
Mathematica Aeterna, Vol. 2, 2012, no. 5, 441 - 458

Finite difference scheme for singularly perturbed convection-

diffusion problem with two small parameters

Devendra Kumar

Department of Mathematics
Birla Institute of Technology & Science

Pilani-333031, Raj., India

Abstract

In this article a numerical method involving classical finite difference

scheme on non-uniform grid is constructed for a singularly perturbed

convection-diffusion boundary value problem with two small parame-

ters affecting the convection and diffusion terms. The scheme has been

analyzed for uniform convergence with respect to both singular pertur-

bation parameters. To support the theoretical error bounds numerical

results are presented.
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1 Introduction

The boundary value problems for ordinary differential equations in which one
or more small positive parameter(s) multiplying the derivative(s), are known
as singular perturbation problems. The solutions of such kind of problems
change rapidly in a narrow region called boundary layer region. Classical nu-
merical methods are inappropriate for singularly perturbed problems [1]. In
this paper we consider second order two point singular perturbation prob-
lem with two small parameters multiplying to the highest and second highest
derivative. Such kind of problems arise in chemical reactor theory, engineering,
biology, lubrication theory etc. This type of problems were solved asymptoti-
cally by O’Malley [5–9] and numerically by Linβ and Roos [4], Gracia et al. [3],
O’Riordan et al. [11], O’Riordan et al. [12] and Flaherty and O’Malley [2] etc.

O’Malley [5–9] examined the nature of asymptotic solution of the continu-
ous problem where the ratio of µ2 to ǫ was identified as significant. In [11,12],
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the standard upwind finite difference operator on two different choices of
Shishkin mesh was shown to be parameter-uniform of first order. In [15]
parameter-uniform methods on a uniform mesh were constructed. Vulanović
[16], used the higher order finite difference scheme on a piecewise uniform mesh
both of Shishkin and Bakhavalov type for solving quasi-linear boundary value
problems with small parameters.

Roos and Uzelac [13] used streamline diffusion finite element method to
generate a second order parameter-uniform scheme when µ is sufficiently small.
In [3] Gracia et al. used classical finite difference analysis where the finite
difference operator was a combination of the central difference, mid-point and
standard upwind difference operators.

In this paper we construct a classical finite difference method on non-
uniform grid for the two parameters singularly perturbed boundary value prob-
lems of the form

Lǫ,µy(x) ≡ −ǫy′′(x)− µa(x)y′(x) + b(x)y(x) = f(x), x ∈ Ω = (0, 1), (1)

y(0) = α, y(1) = β, (2)

where 0 < ǫ ≪ 1, 0 < µ≪ 1 are such that ǫ/µ2 → 0 as µ → 0. The functions
a(x), b(x) and f(x) are sufficiently smooth satisfying

a(x) ≥ a∗ > 0, b(x) ≥ b∗ > 0, b(x)/a(x) ≥ c∗ > 0.

This problem includes both the reaction-diffusion problem when µ = 0 and
the convection-diffusion problem when µ = 1. For this problem two boundary
layers occur [5, 8, 9] at x = 0 and at x = 1.

Let yǫ,µ be the solution of the continuous problem with two small param-
eters ǫ, µ and let Y N

ǫ,µ be a numerical approximation of yǫ,µ obtained by using
N mesh points. A numerical method is said to be parameter-uniform in the
norm ‖.‖ if

‖yǫ,µ − Y N
ǫ,µ‖ ≤ Cϑ(N), for N ≥ N0,

where the error constant C is independent of any perturbation parameters
and N . The function ϑ(N) and the natural number N0, are independent of
parameters ǫ and µ and

lim
N→∞

ϑ(N) = 0.

Moreover a numerical method is said to be parameter-uniform of order p if

‖yǫ,µ − Y N
ǫ,µ‖ ≤ CN−p.

