

Generalized triangle algebras

Yong Chan Kim

Department of Mathematics, Gangneung-Wonju National University,
Gangneung, Gangwondo 210-702, Korea
yck@gwnu.ac.kr

Abstract

In this paper, we introduce the notions of generalized triangle algebras in a generalized residuated lattices and give their examples.

Mathematics Subject Classification: 03E72, 03G10, 06A15, 06F07

Keywords:

Generalized residuated lattices, Generalized triangle algebras

1 Introduction

Hájek [8] introduced a complete residuated lattice which is an algebraic structure for many valued logic. Moreover, Georgescu and Popescu [6,7] introduced a generalized residuated lattice which is induced by two implications. By using these concepts, information systems and decision rules are investigated [2,9,12]. Deschrijver, et.al. [3-5,10,11] introduced triangle algebras and interval-valued residuated lattices.

In this paper, we introduce the notions of generalized triangle algebras in a generalized residuated lattices. These concepts are generalizations of triangle algebras and interval-valued residuated lattices. Moreover, we give their examples.

Definition 1.1 [6,7] A structure $(L, \vee, \wedge, \odot, \rightarrow, \Rightarrow, \perp, \top)$ is called a *generalized residuated lattice* if it satisfies the following conditions:

(GR1) $(L, \vee, \wedge, \top, \perp)$ is a bounded where \top is the universal upper bound and \perp denotes the universal lower bound;

(GR2) (L, \odot, \top) is a monoid;

(GR3) it satisfies a residuation , i.e.

$$a \odot b \leq c \text{ iff } a \leq b \rightarrow c \text{ iff } b \leq a \Rightarrow c.$$

We call that a generalized residuated lattice has the law of double negation if $a = (a^*)^0 = (a^0)^*$ where $a^0 = a \rightarrow \perp$ and $a^* = a \Rightarrow \perp$.

Remark 1.2 [6,7,12] (1) A generalized residuated lattice is a residuated lattice ($\rightarrow \Rightarrow$) iff \odot is commutative.

(2) A left-continuous t-norm $([0, 1], \leq, \odot)$ defined by $a \rightarrow b = \bigvee \{c \mid a \odot c \leq b\}$ is a residuated lattice

(3) A pseudo MV-algebra is a generalized residuated lattice with the law of double negation.

Lemma 1.3 [4,5] Let $(L, \wedge, \vee, \odot, \rightarrow, \Rightarrow, \perp, \top)$ be a generalized residuated lattice with the law of double negation.

For each $x, y, z, x_i, y_i \in L$, we have the following properties.

(1) If $y \leq z$, $(x \odot y) \leq (x \odot z)$, $x \rightarrow y \leq x \rightarrow z$ and $z \rightarrow x \leq y \rightarrow x$ for $\rightarrow \in \{\rightarrow, \Rightarrow\}$.

(2) $x \odot y \leq x \wedge y$.

(3) $x \rightarrow (\bigwedge_{i \in \Gamma} y_i) = \bigwedge_{i \in \Gamma} (x \rightarrow y_i)$ and $(\bigvee_{i \in \Gamma} x_i) \rightarrow y = \bigwedge_{i \in \Gamma} (x_i \rightarrow y)$ for $\rightarrow \in \{\rightarrow, \Rightarrow\}$.

(4) $(x \odot y) \rightarrow z = x \rightarrow (y \rightarrow z)$ and $(x \odot y) \Rightarrow z = y \Rightarrow (x \Rightarrow z)$.

(5) $(x \odot y)^0 = x \rightarrow y^0$ and $(x \odot y)^* = y \Rightarrow x^*$.

(6) $x \rightarrow (y \Rightarrow z) = y \Rightarrow (x \rightarrow z)$ and $x \Rightarrow (y \rightarrow z) = y \rightarrow (x \Rightarrow z)$.

(7) $x \odot (x \rightarrow y) \leq y$ and $(x \Rightarrow y) \odot x \leq y$.

(8) $(x \Rightarrow y) \odot (y \Rightarrow z) \leq x \Rightarrow z$ and $(y \rightarrow z) \odot (x \rightarrow y) \leq x \rightarrow z$.

(9) $x \rightarrow y = \top$ iff $x \leq y$ iff $x \Rightarrow y = \top$.

(10) $x \rightarrow y = y^0 \Rightarrow x^0$ and $x \Rightarrow y = y^* \rightarrow x^*$.

(11) $\bigwedge_{i \in \Gamma} x_i^* = (\bigvee_{i \in \Gamma} x_i)^*$ and $\bigvee_{i \in \Gamma} x_i^* = (\bigwedge_{i \in \Gamma} x_i)^*$.

(12) $\bigwedge_{i \in \Gamma} x_i^0 = (\bigvee_{i \in \Gamma} x_i)^0$ and $\bigvee_{i \in \Gamma} x_i^0 = (\bigwedge_{i \in \Gamma} x_i)^0$.

