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Abstract

In this paper, we introduce the notions of generalized triangle alge-
bras in a generalized residuated lattices and give their examples.
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1 Introduction

Héjek [8] introduced a complete residuated lattice which is an algebraic struc-
ture for many valued logic. Moreover, Georgescu and Popescue [6,7] introduced
a generalized residuated lattice which is induced by two implications. By using
these concepts, information systems and decision rules are investigated [2,9,12].
Deschrijver, et.al. [3-5,10,11] introduced triangle algebras and interval-valued
residuated lattices.

In this paper, we introduce the notions of generalized triangle algebras in
a generalized residuated lattices. These concepts are generalizations of trian-
gle algebras and interval-valued residuated lattices. Moreover, we give their
examples.

Definition 1.1 [6,7] A structure (L,V, A, ®,—,=, L, T) is called a gener-
alized residuated lattice if it satisfies the following conditions:

(GR1) (L,V,A, T, 1) is a bounded where T is the universal upper bound
and L denotes the universal lower bound;

(GR2) (L,®, T) is a monoid,;

(GR3) it satisfies a residuation , i.e.

aOb<ciffa<b—ciffb<a=c
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We call that a generalized residuated lattice has the law of double negation
if a = (a*)? = (a®)* where a° =a — 1L and a* =a = L.

Remark 1.2 [6,7,12] (1) A generalized residuated lattice is a residuated
lattice (—==) iff ® is commutative.

(2) A left-continuous t-norm ([0, 1], <, ®) defined by a = b= V{c|a®c <
b} is a residuated lattice

(3) A pseudo MV-algebra is a generalized residuated lattice with the law
of double negation.

Lemma 1.3 [4,5] Let (L,A,V,®,—,=, L, T) be a generalized residuated
lattice with the law of double negation.

For each x,vy, z, x;, y; € L, we have the following properties.

MHlfy<z (zoy) <(r®z2),r—>y<zx—zand z -z <y — z for
—e {—,=}.

2zoy<zAy.

(3) z = (MNier ¥i) = Nier(z = vi) and (Vier 7:) = y = Aier(z; — y) for

) (xey)—z=zr—=>(y—z)and (z0y)=2z=y= (r=2).
J(xoy)=2—y%and (zOy)* =y = z*.
Jx—=(y=2)=y=>(r—2)andzr = (y—2) =y — (z = 2).
)z (r—y)<yand (x=y) Oz <y.

=y oy=z2z)<zr=zand (y—2)0(r—y) <z — =z
Jr—y=Tifz<yif e =y=T.
0)z—y=y"=2"and z =y =y* — a*.

1) Nier 77 = (Vier )" and Vier 27 = (Ajer i)™

2) /\ierffgz (Vier ;) and Vier 95?: (/\ierffi)o-

2 Generalized triangle algebras

Definition 2.1 A structure A = (A, A, V,®, =, =, v;, i, L,e;, T) for i €
{1,2} is called a generalized triangle algebra if it satisfies the following condi-
tions:

R) (A, A, V,®,=,—, L, T) is a generalized residuated lattice.
1) vi(z) <z and yi(x) < vi(vi(x)).
) vi(z Ay) = vi(x) Avi(y) and vi(xz Vy) = v(x) V y(y).
) —

4) vi o pui = ;.
S1) x < pi(x) and p(x) > pi(pai()).
S2) pi(z Ny) = pi(z) A pily) and pi(xz vV y) = pi() V pa(y).
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Z; i(ei) =
) vz o - y)l< (@) = 1 (x) and 1(z — ) < a(x) — 14 ().

6) (1(z) < 11(y) © (m(z) < u(y)) < (x> y) and (p2(z) < pa(y)) ©
(r2(z) & 1a(y)) < (z < y).

T7) vi(x) = 1 (y) < n(v(z) = 1(y)) and va(x) — 12(y) < va(a(z) —

(
va(y))-

Remark 2.2 (1) If ® is commutative (or ==—), 11 = 1o, pu; = fio and
e1 = ey in Definition 1.4, then (A, A,V,®,=, vy, 11, L,e1, T) is a triangle
algebra in [10].

(2) In Definition 2.1, v;(T) = T and u;(L) = L because v;(T) = v;(us(e;)) =
pile;) = T and pi(L) = pi(vi(e;)) = vi(e;) = L.