In other words, the numerical approximation Y N
ǫ,µ converges to yǫ,µ for all values

of ǫ and µ in the range 0 < ǫ ≪ 1 and 0 < µ≪ 1.
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It is well-known that in the case of the singularly perturbed reaction-
diffusion problem (µ = 0)

−ǫy′′ + b(x)y = f(x), b(x) ≥ b∗ > 0, y(0) = α, y(1) = β,

the standard central difference operator on an appropriate Shishkin mesh pro-
duces almost second order parameter uniform convergence [10,14] of the form

‖yǫ,µ − Y N
ǫ,µ‖ ≤ C(N−1 lnN)2,

while in the case of the singularly perturbed convection-diffusion problem (µ =
1)

−ǫy′′ − a(x)y′ = f(x), a(x) ≥ a∗ > 0, y(0) = α, y(1) = β,

the standard upwind difference operator on an appropriate Shishkin mesh pro-
duces almost first order parameter-uniform convergence [1]

‖yǫ,µ − Y N
ǫ,µ‖ ≤ CN−1 lnN.

2 The Continuous Problem

Consider the singularly perturbed boundary value problem (1)-(2). The oper-
ator Lǫ,µ satisfies the following maximum principle:

Lemma 2.1. Let φ ∈ C2(Ω̄) be such that φ(0) ≥ 0, φ(1) ≥ 0 and Lǫ,µφ(x) ≥
0, ∀ x ∈ Ω, then φ(x) ≥ 0, ∀ x ∈ Ω̄.

Proof. Proof is by contradiction. Let t ∈ Ω̄ be such that φ(t) < 0 and φ(t) =
min
x∈Ω̄

φ(x). Then it is clear t /∈ {0, 1} and φ′(t) = 0, φ′′(t) ≥ 0. We have

Lǫ,µφ(t) ≡ −ǫφ′′(t)− µa(t)φ′(t) + b(t)φ(t) < 0,

thus we get a contradiction. Therefore φ(x) ≥ 0 ∀ x ∈ Ω̄.

An immediate consequence of this comparison principle is the following
parameter-uniform bound on the solution y.

Lemma 2.2. Let y(x) be the solution of boundary value problem (1)-(2),
then

‖y‖ ≤ max{|α|, |β|}+ b∗−1‖f‖,

where ‖.‖ denotes the pointwise maximum norm.
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Proof. Define two barrier functions ψ±(x) = max{|α|, |β|}+ b∗−1‖f‖ ± y(x),
then it is easy to see ψ±(0) ≥ 0, ψ±(1) ≥ 0. Also we have

Lǫ,µψ
±(x) = b(x)(max{|α|, |β|}+ b∗−1‖f‖)± Lǫ,µy(x)

≥ b∗(max{|α|, |β|}+ b∗−1‖f‖)± f(x)

= b∗ max{|α|, |β|}+ ‖f‖ ± f(x)

≥ 0.

A consequence of Lemma 2.1 gives the required estimate.

Lemma 2.3. Assuming that a, b, f ∈ C2(Ω̄), the derivatives of the solution
y of (1)-(2) satisfy the following bounds

‖y(j)‖ ≤ C

(
√
ǫ)j

(

1 +

(

µ√
ǫ

)j
)

max{‖y‖, ‖f‖}, j = 1, 2.

‖y(3)‖ ≤ C

(
√
ǫ)3

(

1 +

(

µ√
ǫ

)3
)

max{‖y‖, ‖f‖, ‖f ′‖},

‖y(4)‖ ≤ C

(
√
ǫ)4

(

1 +

(

µ√
ǫ

)4
)

max{‖y‖, ‖f‖, ‖f ′‖, ‖f ′′‖},

where ‖.‖ denotes the pointwise maximum norm and C is a positive generic
constant independent of ǫ and µ.

Proof. Given any x ∈ Ω, we can construct the neighborhood Nx = (c, c+
√
ǫ)

of x, such that Nx ∈ Ω. Then by mean value theorem ∃ a point η ∈ Nx such
that

y′(η) =
y(c+

√
ǫ)− y(c)√
ǫ

.

Taking the absolute values, we get

|y′(η)| ≤ 2‖y‖√
ǫ
.

Now integrating Eq. (1) from η to x, we get

ǫ(y′(x)−y′(η)) = −µ
(

a(ζ)y(ζ)|xη −
∫ x

η

a′(ζ)y(ζ) dζ

)

+

∫ x

η

b(ζ)y(ζ) dζ−
∫ x

η

f(ζ) dζ.