2 Generalized triangle algebras

Definition 2.1 A structure $\mathcal{A} = (A, \wedge, \vee, \odot, \Rightarrow, \rightarrow, \nu_i, \mu_i, \perp, e_i, \top)$ for $i \in \{1, 2\}$ is called a *generalized triangle algebra* if it satisfies the following conditions:

(R) $(A, \wedge, \vee, \odot, \Rightarrow, \rightarrow, \perp, \top)$ is a generalized residuated lattice.

(T1) $\nu_i(x) \leq x$ and $\nu_i(x) \leq \nu_i(\nu_i(x))$.

(T2) $\nu_i(x \wedge y) = \nu_i(x) \wedge \nu_i(y)$ and $\nu_i(x \vee y) = \nu_i(x) \vee \nu_i(y)$.

(T3) $\nu_i(e_i) = \perp$.

(T4) $\nu_i \circ \mu_i = \mu_i$.

(S1) $x \leq \mu_i(x)$ and $\mu_i(x) \geq \mu_i(\mu_i(x))$.

(S2) $\mu_i(x \wedge y) = \mu_i(x) \wedge \mu_i(y)$ and $\mu_i(x \vee y) = \mu_i(x) \vee \mu_i(y)$.

- (S3) $\mu_i(e_i) = \top$.
- (S4) $\mu_i \circ \nu_i = \nu_i$.
- (T5) $\nu_1(x \Rightarrow y) \leq \nu_1(x) \Rightarrow \nu_1(x)$ and $\nu_2(x \rightarrow y) \leq \nu_2(x) \rightarrow \nu_1(x)$.
- (T6) $(\nu_1(x) \leftrightarrow \nu_1(y)) \odot (\mu_1(x) \leftrightarrow \mu_1(y)) \leq (x \leftrightarrow y)$ and $(\mu_2(x) \leftrightarrow \mu_2(y)) \odot (\nu_2(x) \leftrightarrow \nu_2(y)) \leq (x \leftrightarrow y)$.
- (T7) $\nu_1(x) \Rightarrow \nu_1(y) \leq \nu_1(\nu_1(x) \Rightarrow \nu_1(y))$ and $\nu_2(x) \rightarrow \nu_2(y) \leq \nu_2(\nu_2(x) \rightarrow \nu_2(y))$.

Remark 2.2 (1) If \odot is commutative (or $\Rightarrow = \rightarrow$), $\nu_1 = \nu_2$, $\mu_1 = \mu_2$ and $e_1 = e_2$ in Definition 1.4, then $(A, \wedge, \vee, \odot, \Rightarrow, \nu_1, \mu_1, \perp, e_1, \top)$ is a triangle algebra in [10].

(2) In Definition 2.1, $\nu_i(\top) = \top$ and $\mu_i(\perp) = \perp$ because $\nu_i(\top) = \nu_i(\mu_i(e_i)) = \mu_i(e_i) = \top$ and $\mu_i(\perp) = \mu_i(\nu_i(e_i)) = \nu_i(e_i) = \perp$.

Theorem 2.3 Let $(A, \wedge, \vee, \odot, \Rightarrow, \rightarrow, \perp, \top)$ be a generalized residuated lattice with $x^{0*} = x^{*0} = x$ for each $x \in A$. If there exists $e \in A$ such that $e = e^0 = e^*$ and ν_i is an operator satisfying the conditions (T1)-(T3), (T5), (T7),

$$\begin{aligned} & (\nu_1(x) \leftrightarrow \nu_1(y)) \odot (\nu_1(x^0) \leftrightarrow \nu_1(y^0)) \leq (x \leftrightarrow y), \\ & (\nu_2(x^*) \leftrightarrow \nu_2(y^*)) \odot (\nu_2(x) \leftrightarrow \nu_2(y)) \leq (x \leftrightarrow y), \\ & (\nu_i((\nu_i(x))^0))^* = (\nu_i((\nu_i(x))^*))^0 \end{aligned}$$

and we define

$$\mu_1(x) = (\nu_1(x^0))^*, \quad \mu_2(x) = (\nu_2(x^*))^0,$$

then, for $i \in \{1, 2\}$, $(A, \wedge, \vee, \odot, \Rightarrow, \rightarrow, \nu_i, \mu_i, \perp, e_i = e, \top)$ is a generalized triangle algebra.

Proof (S1) Since $\nu_1(x^0) \leq x^0$ and $\nu_2(x^*) \leq x^*$, we have

$$x = x^{0*} \leq (\nu_1(x^0))^* = \mu_1(x),$$

$$x = x^{*0} \leq (\nu_2(x^*))^0 = \mu_2(x).$$

Since $\nu_1(x^0) = (\nu_1(x^0))^0$ and $\nu_2(x^*) = (\nu_2(x^*))^0$, we have $\nu_1(x^0) \geq \nu_1(\nu_1(x^0)) = \nu_1((\nu_1(x^0))^0)$ and $\nu_2(x^*) \geq \nu_2(\nu_2(x^*)) = \nu_2((\nu_2(x^*))^0)$. Thus

$$\mu_1(\mu_1(x)) = (\nu_1((\nu_1(x^0))^0))^* \leq (\nu_1(x^0))^* = \mu_1(x),$$

$$\mu_2(\mu_2(x)) = (\nu_2((\nu_2(x^*))^0))^0 \leq (\nu_2(x^*))^0 = \mu_2(x).$$

(S2) Since $x^{0*} = x^{*0} = x$ for each $x \in X$, we have $\mu_1(x \wedge y) = (\nu_1((x \wedge y)^0))^* = (\nu_1(x^0 \vee y^0))^* = (\nu_1(x^0))^* \wedge (\nu_1(y^0))^* = \mu_1(x) \wedge \mu_1(y)$. Other cases are similarly proved.