(S
(S
(T
(T

Theorem 2.3 Let (A, A, V,®,=,—, L, T) be a generalized residuated lat-
tice with 2% = 2*° = x for each x € A. If there exists e € A such that
e = e’ = e* and v; is an operator satisfying the conditions (T1)-(T3), (T5),
(T7),

(n(z) & 1Y) © (n(2°) & n(y’) < (v ¢ y),
(12(27) <> 12(y")) © (12(z) & 12(y)) < (z & y),
(vi((vi(2))")" = (vi((vi(2))"))°
and we define
pn(x) = (n(2%)"s pa(z) = (va(2%))°,
then, for i € {1,2}, (A, A, V,0,=, =, v, i, Lye; = e, T) is a generalized

triangle algebra.

Proof (S1) Since v4(2°%) < 2° and vy(z*) < z*, we have

r=2" < (1) = m(2),

v =" < (n(2"))" = pa(a).
Since v (2°) = (v1(2°))* and vo(z*) = (va(x*))%, we have vy (2°) > vy (v1(2°)) =
vi((v1(2°))*) and vs(2*) > va(1a(a”)) = va((ve(27))*). Thus

pa(pa () = (a((1(2))" < (1 (2")" = pu(2),
pa(pa(z)) = (va((va(2"))™))" < (1a(2"))" = piz(2).

(S2) Since z%* * = g for each x € X, we have ui(z Ay) = (11((z A

¥)") = (i(x®vy?)) = (i (2)* A (1 (y°))* = (@) A pu(y). Other cases are
similarly proved.
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(S3)
pae) = (n(e”)" = (n(e)) =T
pae) = (ra(e"))” = (va(e))’ = T
(T4)
pi(xr) =11(2°) = L =v1(2%) = vi(e)
=v1(2°) = v (L) <n(n(a®) = vi(Ll) (by (T7))
=n(n(@®) = 1) = vri(m)).
() =wa(x*) = L =wa(z*) — ma(e)
= vp(z") = v2(L) < 1o(1a(z) = (L)) (by (T7))
= p(va(z”) — L) = vo(pe(x)).
(S4) Since p(2*) = (v1(2))* and vi(pi(27)) = vi((n1(2))*) = i (2*)
mi(r) = (n(n(2)?)" = (n(n@))°
= (1 (2%))° = n(x)

(T6)

2) < 1a(y)
N0 & (ma(x) < vay)
(a(x) © 15(y)) < (z & y).

Hence, for i € {1,
triangle algebra.

Theorem 2.4 Let (A, A\, V,®,=,—, L, T) be a generalized residuated lat-

tice with % = 2*° = x for each x € A. If there exists e € A such that

e = e’ = e* and p; is an operator satisfying the conditions (S1)-(S3),

1 (pa (y) © (pa(2°))*) < pa(y) © (a(2°))* < pa(y © )

pa((p2(2%))° © pa(y) < (n2(2"))" © pa(y) < ol © ),

(1(2") & ") © () < my)) < (z < y),
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(2(x) & p2(y)) © (H2(x%) < p2(y’)) < (z < y),
(i (i (2)) )" = (pa((pa())°))",
and we define
vi(z) = (1 (2°)", va(x) = (na(a"))",

then, for i € {1,2}, (A, A, V,0,=, =, v, i, Lye; = e, T) is a generalized
triangle algebra.

Proof (T1) Since p1(2°) > 2° and py(2*) > z*, we have

x=a" > (u(2")" = n(a),

By (S1), we have

va(va(@)) = (p2((n2(2)) ™))" < (pa(2”))" = va(x).
(T2) Since 2% = 2*° = x for each z € X, we have vi(x Ay) = (u1((z A

¥)))° = (u(z* vy ) = (i (@)’ A (1 (y*)° = vi(z) Avi(y). Other cases are
similarly proved.

(T3)
nle) = (1(e)’ = () = L,
va(e) = (u2(e))* = (u2(e))* =

(54) Since o1 (1 (€) © (1 (29))%) < jua(€) © (2(2°))”, we have

Since pip((p2(2"))° © pa(e)) < (p2(27))° © pa(e), we have
va(w) = (p2(2"))" > pa(pa(a))’ = pa(va())
(T4) Since vy (%) = (p ()" and pa(v1(27)) = pa((pa(2))7) = 1 (27),

(g (pa(2))%)" = (i (pa(2))7)°
(n(27))° = pu ().