Taking absolute values, we get

|y′(x)| ≤ |y′(η)|+ ǫ−1(µ(2‖a‖‖y‖+ ‖a′‖‖y‖|x− η|) + ‖b‖‖y‖|x− η|+ ‖f‖|x− η|)

≤ C√
ǫ

(

1 +
µ√
ǫ

)

‖y‖+ C√
ǫ
‖f‖, since x− η <

√
ǫ

=
C√
ǫ

(

1 +
µ√
ǫ

)

max{‖y‖, ‖f‖}.
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Thus we get

‖y′‖ ≤ C

(
√
ǫ)

(

1 +

(

µ√
ǫ

))

max{‖y‖, ‖f‖}.

Now using Eq. (1), we get

|y′′(x)| ≤ ǫ−1(µ|a(x)||y′(x)|+ |b(x)||y(x)|+ |f(x)|)
≤ ǫ−1(µ‖a‖‖y′‖+ ‖b‖‖y‖+ ‖f‖).

Using the estimate for ‖y′‖, we get

|y′′(x)| ≤ ǫ−1

(

µ‖a‖
(

C

(
√
ǫ)

(

1 +

(

µ√
ǫ

))

max{‖y‖, ‖f‖}
)

+ ‖b‖‖y‖+ ‖f‖
)

≤ C

(
√
ǫ)2

(

1 +

(

µ√
ǫ

)2
)

max{‖y‖, ‖f‖}.

Thus we obtain

‖y‖ ≤ C

(
√
ǫ)2

(

1 +

(

µ√
ǫ

)2
)

max{‖y‖, ‖f‖}.

Now differentiating Eq. (1), we get

−ǫy′′′(x)− µ(a(x)y′′(x) + a′(x)y′(x)) + b(x)y′(x) + b′(x)y(x) = f ′(x). (3)

Taking absolute values, we get

|y′′′(x)| ≤ ǫ−1(µ(|a(x)y′′(x)|+ |a′(x)y′(x)|)+ |b(x)y′(x)|+ |b′(x)y(x)|+ |f ′(x)|),

using the estimates for ‖y′‖ and ‖y′′‖ we get the required estimate. Again
differentiating Eq. (3) and taking absolute values and using the estimates for
‖y′‖, ‖y′′‖ and ‖y′′′‖, we get the required estimate for ‖y(4)‖.

In order to obtain the parameter-uniform error estimates the solution of
the boundary value problem (1)-(2) can be decomposed into the regular and
singular components

y = u+ v + w, (4)

where u is the regular component of the solution y and v and w are the left
and right singular components respectively, satisfying

Lu = f, u(0), u(1) suitably chosen, (5)

Lv = 0, v(0) = y(0)− u(0), v(1) = 0, (6)

Lw = 0, w(0) = 0, w(1) = y(1)− u(1). (7)

The bounds on the derivatives of the regular and boundary layer components
are given by following Lemma:
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Lemma 2.4. The following estimates [3] hold for the derivatives of the
components u, v and w of the solution y of (1)

‖u(j)‖ ≤ C

(

1 +

(

ǫ

µ

)3−j
)

, j = 0(1)4,

|v(x)| ≤ C exp(−(a∗µ/ǫ)x),

|w(x)| ≤ C exp(−(c∗/2µ)(1− x)),

‖v(j)‖ ≤ C(µ/ǫ)j, j = 1(1)3,

‖w(j)‖ ≤ Cµ−j, j = 1(1)3.

3 The Discrete Problem

To approximate the solution of problem (1), we employ a finite difference
scheme defined on a variable mesh. This mesh is defined as follows. Let N be
the number (multiple of 4) of mesh points in the interval [0, 1]. we divide the
interval [0, 1] into three intervals [0, σ1], [σ1, 1 − σ2] and [1 − σ2, 1], where the
transition parameters σ1 and σ2 are given by

σ1 = min(1/4, (4ǫ/a∗µ) ln(N)), σ2 = min(1/4, (4µ/c∗) ln(N)).