(S3)

$$\begin{aligned}\mu_1(e) &= (\nu_1(e^0))^* = (\nu_1(e))^* = \top, \\ \mu_2(e) &= (\nu_2(e^*))^0 = (\nu_2(e))^0 = \top.\end{aligned}$$

(T4)

$$\begin{aligned}\mu_1(x) &= \nu_1(x^0) \Rightarrow \perp = \nu_1(x^0) \Rightarrow \nu_1(e) \\ &= \nu_1(x^0) \Rightarrow \nu_1(\perp) \leq \nu_1(\nu_1(x^0) \Rightarrow \nu_1(\perp)) \quad (\text{by (T7)}) \\ &= \nu_1(\nu_1(x^0) \Rightarrow \perp) = \nu_1(\mu_1(x)).\end{aligned}$$

$$\begin{aligned}\mu_2(x) &= \nu_2(x^*) \rightarrow \perp = \nu_2(x^*) \rightarrow \nu_2(e) \\ &= \nu_2(x^*) \rightarrow \nu_2(\perp) \leq \nu_2(\nu_2(x^*) \rightarrow \nu_2(\perp)) \quad (\text{by (T7)}) \\ &= \nu_2(\nu_2(x^*) \rightarrow \perp) = \nu_2(\mu_2(x)).\end{aligned}$$

(S4) Since $\mu_1(x^*) = (\nu_1(x))^*$ and $\nu_1(\mu_1(x^*)) = \nu_1((\nu_1(x))^*) = \mu_1(x^*)$,

$$\begin{aligned}\mu_1(\nu_1(x)) &= (\nu_1(\nu_1(x))^0)^* = (\nu_1(\nu_1(x))^*)^0 \\ &= (\mu_1(x^*))^0 = \nu_1(x).\end{aligned}$$

Since $\mu_2(x^0) = (\nu_2(x))^0$ and $\nu_2(\mu_2(x^0)) = \nu_2((\nu_2(x))^0) = \mu_2(x^0)$,

$$\begin{aligned}\mu_2(\nu_2(x)) &= (\nu_2(\nu_2(x))^0)^* = (\nu_2(\nu_2(x))^*)^0 \\ &= (\mu_2(x^0))^* = \nu_2(x).\end{aligned}$$

(T6)

$$\begin{aligned}(\nu_1(x) \leftrightarrow \nu_1(y)) \odot (\mu_1(x) \leftrightarrow \mu_1(y)) \\ &= (\nu_1(x) \leftrightarrow \nu_1(y)) \odot ((\nu_1(x^0))^* \leftrightarrow (\nu_1(y^0))^*) \\ &= (\nu_1(x) \leftrightarrow \nu_1(y)) \odot (\nu_1(x^0) \Leftrightarrow \nu_1(y^0)) \leq (x \leftrightarrow y), \\ (\mu_2(x) \leftrightarrow \mu_2(y)) \odot (\nu_2(x) \leftrightarrow \nu_2(y)) \\ &= ((\nu_2(x^*))^0 \Leftrightarrow (\nu_2(y^*))^0) \odot (\nu_2(x) \leftrightarrow \nu_2(y)) \\ &= (\nu_2(x^*) \leftrightarrow \nu_2(y^*)) \odot (\nu_2(x) \leftrightarrow \nu_2(y)) \leq (x \leftrightarrow y).\end{aligned}$$

Hence, for $i \in \{1, 2\}$, $(A, \wedge, \vee, \odot, \Rightarrow, \rightarrow, \nu_i, \mu_i, \perp, e_i = e, \top)$ is a generalized triangle algebra.

