊤],

[(x1, y1), (x2, y2)] ∧ [(x3, y3), (x4, y4)] = [(x1, y1) ∧ (x3, y3), (x2, y2) ∧ (x4, y4)]
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[(x1, y1), (x2, y2)] ∨ [(x3, y3), (x4, y4)] = [(x1, y1) ∨ (x3, y3), (x2, y2) ∨ (x4, y4)]

[(x1, y1), (x2, y2)]⊙ [(x3, y3), (x4, y4)] = [(x1, y1)⊙ (x3, y3), (x2, y2)⊙ (x4, y4)]

[(x1, y1), (x2, y2)] ⇒ [(x3, y3), (x4, y4)]

= [
(

((x1, y1) ⇒ (x3, y3)) ∧ ((x2, y2) ⇒ (x4, y4)), (x2, y2) ⇒ (x4, y4)]

[(x1, y1), (x2, y2)] → [(x3, y3), (x4, y4)]

= [
(

((x1, y1) → (x3, y3)) ∧ ((x2, y2) → (x4, y4)), (x2, y2) → (x4, y4)].

Moreover, we define ν1 = ν2, µ1 = µ2 : L
[2] → L[2] as

ν1([(x1, y1), (x2, y2)]) = [(x1, y1), (x1, y1)],

µ1([(x1, y1), (x2, y2)]) = [(x2, y2), (x2, y2)].

Then (L[2],∧,∨,⊙,⇒,→, νi, µi, [⊥,⊥], e, [⊤,⊤]) for i ∈ {1, 2} is a general-
ized triangle algebra from the following statements.

(R) (L[2],∧,∨,⊙,⇒,→, [⊥,⊥], [⊤,⊤]) is a generalized residuated lattice.

[(x1, y1), (x2, y2)]⊙ [(x3, y3), (x4, y4)] ≤ [(x5, y5), (x6, y6)]
iff [(x1, y1)⊙ (x3, y3), (x2, y2)⊙ (x4, y4)] ≤ [(x5, y5), (x6, y6)]
iff (x1, y1)⊙ (x3, y3) ≤ (x5, y5), (x2, y2)⊙ (x4, y4) ≤ (x6, y6)
iff (x1, y1) ≤ (x3, y3) → (x5, y5), (x2, y2) ≤ (x4, y4) → (x6, y6)
iff [(x1, y1), (x2, y2)] ≤ [((x3, y3) → (x5, y5) ∧ (x4, y4) → (x6, y6))

, (x4, y4) → (x6, y6)]
iff [(x1, y1), (x2, y2)] ≤ [(x3, y3), (x4, y4)] → [(x5, y5), (x6, y6)].

(T1) νi([(x1, y1), (x2, y2)]) = [(x1, y1), (x1, y1)] ≤ [(x1, y1), (x2, y2)] and

νi([(x1, y1), (x2, y2)]) = νi(νi([(x1, y1), (x2, y2)])) = [(x1, y1), (x1, y1)].

(T2) It is easily proved.
(T3) νi(e) = νi([⊥,⊤]) = ⊥.
(T4)

µi([(x1, y1), (x2, y2)]) = [(x2, y2), (x2, y2)]) = νi(µi([(x1, y1), (x2, y2)]).

(T5) ν1([(x1, y1), (x2, y2)] ⇒ [(x3, y3), (x4, y4)]) ≤ ν1([(x1, y1), (x2, y2)]) ⇒
ν1([(x3, y3), (x4, y4)]) from:

ν1([(x1, y1), (x2, y2)] ⇒ [(x3, y3), (x4, y4)])

= ν1([
(

((x1, y1) ⇒ (x3, y3)) ∧ ((x2, y2) ⇒ (x4, y4))
)

, (x2, y2) ⇒ (x4, y4)])

= [
(

((x1, y1) ⇒ (x3, y3)) ∧ ((x2, y2) ⇒ (x4, y4))
)

,
(

((x1, y1) ⇒ (x3, y3)) ∧ ((x2, y2) ⇒ (x4, y4))
)

].
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ν1([(x1, y1), (x2, y2)]) ⇒ ν1([(x3, y3), (x4, y4)])
= [(x1, y1), (x1, y1)] ⇒ [(x3, y3), (x3, y3)]
= [(x1, y1) ⇒ (x3, y3), ((x1, y1) ⇒ (x3, y3))].

Similarly, ν1([(x1, y1), (x2, y2)] → [(x3, y3), (x4, y4)]) ≤ ν1([(x1, y1), (x2, y2)]) →
ν1([(x3, y3), (x4, y4)]).

(T6) (ν1([(x1, y1), (x2, y2)]) ↔ ν1([(x3, y3), (x4, y4)]))⊙(µ1([(x1, y1), (x2, y2)]) ↔
µ1([(x3, y3), (x4, y4)])) ≤ [(x1, y1), (x2, y2)] ↔ [(x3, y3), (x4, y4)] from:

(ν1([(x1, y1), (x2, y2)]) ↔ ν1([(x3, y3), (x4, y4)]))
⊙(µ1([(x1, y1), (x2, y2)]) ↔ µ1([(x3, y3), (x4, y4)]))
= ([(x1, y1), (x1, y1)] ↔ [(x3, y3), (x3, y3)])
⊙([(x2, y2), (x2, y2)] ↔ [(x4, y4), (x4, y4)])
= ([(x1, y1) ↔ (x3, y3), (x1, y1) ↔ (x3, y3)])
⊙([(x2, y2) ↔ (x4, y4), (x2, y2) ↔ (x4, y4)])
= [((x1, y1) ↔ (x3, y3))⊙ ((x2, y2) ↔ (x4, y4)),
((x1, y1)) ↔ (x3, y3))⊙ ((x2, y2) ↔ (x4, y4))]
≤ [((x1, y1) ↔ (x3, y3)) ∧ ((x2, y2) ↔ (x4, y4)), (x2, y2) ↔ (x4, y4)]
= [(x1, y1), (x2, y2)] ↔ [(x3, y3), (x4, y4)].

Similarly, (ν2([(x1, y1), (x2, y2)]) ⇔ ν2([(x3, y3), (x4, y4)]))⊙(µ2([(x1, y1), (x2, y2)]) ⇔
µ2([(x3, y3), (x4, y4)])) ≤ [(x1, y1), (x2, y2)] ⇔ [(x3, y3), (x4, y4)].

(T7)

ν1([(x1, y1), (x2, y2)]) ⇒ ν1([(x3, y3), (x4, y4)])
= [(x1, y1) ⇒ (x3, y3), ((x1, y1) ⇒ (x3, y3))]
= ν1(ν1([(x1, y1), (x2, y2)]) ⇒ ν1([(x3, y3), (x4, y4)])).

Other case is similarly proved.
(S4)

νi([(x1, y1), (x2, y2)]) = [(x1, y1), (x1, y1)]) = µi(νi([(x1, y1), (x2, y2)]).

(S1), (S2) and (S3) are similarly proved as (T1),(T2) and (T3), respectively.
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