We place N/4, N/2 and N/4 mesh points respectively in [0, σ1], [σ1, 1 − σ2]

and [1 − σ2, 1]. We set hl,i = xi − xi−1 for i = 1, 2 . . . , N/4. Let r1 =
hl,i

hl,i−1

be

the mesh ratio for the first interval. Then we have

xN/4 − x0 = (xN/4 − xN/4−1) + (xN/4−1 − xN/4−2) + . . .+ (x2 − x1) + (x1 − x0)

= r
N/4−1
1 hl,1 + r

N/4−2
1 hl,1 + . . .+ r1hl,1 + hl,1

= (r
N/4−1
1 + r

N/4−2
1 + . . .+ r1 + 1)hl,1

=
r
N/4
1 − 1

r1 − 1
hl,1.

This gives

hl,1 = σ1

(

r1 − 1

r
N/4
1 − 1

)

. (8)

Therefore for given values of N and appropriate choice of r1, we can choose hl,1
from relation (8) and subsequent hl,i’s can be obtained by hl,i = r1hl,i−1, i =
2(1)N/4, and hence xi obtained for i = 0, 1, . . . , N/4. We denote ΩN

1 =

{xi}N/4
0 .
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Again we set hr,j−3N/4 = xj − xj−1 for j = 3N/4 + 1, 3N/4 + 2 . . . , N . Let

r2 =
hr,j−3N/4

hr,j−3N/4−1

be the mesh ratio for the interval [1− σ2, 1]. Then we have

xN − x3N/4 = (xN − xN−1) + (xN−1 − xN−2) + . . .+ (x3N/4+2 − x3N/4+1) + (x3N/4+1 − x3N/4)

= hr,N/4 + hr,N/4−1 + . . .+ hr,2 + hr,1

= r
N/4−1
2 hr,1 + r

N/4−2
2 hr,1 + . . .+ r2hr,1 + hr,1

= (r
N/4−1
2 + r

N/4−2
2 + . . .+ r2 + 1)hr,1

=
1− r

N/4
2

1− r2
hr,1.

This gives

hr,1 = σ2

(

1− r2

1− r
N/4
2

)

. (9)

Therefore for given values of N and appropriate choice of r2, we can choose hr,1
from relation (9) and subsequent hr,j’s can be obtained by hr,j = r2hr,j−1, j =
2(1)N/4 and hence xi obtained for i = 3N/4+ 1, 3N/4+ 2, . . . , N . We denote
ΩN

2 = {xi}N3N/4+1.

For the middle interval [σ1, 1−σ2], we set h = xj−xj−1 = 2(1−σ1−σ2)/N
for j = N/4 + 1, N/4 + 2 . . . , 3N/4. Let ΩN

0 = {xi}3N/4
N/4+1.

Let ΩN = ΩN
1 ∪ ΩN

0 ∪ ΩN
2 = {xi}N0 . On ΩN , we define the differential

operators δ2 and ∆ corresponding to second and first derivative respectively
as

δ2Yi =
2r

h2i (1 + r)
[Yi+1 − (1 + r)Yi + rYi−1],

and

∆Yi =
2

hi(1 + r)
[Yi+1 − Yi].

Then our finite difference scheme is

LN
ǫ,µYi ≡ r−i Yi−1 + rciYi + r+i Yi+1 = fi, (10)
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where

r−i = − 2ǫr2

(1 + r)h2i
,

rci =
2ǫr

h2i
+

2µair

(1 + r)hi
+ bi,

r+i = − 2ǫr

(1 + r)h2i
− 2µair

(1 + r)hi
,

r =

{

r1 > 1 if xi ∈ ΩN
1 ,

r2 < 1 if xi ∈ ΩN
2 ,

hi =







hl,i if xi ∈ ΩN
1 ,

h if xi ∈ ΩN
0 ,

hr,i if xi ∈ ΩN
2 .

Let H = maxhi.

The difference scheme (10) satisfies the following discrete maximum principle
and stability estimate

Lemma 3.1 (Discrete maximum principle). Let ψ be any mesh function
such that ψ(0) ≥ 0, ψ(1) ≥ 0, then LN

ǫ,µψi ≥ 0 for 1 ≤ i ≤ N − 1 implies that
ψi ≥ 0 for all 0 ≤ i ≤ N .