Theorem 2.4 Let $(A, \wedge, \vee, \odot, \Rightarrow, \rightarrow, \perp, \top)$ be a generalized residuated lattice with $x^{0*} = x^{*0} = x$ for each $x \in A$. If there exists $e \in A$ such that $e = e^0 = e^*$ and μ_i is an operator satisfying the conditions (S1)-(S3),

$$\mu_1(\mu_1(y) \odot (\mu_1(x^0))^*) \leq \mu_1(y) \odot (\mu_1(x^0))^* \leq \mu_1(y \odot x)$$

$$\mu_2((\mu_2(x^*))^0 \odot \mu_2(y)) \leq (\mu_2(x^*))^0 \odot \mu_2(y) \leq \mu_2(x \odot y),$$

$$((\mu_1(x^0)) \Leftrightarrow \mu_1(y^0)) \odot (\mu_1(x) \leftrightarrow \mu_1(y)) \leq (x \leftrightarrow y),$$

$$(\mu_2(x) \Leftrightarrow \mu_2(y)) \odot (\mu_2(x^*) \leftrightarrow \mu_2(y^*)) \leq (x \Leftrightarrow y),$$

$$(\mu_i((\mu_i(x))^*))^0 = (\mu_i((\mu_i(x))^0))^*,$$

and we define

$$\nu_1(x) = (\mu_1(x^0))^*, \quad \nu_2(x) = (\mu_2(x^*))^0,$$

then, for $i \in \{1, 2\}$, $(A, \wedge, \vee, \odot, \Rightarrow, \rightarrow, \nu_i, \mu_i, \perp, e_i = e, \top)$ is a generalized triangle algebra.

Proof (T1) Since $\mu_1(x^0) \geq x^0$ and $\mu_2(x^*) \geq x^*$, we have

$$x = x^{0*} \geq (\mu_1(x^0))^* = \nu_1(x),$$

$$x = x^{*0} \geq (\mu_2(x^*))^0 = \nu_2(x).$$

By (S1), we have

$$\nu_1(\nu_1(x)) = (\mu_1((\mu_1(x^*))^{0*}))^0 \leq (\mu_1(x^*))^0 = \nu_1(x),$$

$$\nu_2(\nu_2(x)) = (\mu_2((\mu_2(x^0))^{*0}))^* \leq (\mu_2(x^0))^* = \nu_2(x).$$

(T2) Since $x^{0*} = x^{*0} = x$ for each $x \in X$, we have $\nu_1(x \wedge y) = (\mu_1((x \wedge y)^*))^0 = (\mu_1(x^* \vee y^*))^0 = (\mu_1(x^*))^0 \wedge (\mu_1(y^*))^0 = \nu_1(x) \wedge \nu_1(y)$. Other cases are similarly proved.

(T3)

$$\nu_1(e) = (\mu_1(e^*))^0 = (\mu_1(e))^0 = \perp,$$

$$\nu_2(e) = (\mu_2(e^0))^* = (\mu_2(e))^* = \perp.$$

(S4) Since $\mu_1(\mu_1(e) \odot (\mu_1(x^0))^*) \leq \mu_1(e) \odot (\mu_1(x^0))^*$, we have

$$\nu_1(x) = (\mu_1(x^0))^* \geq \mu_1((\mu_1(x^0))^*) = \mu_1(\nu_1(x))$$

Since $\mu_2((\mu_2(x^*))^0 \odot \mu_2(e)) \leq (\mu_2(x^*))^0 \odot \mu_2(e)$, we have

$$\nu_2(x) = (\mu_2(x^*))^0 \geq \mu_2((\mu_2(x^*))^0) = \mu_2(\nu_2(x))$$

(T4) Since $\nu_1(x^*) = (\mu_1(x))^*$ and $\mu_1(\nu_1(x^*)) = \mu_1((\mu_1(x))^*) = \nu_1(x^*)$,

$$\begin{aligned} \nu_1(\mu_1(x)) &= (\mu_1(\mu_1(x))^*)^* = (\mu_1(\mu_1(x))^0)^0 \\ &= (\nu_1(x^*))^0 = \mu_1(x). \end{aligned}$$

Since $\nu_2(x^0) = (\mu_2(x))^0$ and $\mu_2(\nu_2(x^0)) = \mu_2((\mu_2(x))^0) = \nu_2(x^0)$,

$$\begin{aligned} \nu_2(\mu_2(x)) &= (\mu_2(\mu_2(x))^0)^0 = (\mu_2(\mu_2(x))^0)^* \\ &= (\nu_2(x^0))^* = \mu_2(x). \end{aligned}$$

(T5) Since $y^0 \odot x = (x \Rightarrow y)^0$, we have

$$\begin{aligned} & \mu_1(y^0) \odot (\mu_1(x^0))^* \leq \mu_1(y^0 \odot x) \\ \Leftrightarrow & (\mu_1(x^0))^* \Rightarrow (\mu_1(y^0))^* \geq (\mu_1(y^0 \odot x))^* \\ \Leftrightarrow & (\mu_1(x^0))^* \Rightarrow (\mu_1(y^0))^* \geq (\mu_1((x \Rightarrow y)^0))^* \\ \Leftrightarrow & \nu_1(x) \Rightarrow \nu_1(y) \geq \nu_1(x \Rightarrow y). \end{aligned}$$