Since va(2?) = (p2())" and pa(va(2?)) = pa((pa(2))°) = va(2®),

va(pa(x)) = (pa(p2(2))")’ = (na(pa())°)”
= (12(2%))" = pa(2).

vi(pa (7))
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(T5) Since y* ©® z = (x = y)°, we have
pa(y”) © (pa(2°)" < m(y° © )
& (%) = ()" = (m@° © )
& (m(2°) = (1 (y°)" = (@ =y)°)
e uv(r) = ny) > nz=y).
Since x ® y* = (x — y)*, we have

(n2(2%))° © pa(y*) < pa(z © y*)

& (u2(27))° = (2(y*))" = (p2(z © y*))°

& (pa(2))” = (uz(?é*))o > (p2(z © y7))°

= (T Vo x e =

Example 2.5 Let K = {(z,y) € R?> | * > 0} be a set and we define an
operation ® : K x K — K as follows:

(21, 91) ® (T2, 2) = (1172, T1Y2 + 1).
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Then (K,®) is a group with e = (1,0), (z,y)~" = (1, -1).
We have a positive cone P = {(a,b) € R?> |a=1,b0> 0 ,or a > 1} because
PAP ' ={(1,0)},POPCP, (a,) ' ®P®(ab)=Pand PUP ' = K.

For (z1,v1), (z2,92) € K, we define

(z1,91) < (22,92) < (x1,01) 7" © (22,42) € P, (22,y2) © (x1,31) " € P
< T <Xy OF Ty = T2,Y1 < Yo.

Then (K, < ®) is a lattice-group.

The structure (L, ®, =, —,(3,1),(1,0)) is a generalized residuated lattice
with strong negation where L = (3,1) is the least element and T = (1,0) is
the greatest element from the following statements:

(21,11) © (22,92) = (21,41) ® (22,92) V (5,1) = (w122, T1y2 + 11) V (5, 1),

(21,01) = (@2,32) = (21, 31)" ® (72, 3)) A (1,0) = (2, 222) A (1,0),
(1,91) = (2, 30) = (2, 0) @ (w1,50) 1) A (1,0) = (2, =2 4 ) A (1,0).

Furthermore, we have (z,y) = (z,y)* = (z,y)°* from:

@9) =) = (510 = (5 ),
(00)° = (g 2) = (1) = (2,)

(1) There exists e = (%,2 —2) =’ =e*. Forie {1,2}, let v; be an
operator satisfying the conditions in Theorem 2.3. Define

pa(z) = (1 (2")", pa(z) = (va(a"))".

For i € {1,2}, (L,\,V,®,=, =, v, li, L,e; = e, T) is a generalized triangle
structure.

(2) There exists e = (%,2 —?2) =’ =¢*. Forie {1,2}, let y; be an
operator satisfying the conditions in Theorem 2.4. Define

vi(@) = (")), va() = (pa(a"))"

For i € {1,2}, (L,\,V,®,=, =, v, li, L,e; = e, T) is a generalized triangle
structure.

(3) We define

L = {[(1,0), (2,92)] | ((21.91), (22,92)) € L x L, (21,1) < (2,30)}

e = [(3:1: (1.0 = [L, T}

[(z1,91), (T2, y2)] A [(3,93), (24, 94)] = [(21,91) A (23, 93), (02, 42) A (T4, Ya)]
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(1, 91), (2, 92)] V [(73,93), (T4, y4)] = [(21,91) V (23, Y3), (22, y2) V (24, Y4)]
[(z1,91), (22, 92)] © [(23,y3), (¥4, 94)] = [(21,91) © (23, Y3), (T2, Y2) © (T4, Ya)]
(

(21, 1), (22, 92)] = [(23,Y3), (24, Ya)]
= [(((ml,yl) = (23,53)) A ((x2,52) = (24, 4a)), (22,52) = (24, 4a)]
[(z1,91), (22, 42)] = [(23,43), (24, ya)]
= [(((ml,yl) — (23,93)) A ((72,92) = (24, 4)), (22, 52) = (24, ya)].

Moreover, we define vy = vy, g = pp : L@ — LI as
vi([(@1, 1), (22, 92)]) = [(z1,91), (21, 91)],

pi([(w1,91), (22, ¥2)]) = (22, Y2), (T2, Y2)].

Then (LP, AV, ®, =, =, v, pi, [ L, L], e,[T, T]) for i € {1,2} is a general-
ized triangle algebra from the following statements.
(R) (LA V, ©,=, =, [L, 1],[T, T]) is a generalized residuated lattice.