Proof. Proof is by contradiction, suppose there is a positive integer k such that
ψk < 0 for 1 ≤ k ≤ N − 1. Also suppose that ψk = min

1≤i≤N−1
ψi. Then we have

LN
ǫ,µψk = r−k ψk−1 + rckψi + r+k ψk+1

= − 2ǫr

(1 + r)h2k
[rψk−1 − (1 + r)ψk + ψk+1]−

2µakr

(1 + r)hk
(ψk+1 − ψk) + bkψk

= − 2ǫr

(1 + r)h2k
[r(ψk−1 − ψk) + (ψk+1 − ψk)]−

2µakr

(1 + r)hk
(ψk+1 − ψk) + bkψk.

(11)

Now since ψk = min
1≤i≤N−1

ψi therefore ψk−1−ψk and ψk+1−ψk are both positive

and so from Equation (11) it is clear that LN
ǫ,µψk < 0 which contradict the

hypothesis and hence ψi ≥ 0 for all 0 ≤ i ≤ N .

Lemma 3.2 (Stability). Let ψi be any mesh function such that ψ0 = ψN =
0. Then

|ψi| ≤
1

b∗
max

1≤j≤N−1
|LN

ǫ,µψj |, 0 ≤ i ≤ N.
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Proof. Suppose M =
1

b∗
max

1≤j≤N−1
|LN

ǫ,µψj |. Define two mesh functions ϕ±
i such

that
ϕ±
i =M ± ψi.

Then it is clear that ϕ±
0 ≥ 0 and ϕ±

N ≥ 0 and for 1 ≤ i ≤ N − 1 we have

LN
ǫ,µϕ

±
i = r−i ϕi−1 + rciϕi + r+i ϕi+1

= biM ± (r−i φi−1 + rciφi + r+i φi+1)

≥ Mb∗ ± LN
ǫ,µψi

≥ 0.

By using Lemma 3.1 we get ϕ±
i ≥ 0 for 0 ≤ i ≤ N and hence

|ψi| ≤
1

b∗
max

1≤j≤N−1
|LN

ǫ,µψj | ∀ 0 ≤ i ≤ N.

Lemma 3.3. For every ψ ∈ C3(0, 1), we have
∥

∥

∥

∥

(

δ2 − d2

dx2

)

ψ

∥

∥

∥

∥

≤ Chi‖ψ(3)‖, xi ∈ ΩN
1 ∪ ΩN

2 ,

∥

∥

∥

∥

(

δ2 − d2

dx2

)

ψ

∥

∥

∥

∥

≤ Ch2i ‖ψ(4)‖, xi ∈ ΩN
0 ,

∥

∥

∥

∥

(

∆− d

dx

)

ψ

∥

∥

∥

∥

≤ Chi‖ψ(2)‖, xi ∈ ΩN ,

where
‖ψ(j)‖ = sup

xi∈ΩN

‖ψ(j)(xi)‖, j = 1, 2.

Proof. Let r and hi are defined as above then for xi ∈ ΩN
1 ∪ΩN

2 , taking Taylor
series expansion and neglecting the term of fourth and higher order, we get
the following expansions for ψi+1 and ψi−1

ψi+1 ≃ ψi + hiψ
′
i +

h2i
2
ψ′′
i +

h3i
6
ψ′′′(ξ1), xi < ξ1 < xi+1, (12)

ψi−1 ≃ ψi − hi−1ψ
′
i +

h2i−1

2
ψ′′
i −

h3i−1

6
ψ′′′(ξ2), xi−1 < ξ2 < xi. (13)

Multiplying Equation (13) by r and adding it to Equation (12), we get the
following approximation

(

δ2 − d2

dx2

)

ψ(xi) ≃
hi

3r(1 + r)

(

r2ψ′′′(ξ1)− ψ′′′(ξ2)
)

.
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Taking absolute value and using intermediate value theorem, we obtain
∥

∥

∥

∥

(

δ2 − d2

dx2

)

ψ

∥

∥

∥

∥

≤ Chi‖ψ(3)‖.

Now for xi ∈ ΩN
0 , taking Taylor series expansion and neglecting the term of

fifth and higher order, we get the following expansions for ψi+1 and ψi−1

ψi+1 ≃ ψi + hψ′
i +

h2

2
ψ′′
i +

h3

6
ψ′′′
i +

h4

24
ψ(4)(ξ1), xi < ξ1 < xi+1, (14)

ψi−1 ≃ ψi − hψ′
i +

h2

2
ψ′′
i −

h3

6
ψ′′′
i +

h4

24
ψ(4)(ξ2), xi−1 < ξ2 < xi. (15)

On adding (14) and (15), we get the following approximation
(

δ2 − d2

dx2

)

ψ(xi) ≃
h2

12

(

ψ(4)(ξ1) + ψ(4)(ξ2)
)

.