Since $x \odot y^* = (x \rightarrow y)^*$, we have

$$\begin{aligned} & (\mu_2(x^*))^0 \odot \mu_2(y^*) \leq \mu_2(x \odot y^*) \\ \Leftrightarrow & (\mu_2(x^*))^0 \rightarrow (\mu_2(y^*))^0 \geq (\mu_2(x \odot y^*))^0 \\ \Leftrightarrow & (\mu_2(x^*))^0 \rightarrow (\mu_2(y^*))^0 \geq (\mu_2(x \odot y^*))^0 \\ \Leftrightarrow & \nu_2(x) \rightarrow \nu_2(y) \geq (\mu_2((x \odot y^*)^0))^0 = (\mu_2((x \rightarrow y)^*))^0 \\ \Leftrightarrow & \nu_2(x) \rightarrow \nu_2(y) \geq \nu_2(x \rightarrow y). \end{aligned}$$

(T6)

$$\begin{aligned} & (\nu_1(x) \leftrightarrow \nu_1(y)) \odot (\mu_1(x) \leftrightarrow \mu_1(y)) \\ = & ((\mu_1(x^0))^* \leftrightarrow (\mu_1(y^0))^*) \odot (\mu_1(x) \leftrightarrow \mu_1(y)) \\ = & ((\mu_1(x^0)) \Leftrightarrow (\mu_1(y^0))) \odot (\mu_1(x) \leftrightarrow \mu_1(y)) \leq (x \leftrightarrow y), \\ & (\mu_2(x) \leftrightarrow \mu_2(y)) \odot (\nu_2(x) \leftrightarrow \nu_2(y)) \\ = & (\mu_2(x) \leftrightarrow \mu_2(y)) \odot ((\mu_2(x^*))^0 \Leftrightarrow (\mu_2(y^*))^0) \\ = & (\mu_2(x) \leftrightarrow \mu_2(y)) \odot (\mu_2(x^*) \leftrightarrow \mu_2(y^*)) \leq (x \leftrightarrow y). \end{aligned}$$

(T7) Since $b \odot a = (a \Rightarrow b^*)^0$, we have

$$\begin{aligned} & \mu_1(\mu_1(y^0) \odot (\mu_1(x^0))^*) \leq \mu_1(y^0) \odot (\mu_1(x^0))^* \\ \Leftrightarrow & \mu_1(((\mu_1(x^0))^* \Rightarrow \mu_1(y^0))^0) \leq \mu_1(y^0) \odot (\mu_1(x^0))^* \\ \Leftrightarrow & \mu_1(((\nu_1(x) \Rightarrow \nu_1(y))^0) \leq \mu_1(y^0) \odot (\mu_1(x^0))^* \\ \Leftrightarrow & (\mu_1(x^0))^* \Rightarrow (\mu_1(y^0))^* \leq \mu_1(((\nu_1(x) \Rightarrow \nu_1(y))^0)^* \\ \Leftrightarrow & \nu_1(x) \Rightarrow \nu_2(y) \leq \nu_1(\nu_1(x) \Rightarrow \nu_1(y)), \end{aligned}$$

Since $(\mu_2(x^*))^0 \odot \mu_2(y^*) = ((\mu_2(x^*))^0 \rightarrow \mu_2(y^*))^*$, we have

$$\begin{aligned} & \mu_2((\mu_2(x^*))^0 \odot \mu_2(y^*)) \leq (\mu_2(x^*))^0 \odot \mu_2(y^*) \\ \Leftrightarrow & \mu_2(((\mu_2(x^*))^0 \rightarrow \mu_2(y^*))^*) \leq (\mu_2(x^*))^0 \odot \mu_2(y^*) \\ \Leftrightarrow & \mu_2(((\nu_2(x) \rightarrow \nu_2(y))^*) \leq (\mu_2(x^*))^0 \odot \mu_2(y^*) \\ \Leftrightarrow & (\mu_2(x^*))^0 \rightarrow (\mu_2(y^*))^0 \leq \mu_2(((\nu_2(x) \rightarrow \nu_2(y))^*)^0 \\ \Leftrightarrow & \nu_2(x) \rightarrow \nu_2(y) \leq \nu_2(\nu_2(x) \rightarrow \nu_2(y)). \end{aligned}$$

Example 2.5 Let $K = \{(x, y) \in R^2 \mid x > 0\}$ be a set and we define an operation $\otimes : K \times K \rightarrow K$ as follows:

$$(x_1, y_1) \otimes (x_2, y_2) = (x_1 x_2, x_1 y_2 + y_1).$$

Then (K, \otimes) is a group with $e = (1, 0)$, $(x, y)^{-1} = (\frac{1}{x}, -\frac{y}{x})$.

We have a positive cone $P = \{(a, b) \in R^2 \mid a = 1, b \geq 0\}$, or $a > 1\}$ because $P \cap P^{-1} = \{(1, 0)\}$, $P \odot P \subset P$, $(a, b)^{-1} \odot P \odot (a, b) = P$ and $P \cup P^{-1} = K$. For $(x_1, y_1), (x_2, y_2) \in K$, we define

$$\begin{aligned} (x_1, y_1) \leq (x_2, y_2) &\Leftrightarrow (x_1, y_1)^{-1} \odot (x_2, y_2) \in P, (x_2, y_2) \odot (x_1, y_1)^{-1} \in P \\ &\Leftrightarrow x_1 < x_2 \text{ or } x_1 = x_2, y_1 \leq y_2. \end{aligned}$$

Then (K, \leq, \otimes) is a lattice-group.