5, Ys), (6, Y6)|

ff [ < [(IE) Ys), (176,.%)]

ff (z1,91) © (23,93) < (5, 5), (22,92) © (24,91) < (6, Ys)

iff (z1,91) < (23,93) = (25,95), (T2, y2) < (%4,y4) — (76, Ys)
ff [(v1,91), (72, 92)] < [((23,93) = (25,Y5) A (T4, 92) = (T6,Y6))
(T4,92) = (%6, Y6)]

iff [(l’layl)> (1'2,'3/2” < [($3ay3)7 (1'4,'3/4)] — [($5ay5>? (x6>y6>]‘

[(z1,91), (22, ¥2)] © [(23,Y3), (24, 94)] < [(
iff [(z1,91) © (23,93), (T2, ¥2) © (24, Ys)]

(T1) vi([(z1,91), (22, 92)]) = [(w1,91), (21, 91)] < [(71,91), (72, 92)] and
vi([(1,31), (22, 92)]) = vi(wi([(z1, 1), (22, 92)])) = [(1,91), (21, 91)]-

(T2) It is easily proved.
(T3) vi(e) = vi([L, T]) = L.
(T4)

pi([(w1,91), (22, 92)]) = [(22,2), (T2, ¥2)]) = vi(pa([(21, 1), (2, y2)])-

(T5) vi([(z1, 1), (w2, y2)] = [(x3,93), (4, 44)]) < vi([(w1,91), (22, 92)]) =
vi([(w3,y3), (24, 94)]) from:

(w1, 0), (w2, 10)] = (23, 95), (24,90)])
(@1, 90) = (25,98) A (22, 92) = (24,90))), (22, 42) = (24, 9)))

= [(((551 2/1) (23,y3)) A (22, 92) = (I4ay4))),
(@1 3n) = (w3,98)) A (w2,92) = (24,30)) )]
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vi([(z1,91), (22,92)]) = vi([(x3, y3), (74, y4)])
(1, 91), (w1, 91)] = [(73,93), (23, 93)]
[(z1,91) = (23,93), (21, 91) = (3, 3))]-

Similarly, 11 ([(x1,y1), (22, y2)] = [(%3,y3), (24, v4)]) < va([(21,11), (22, y2)]) —
vi([(w3,y3), (T4, ys)]).

(T6) (1 ([(w1,91), (w2, 12)]) <> vi([(23,y3), (74, 4)])) O (pa ([(z1, Y1), (22, y2)]) <>

(23, y3), (24, 9a)])) < [(21,00), (22, 42)] < (23, y3), (24, y4)] from:

—

(21, 91), (2, 92)]) <> v1([(23,93), (24, Y4)]))

([(z1,91), (z2, 92)]) <> pa([(3,y3), (24, 94)]))

x1, 1), (1, 1)) < [(23,93), (23, 93)])

T2, Y2), (T2, y2)] <> (T4, ya), (24, 94)])

(z1,91) <> (23,93), (21, 91) <> (23,3)])

T, Ya) <> (T4, Ya), (T2, Y2) < (74,94)])

z1,y1) < (3,93)) © (T2, y2) <> (¥4,94)),

1)) < (73,93)) © ((v2,92) <> (74,Y4))]

1, Y1) € (23,93)) A (T2, y2) < (T4,94)), (T2, Y2) <> (T4, Y4)]
1, 1) (T2, y2)] <> [(%3,Y3), (T4, ya)].

Ol o<
=F =

(
(

A= I © I
—_—— 8 — — —
~ =~
— —~
8

=

Similarly, (v2([(21,91), (22, 42)]) & va([(23, y3), (4, y)])) O (p2([(21, 91), (22, 42)]) &

p2([(23,ys), (24, 5)])) < [(21,91), (22, y2)] & (23, y3), (24, y4)].
(T7)

([(xl,yl) (22, 92)]) = vi([(23,y3) (24, y4)])
[(z1,91) = (73,93), (21, 91) = (3, 93))]
n(v ([(931 Y1), (22, 92)]) = vi([(23,y3), (24, 94)]))-

Other case is similarly proved.

(S4)

vil(w1, 91), (22, 92)]) = [(21, 90, (21, 90)]) = pa(vi[(21, 1), (22, 92)]).

(S1), (S2) and (S3) are similarly proved as (T1),(T2) and (T3), respectively.
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