Taking absolute value and using intermediate value theorem, we obtain
∥

∥

∥

∥

(

δ2 − d2

dx2

)

ψ

∥

∥

∥

∥

≤ Ch2‖ψ(4)‖.

Similarly one can easily show that
∥

∥

∥

∥

(

∆− d

dx

)

ψ

∥

∥

∥

∥

≤ Chi‖ψ(2)‖, for xi ∈ ΩN .

Now we can deduce the following truncation error bounds for the difference
operator LN

ǫ,µ on ΩN , as

‖(LN
ǫ,µ − Lǫ,µ)y‖ ≤ ǫhi‖y(3)‖+ µhi‖a‖‖y(2)‖, for xi ∈ ΩN

1 ∪ ΩN
2 , (16)

‖(LN
ǫ,µ − Lǫ,µ)y‖ ≤ ǫh2‖y(4)‖+ µh‖a‖‖y(2)‖, for xi ∈ ΩN

0 . (17)

Like the solution of continuous problem (1), the solution of discrete problem
(10) can be decomposed into the following sum

Y = U + V +W, (18)

where U is the regular component of the solution Y, V andW are left and right
singular component respectively, satisfying

LN
ǫ,µU = f, U(0) = u(0), U(1) = u(1), (19)

LN
ǫ,µV = 0, V (0) = v(0), V (1) = 0, (20)

LN
ǫ,µW = 0, W (0) = w(0), W (1) = w(1). (21)
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Lemma 3.4. Left and right layer components V and W satisfies the fol-
lowing bounds

|V (xi)| ≤ C
i
∏

j=1

(1 + λ1hi)
−1, |V (0)| ≤ C,

|W (xi)| ≤ C
N
∏

j=i+1

(1 + λ2hi)
−1, |W (1)| ≤ C.

The parameters λ1 and λ2 are defined as λ1 = a∗µ/2ǫ, λ2 = c∗/2µ.

Proof. For the proof the readers are refer to [11].

It can be noted that both the functions V (xi) and W (xi) are decreasing.

Lemma 3.5. The error in the regular component satisfies the following
error estimate

‖(U − u)‖ ≤
{

CN−1, if xi ∈ ΩN
1 ∪ ΩN

2 ,
CN−2, if xi ∈ ΩN

0 ,

where u is the solution of (5) and U is the solution of (19).

Proof. For xi ∈ ΩN
1 ∪ ΩN

2 , We have

|LN
ǫ,µ(U − u)(xi)| = |LN

ǫ,µU(xi)− LN
ǫ,µu(xi)|,

= |f − LN
ǫ,µu(xi)|,

= |(Lǫ,µ − LN
ǫ,µ)u(xi)|,

≤ CH(ǫ‖u(3)‖+ µ‖a‖‖u(2)‖), using (16),

≤ CH,

≤ CN−1.

Similarly for xi ∈ Ω0, we have

|LN
ǫ,µ(U − u)(xi)| = |LN

ǫ,µU(xi)− LN
ǫ,µu(xi)|,

= |f − LN
ǫ,µu(xi)|,

= |(Lǫ,µ − LN
ǫ,µ)u(xi)|,

≤ CH(ǫH‖u(4)‖+ µ‖a‖‖u(2)‖), using (17),

≤ CH2, provided µ‖a‖ ≤ H,

≤ CN−2.

A consequence of stability Lemma (3.2) gives

‖(U − u)‖ ≤
{

CN−1, if xi ∈ ΩN
1 ∪ ΩN

2 ,
CN−2, if xi ∈ ΩN

0 .
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Lemma 3.6. The left layer component of the error satisfies the following
estimate

‖(V − v)‖ ≤ CN−1(lnN)2,

where v is the solution of (6) and V is the solution of (20).