The structure $(L, \odot, \Rightarrow, \rightarrow, (\frac{1}{2}, 1), (1, 0))$ is a generalized residuated lattice with strong negation where $\perp = (\frac{1}{2}, 1)$ is the least element and $\top = (1, 0)$ is the greatest element from the following statements:

$$\begin{aligned} (x_1, y_1) \odot (x_2, y_2) &= (x_1, y_1) \otimes (x_2, y_2) \vee (\frac{1}{2}, 1) = (x_1 x_2, x_1 y_2 + y_1) \vee (\frac{1}{2}, 1), \\ (x_1, y_1) \Rightarrow (x_2, y_2) &= ((x_1, y_1)^{-1} \otimes (x_2, y_2)) \wedge (1, 0) = (\frac{x_2}{x_1}, \frac{y_2 - y_1}{x_1}) \wedge (1, 0), \\ (x_1, y_1) \rightarrow (x_2, y_2) &= ((x_2, y_2) \otimes (x_1, y_1)^{-1}) \wedge (1, 0) = (\frac{x_2}{x_1}, -\frac{x_2 y_1}{x_1} + y_2) \wedge (1, 0). \end{aligned}$$

Furthermore, we have $(x, y) = (x, y)^{\circ\circ} = (x, y)^{\circ*}$ from:

$$\begin{aligned} (x, y)^* &= (x, y) \Rightarrow (\frac{1}{2}, 1) = (\frac{1}{2x}, \frac{1-y}{x}), \\ (x, y)^{\circ\circ} &= (\frac{1}{2x}, \frac{1-y}{x}) \rightarrow (\frac{1}{2}, 1) = (x, y). \end{aligned}$$

(1) There exists $e = (\frac{1}{\sqrt{2}}, 2 - \sqrt{2}) = e^0 = e^*$. For $i \in \{1, 2\}$, let ν_i be an operator satisfying the conditions in Theorem 2.3. Define

$$\mu_1(x) = (\nu_1(x^0))^*, \quad \mu_2(x) = (\nu_2(x^*))^0.$$

For $i \in \{1, 2\}$, $(L, \wedge, \vee, \odot, \Rightarrow, \rightarrow, \nu_i, \mu_i, \perp, e_i = e, \top)$ is a generalized triangle structure.

(2) There exists $e = (\frac{1}{\sqrt{2}}, 2 - \sqrt{2}) = e^0 = e^*$. For $i \in \{1, 2\}$, let μ_i be an operator satisfying the conditions in Theorem 2.4. Define

$$\nu_1(x) = (\mu_1(x^0))^*, \quad \nu_2(x) = (\mu_2(x^*))^0.$$

For $i \in \{1, 2\}$, $(L, \wedge, \vee, \odot, \Rightarrow, \rightarrow, \nu_i, \mu_i, \perp, e_i = e, \top)$ is a generalized triangle structure.

(3) We define

$$L^{[2]} = \{[(x_1, y_1), (x_2, y_2)] \mid ((x_1, y_1), (x_2, y_2)) \in L \times L, (x_1, y_1) \leq (x_2, y_2)\}$$

$$e = [(\frac{1}{2}, 1), (1, 0)] = [\perp, \top],$$

$$[(x_1, y_1), (x_2, y_2)] \wedge [(x_3, y_3), (x_4, y_4)] = [(x_1, y_1) \wedge (x_3, y_3), (x_2, y_2) \wedge (x_4, y_4)]$$

$$\begin{aligned}
& [(x_1, y_1), (x_2, y_2)] \vee [(x_3, y_3), (x_4, y_4)] = [(x_1, y_1) \vee (x_3, y_3), (x_2, y_2) \vee (x_4, y_4)] \\
& [(x_1, y_1), (x_2, y_2)] \odot [(x_3, y_3), (x_4, y_4)] = [(x_1, y_1) \odot (x_3, y_3), (x_2, y_2) \odot (x_4, y_4)] \\
& [(x_1, y_1), (x_2, y_2)] \Rightarrow [(x_3, y_3), (x_4, y_4)] \\
& = [((x_1, y_1) \Rightarrow (x_3, y_3)) \wedge ((x_2, y_2) \Rightarrow (x_4, y_4)), (x_2, y_2) \Rightarrow (x_4, y_4)] \\
& [(x_1, y_1), (x_2, y_2)] \rightarrow [(x_3, y_3), (x_4, y_4)] \\
& = [((x_1, y_1) \rightarrow (x_3, y_3)) \wedge ((x_2, y_2) \rightarrow (x_4, y_4)), (x_2, y_2) \rightarrow (x_4, y_4)].
\end{aligned}$$

Moreover, we define $\nu_1 = \nu_2, \mu_1 = \mu_2 : L^{[2]} \rightarrow L^{[2]}$ as

$$\nu_1([(x_1, y_1), (x_2, y_2)]) = [(x_1, y_1), (x_1, y_1)],$$

$$\mu_1([(x_1, y_1), (x_2, y_2)]) = [(x_2, y_2), (x_2, y_2)].$$

Then $(L^{[2]}, \wedge, \vee, \odot, \Rightarrow, \rightarrow, \nu_i, \mu_i, [\perp, \perp], e, [\top, \top])$ for $i \in \{1, 2\}$ is a generalized triangle algebra from the following statements.