Proof. First suppose that σ1 = 1/4, then µ/ǫ ≤ C lnN , using the classical
argument in order to obtain the following truncation error bounds

|LN
ǫ,µ(V − v)(xi)| = |LN

ǫ,µV (xi)− LN
ǫ,µv(xi)|,

= |0− LN
ǫ,µv(xi)|,

= |(Lǫ,µ − LN
ǫ,µ)v(xi)|,

≤ CN−1(ǫ‖v(3)‖+ µ‖v(2)‖), using (16),

≤ CN−1(µ3/ǫ2), using Lemma 2.4,

≤ CN−1(lnN)2,

using Lemma 3.2, we get

‖(V − v)‖ ≤ CN−1(lnN)2.

Now suppose that σ1 < 1/4, we firstly analyze the error in the fine mesh region
[0, σ1] and then we proceed to analyze the coarse mesh on [σ1, 1]. Suppose
xi ∈ [0, σ1], in this case, we calculate a bound on the truncation error of the
form

|LN
ǫ,µ(V − v)(xi)| ≤ CH(ǫ‖v(3)‖+ µ‖v(2)‖), using (16),

≤ CN−1(σ1ǫ‖v(3)‖+ σ1µ‖v(2)‖),
≤ C(µ2/ǫ)(N−1 lnN), since σ1 = O((ǫ/µ) lnN).

Now consider the barrier function

ψi = C(N−1 + (N−1 lnN)(σ1 − xi)(µ/ǫ)),

then we have

LN
ǫ,µψi = C(N−1 lnN)(µ2/ǫ) + biψi ≥ |LN

ǫ,µ(V − v)(xi)| ≥ 0,

using discrete maximum principle we obtain,

|(V − v)(xi)| ≤ ψi = C(N−1 + (N−1 lnN)(σ1 − xi)(µ/ǫ))

≤ C(N−1 + (N−1 lnN)σ1(µ/ǫ))

≤ CN−1(lnN)2. (22)
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Now suppose xi ∈ [σ1, 1], using triangle inequality we have

|(V − v)(xi)| ≤ |V (xi)|+ |v(xi)|. (23)

From Lemma 3.4 we have

|V (xi)| ≤ C
i
∏

j=1

(1 + λ1hi)
−1.

Therefore

|V (xN/4)| ≤ C

N/4
∏

j=1

(1 + λ1hi)
−1

≤ C(1 + λ1h1)
−N/4.

Now we have

λ1h1 = λ1σ1
(r − 1)

(rN/4 − 1)

=
λ1σ1

1 + r + r2 + . . .+ rN/4−1

≥ 4N−1λ1σ1

= 4N−1

(

a∗µ

2ǫ

)(

4ǫ

a∗µ
lnN

)

= 8N−1 lnN.

Therefore
|V (xN/4)| ≤ C(1 + 8N−1 lnN)−N/4.

Now using the inequality ln(1+x) > x(1−x/2) and taking x = 8N−1 lnN , we
can show that (1 + 8N−1 lnN)−N/4 ≤ 4N−1, and therefore we conclude that
on the interval [σ1, 1] we have |V (xi)| ≤ CN−1. Again we have

|v(xi)| ≤ C exp((−a∗µ/ǫ)xi)
≤ C exp((−a∗µ/ǫ)σ1)
= C exp(−4 lnN) ≤ CN−4.

Therefore from (23) on the interval [σ1, 1], we have

|(V − v)(xi)| ≤ CN−1. (24)

Combining (22) and (24), we have

‖(V − v)‖ ≤ CN−1(lnN)2.
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Lemma 3.7. The right layer component of the error satisfies the following
estimate

‖(W − w)‖ ≤ CN−1 lnN,

where w is the solution of (7) and W is the solution of (21).

Proof. The proof is similar to the proof given for the left boundary layer com-
ponent. First suppose that σ1 = 1/4, then 1/µ ≤ C lnN , using the classical
argument in order to obtain the following truncation error bounds

|LN
ǫ,µ(W − w)(xi)| = |LN

ǫ,µW (xi)− LN
ǫ,µw(xi)|,

= |0− LN
ǫ,µw(xi)|,

= |(Lǫ,µ − LN
ǫ,µ)w(xi)|,

≤ CN−1(ǫ‖w(3)‖+ µ‖w(2)‖), using (16),

≤ CN−1(1/µ), using Lemma 2.4

≤ CN−1(lnN).