(R) $(L^{[2]}, \wedge, \vee, \odot, \Rightarrow, \rightarrow, [\perp, \perp], [\top, \top])$ is a generalized residuated lattice.

$$\begin{aligned}
& [(x_1, y_1), (x_2, y_2)] \odot [(x_3, y_3), (x_4, y_4)] \leq [(x_5, y_5), (x_6, y_6)] \\
& \text{iff } [(x_1, y_1) \odot (x_3, y_3), (x_2, y_2) \odot (x_4, y_4)] \leq [(x_5, y_5), (x_6, y_6)] \\
& \text{iff } (x_1, y_1) \odot (x_3, y_3) \leq (x_5, y_5), (x_2, y_2) \odot (x_4, y_4) \leq (x_6, y_6) \\
& \text{iff } (x_1, y_1) \leq (x_3, y_3) \rightarrow (x_5, y_5), (x_2, y_2) \leq (x_4, y_4) \rightarrow (x_6, y_6) \\
& \text{iff } [(x_1, y_1), (x_2, y_2)] \leq [((x_3, y_3) \rightarrow (x_5, y_5)) \wedge (x_4, y_4) \rightarrow (x_6, y_6)] \\
& \quad , (x_4, y_4) \rightarrow (x_6, y_6)] \\
& \text{iff } [(x_1, y_1), (x_2, y_2)] \leq [(x_3, y_3), (x_4, y_4)] \rightarrow [(x_5, y_5), (x_6, y_6)].
\end{aligned}$$

(T1) $\nu_i([(x_1, y_1), (x_2, y_2)]) = [(x_1, y_1), (x_1, y_1)] \leq [(x_1, y_1), (x_2, y_2)]$ and

$$\nu_i([(x_1, y_1), (x_2, y_2)]) = \nu_i(\nu_i([(x_1, y_1), (x_2, y_2)])) = [(x_1, y_1), (x_1, y_1)].$$

(T2) It is easily proved.

(T3) $\nu_i(e) = \nu_i([\perp, \top]) = \perp$.

(T4)

$$\mu_i([(x_1, y_1), (x_2, y_2)]) = [(x_2, y_2), (x_2, y_2)] = \nu_i(\mu_i([(x_1, y_1), (x_2, y_2)])).$$

(T5) $\nu_1([(x_1, y_1), (x_2, y_2)]) \Rightarrow [(x_3, y_3), (x_4, y_4)] \leq \nu_1([(x_1, y_1), (x_2, y_2)]) \Rightarrow \nu_1([(x_3, y_3), (x_4, y_4)])$ from:

$$\begin{aligned}
& \nu_1([(x_1, y_1), (x_2, y_2)] \Rightarrow [(x_3, y_3), (x_4, y_4)]) \\
& = \nu_1([((x_1, y_1) \Rightarrow (x_3, y_3)) \wedge ((x_2, y_2) \Rightarrow (x_4, y_4))], (x_2, y_2) \Rightarrow (x_4, y_4)) \\
& = [((x_1, y_1) \Rightarrow (x_3, y_3)) \wedge ((x_2, y_2) \Rightarrow (x_4, y_4))], \\
& \quad (((x_1, y_1) \Rightarrow (x_3, y_3)) \wedge ((x_2, y_2) \Rightarrow (x_4, y_4))].
\end{aligned}$$

$$\begin{aligned}
& \nu_1([(x_1, y_1), (x_2, y_2)]) \Rightarrow \nu_1([(x_3, y_3), (x_4, y_4)]) \\
&= [(x_1, y_1), (x_1, y_1)] \Rightarrow [(x_3, y_3), (x_3, y_3)] \\
&= [(x_1, y_1) \Rightarrow (x_3, y_3), ((x_1, y_1) \Rightarrow (x_3, y_3))].
\end{aligned}$$

Similarly, $\nu_1([(x_1, y_1), (x_2, y_2)]) \rightarrow [(x_3, y_3), (x_4, y_4)] \leq \nu_1([(x_1, y_1), (x_2, y_2)]) \rightarrow \nu_1([(x_3, y_3), (x_4, y_4)])$.