Now suppose that σ2 < 1/4, we firstly analyze the error in the coarse mesh
region [0, 1 − σ2] and then we proceed to analyze the fine mesh on [σ2, 1].
Suppose xi ∈ [0, 1− σ2], using triangle inequality we have

|(W − w)(xi)| ≤ |W (xi)|+ |w(xi)|. (25)

From Lemma 3.4 we have

|W (xi)| ≤ C
N
∏

j=i+1

(1 + λ2hi)
−1.

So we have

|W (x3N/4)| ≤ C
N
∏

j=3N/4+1

(1 + λ2hi)
−1

≤ C(1 + λ2hN)
−N/4.
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Now we have

λ2hN = λ2r
N/4−1h3N/4

= λ2r
N/4−1σ2

(1− r)

(1− rN/4)

=
λ2σ2r

N/4−1

1 + r + r2 + . . .+ rN/4−1

=
λ2σ2

1 + r−1 + r−2 + . . .+ r−(N/4−1)

> 4N−1λ2σ2

= 4N−1(c∗/2µ)((4µ/c∗) lnN)

= 8N−1 lnN.

Therefore
|W (x3N/4)| ≤ C(1 + 8N−1 lnN)−N/4.

Now using the inequality ln(1+x) > x(1−x/2) and taking x = 8N−1 lnN , we
can show that (1 + 8N−1 lnN)−N/4 ≤ 4N−1, and therefore we conclude that
on the interval [0, 1− σ2] we have

|W (xi)| ≤ CN−1.

Again we have

|w(xi)| ≤ C exp(−(c∗/2µ)(1− xi))

≤ C exp(−(c∗/2µ)σ2)

= C exp(−(c∗/2µ)(4µ/c∗) lnN)

= CN−2.

Therefore from (25) we have

‖(W − w)‖ ≤ CN−1. (26)

Now suppose xi ∈ [1 − σ2, 1], then using classical analysis we can obtain the
following truncation error bounds

|LN
ǫ,µ(W − w)(xi)| ≤ CH(ǫ‖w(3)‖+ µ‖w(2)‖).

Using the bounds on w in Lemma 2.4, we find that this simplifies to

|LN
ǫ,µ(W − w)(xi)| ≤

C

µ
(hi + hi+1). (27)



456 D. Kumar

Since we are in the fine mesh region, we have hi+1 = hi =
16µ
c∗
N−1 lnN . Using

(27) we now obtain

|LN
ǫ,µ(W − w)(xi)| ≤ CN−1 lnN.

Use maximum principle to obtain

|W − w(xi)| ≤ CN−1 lnN.

Theorem 3.8. At each mesh point xi ∈ ΩN the maximum pointwise error
satisfies the following parameter-uniform error bound

‖Y − y(xi)‖ΩN ≤ CN−1 lnN.

Proof. The proof follows from Lemmas 3.5, 3.6 and 3.7.

4 Numerical Results

A numerical method for solving singularly perturbed convection-diffusion bound-
ary value problem with two small parameters is considered. It is a practical
method and can easily be implemented on a computer to solve such problems.
To validate the theoretical results, we apply the proposed numerical scheme
to a test problem with two small parameters having two boundary layers. The
maximum absolute error EN

ǫ = maxi | y(xi) − yi | at the nodal points are
tabulated in the table for different values of perturbation parameters ǫ and µ
by using N = 128.

Example 4.1. Consider the problem

−ǫy′′ − µy′ + y = x; y(0) = 1, y(1) = 0.

Table 1: Maximum absolute error for Example 4.1
ǫ\µ 10−3 10−4 10−5 10−6 10−7 10−8

10−1 1.543E-02 1.542E-02 1.542E-02 1.542E-02 1.542E-02 1.542E-02
10−2 7.358E-04 7.274E-04 7.265E-04 7.264E-04 7.264E-04 7.264E-04
10−3 2.348E-03 2.350E-03 2.350E-03 2.350E-03 2.350E-03 2.350E-03
10−4 1.487E-02 9.261E-03 8.641E-03 8.578E-03 8.572E-03 8.571E-03
10−5 8.409E-02 4.606E-02 4.131E-02 4.083E-02 4.078E-02 4.077E-02
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