(T6) $(\nu_1([(x_1, y_1), (x_2, y_2)]) \leftrightarrow \nu_1([(x_3, y_3), (x_4, y_4)])) \odot (\mu_1([(x_1, y_1), (x_2, y_2)]) \leftrightarrow \mu_1([(x_3, y_3), (x_4, y_4)])) \leq [(x_1, y_1), (x_2, y_2)] \leftrightarrow [(x_3, y_3), (x_4, y_4)]$ from:

$$\begin{aligned}
& (\nu_1([(x_1, y_1), (x_2, y_2)]) \leftrightarrow \nu_1([(x_3, y_3), (x_4, y_4)])) \\
& \odot (\mu_1([(x_1, y_1), (x_2, y_2)]) \leftrightarrow \mu_1([(x_3, y_3), (x_4, y_4)])) \\
&= [(x_1, y_1), (x_1, y_1)] \leftrightarrow [(x_3, y_3), (x_3, y_3)] \\
& \odot [(x_2, y_2), (x_2, y_2)] \leftrightarrow [(x_4, y_4), (x_4, y_4)] \\
&= [(x_1, y_1) \leftrightarrow (x_3, y_3), (x_1, y_1) \leftrightarrow (x_3, y_3)] \\
& \odot [(x_2, y_2) \leftrightarrow (x_4, y_4), (x_2, y_2) \leftrightarrow (x_4, y_4)] \\
&= [((x_1, y_1) \leftrightarrow (x_3, y_3)) \odot ((x_2, y_2) \leftrightarrow (x_4, y_4)), \\
& ((x_1, y_1) \leftrightarrow (x_3, y_3)) \odot ((x_2, y_2) \leftrightarrow (x_4, y_4))] \\
& \leq [((x_1, y_1) \leftrightarrow (x_3, y_3)) \wedge ((x_2, y_2) \leftrightarrow (x_4, y_4)), (x_2, y_2) \leftrightarrow (x_4, y_4)] \\
&= [(x_1, y_1), (x_2, y_2)] \leftrightarrow [(x_3, y_3), (x_4, y_4)].
\end{aligned}$$

Similarly, $(\nu_2([(x_1, y_1), (x_2, y_2)]) \leftrightarrow \nu_2([(x_3, y_3), (x_4, y_4)])) \odot (\mu_2([(x_1, y_1), (x_2, y_2)]) \leftrightarrow \mu_2([(x_3, y_3), (x_4, y_4)])) \leq [(x_1, y_1), (x_2, y_2)] \leftrightarrow [(x_3, y_3), (x_4, y_4)]$.
(T7)

$$\begin{aligned}
& \nu_1([(x_1, y_1), (x_2, y_2)]) \Rightarrow \nu_1([(x_3, y_3), (x_4, y_4)]) \\
&= [(x_1, y_1) \Rightarrow (x_3, y_3), ((x_1, y_1) \Rightarrow (x_3, y_3))] \\
&= \nu_1(\nu_1([(x_1, y_1), (x_2, y_2)]) \Rightarrow \nu_1([(x_3, y_3), (x_4, y_4)])).
\end{aligned}$$

Other case is similarly proved.

(S4)

$$\nu_i([(x_1, y_1), (x_2, y_2)]) = [(x_1, y_1), (x_1, y_1)] = \mu_i(\nu_i([(x_1, y_1), (x_2, y_2)])).$$

(S1), (S2) and (S3) are similarly proved as (T1), (T2) and (T3), respectively.

References

- [1] C. Alcalde, A. Burusco, R. Fuentes-Gonzalez, A constructive method for the definition of interval-valued fuzzy implication operators, *Fuzzy Sets and Systems*, **153** (2005), 211-227.
- [2] R. Bělohlávek, Concept lattices and order in fuzzy logic, *Ann. Pure Appl. Logic*, **128** (2004), 277-298.

- [3] G. Deschrijver, Triangular norms which are meet-morphisms in interval-valued fuzzy set theory, *Fuzzy Sets and Systems*, **181** (2011), 88-101.
- [4] G. Deschrijver, Charaterizations of (weakly) Archimedean t-norms in interval-valued fuzzy set theory, *Fuzzy Sets and Systems*, **160** (2009), 3080-3102.
- [5] G. Deschrijver, A representation of t-norms in interval-valued fuzzy set theory, *Fuzzy Sets and Systems*, **159** (2008), 1597-1618.
- [6] G. Georgescu, A. Popescue, Non-commutative Galois connections, *Soft Computing*, **7**(2003), 458-467.
- [7] G. Georgescu, A. Popescue, Non-dual fuzzy connections, *Arch. Math. Log.* **43**(2004), 1009-1039.
- [8] P. Hájek, Metamathematics of Fuzzy Logic, *Kluwer Academic Publishers*, Dordrecht (1998).
- [9] U. Höhle, E. P. Klement, Non-classical logic and their applications to fuzzy subsets, *Kluwer Academic Publisher*, Boston (1995).
- [10] B. Van Gasse, C. Cornelis, G. Deschrijver, E.E. Kerre, Triangle algebras, *Fuzzy Sets and Systems*, **159** (2008), 1042-1060.
- [11] B. Van Gasse, C. Cornelis, G. Deschrijver, E.E. Kerre, A characterization of interval-valued residuated lattices, *Int. J. Approx. Reason.*, **49** (2008), 478-487.
- [12] E. Turunen, Mathematics Behind Fuzzy Logic, *A Springer-Verlag Co.*, (1999).

Received: June, 2013