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Abstract

In 1974, Shah and Rathie defined and studied a generalized-F density func-
tion (GFSR). This paper deals with this density and obtain its distribution
function, mode, moments, reliability function P(X < Y) when X ~ Dagum
and Y ~ GFSR are independent, order statistics, Marshall-Olkin-Shah-Rathie
distribution, and generalized gamma and beta-generated distributions. Ma-
ximum likelihood estimates are derived and applied to three real problems
involving (a) Failure times of the air conditioning system, (b) Failure times
of the Kevlar 49/epoxy strands with preasure of 90%, and (c) Bladder cancer
patients data. The results show that the GFRS distribution is a good proposal
for modeling these data sets.
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1 Introduction

In this section, we start by giving some definitions. The G-function is defined as
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where x # 0, an empty product is interpreted as unity, 0 < m < gand 0 <n <p
(not both m and n zeros simultaneously). The parameters b;, j = 1,2,...,m and
a;, j = 1,2,...,n, are such that no pole of H;nzl I'(b; — s) coincides with any pole
of [[j_; (1 —a; + ). See [9, pp. 143-144] for details about the contour L and
conditions of convergence of the integral.

The H-function, which is a generalization of the G-function, is defined as
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For more details about H-function, see [10].
We will also need the following integral (corrected form):
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For conditions of existence etc., see [10].

Definition 1.1. A random variable X is called a generalized F-variate if its pro-
bability density function is given by (see [17])

P!
f(xapamaaa h) = km7 a,m,p, hax > 07 (4)
where
hah P
(hm =)

and B(-,-) is the well-known beta function. We will call X having generalized-F-
Shah-Rathie (GFSR) distribution.
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The corresponding distribution function is given by (see Appendix)
G;g {Oth

The generalized F-distribution unifies some important sampling distributions.
Particular cases of this distributions are described below:

k
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(i) Snedecor’s F. For h =1, m = (my +my)/2, « = my/may, p = my/2 with my,
ms positive integers, (4) and (6) reduce to:
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(ii) Beta second kind. For h=1, a=1,p >0, m > p, (4) and (6) yield:
1

)= ——aP ' (14+2)™,
/@) B(p,m — p) (1+2)
B 1 1,2 p+1-m,1
) = 1 tm = p 22 [ ]
(iii) Folded Student-t. For h =2, a =1/N,p=1,m = (N +1)/2, (4) and (6)

become:

(iv) Folded Cauchy. For h=2,p=1, m=1, a =1, (4) and (6) become:

2 2 2
(1+ x2)_1 = (1+ 1‘2)_1 =

ST e
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(v) Dagum ([5]). For p = vyv3, & = 1/v9, h = v3, m =v; + 1, (4) and (6) give:
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(vi) Burr III. Taking v, = 1 in (7) and (8) and changing v, by a and vs by o, we
have:
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(vii) Burr XII-Singh-Maddala ([18]). For p = h, on using [13, p. 390 (125)], (4)
and (6) give:

_ pa(m —1)zP~!

F@) = = e (9)
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(viii) Pareto. Forp=1,a=1/cand m =a+ 1, (9) and (10) give:
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(ix) Forp=1,a=t"" h=1/gand m = ¢+ 1, (4) and (6) yield

—q—1

1+ (;)] : (13)

1+ (%)] - (14)

The density and distribution functions given in (13) and (14) were studied by
[19] and applied to data concerning sediment deposits in a water flow reservoir.

fo) = 1

F(z) =

The paper is divided as follows: Section 2 deals with the determination of mode
and a few graphs of the GFSR-distribution for various values of the parameters.
In Section 3, moments about the origin are given while Section 4 deals with the
reliability P(X < Y) when X ~ Dagum and Y ~ GFSR are independent. Section
5, 6, 7 and 8 deal respectively with order statistics, Marshall-Olkin-Shah-Rathie dis-
tribution, generalized gamma- and beta-generated GFSR-distributions. In Section
9, the maximum likelihood estimation method is used to estimate the parameters
and applied to analize real data involving three problems. In the last Section 10, we
conclude the paper.

2 Mode and graphs

From (4), we have

g_f = k[—2""'m(1 4 az") 7" aha T + (1+ az") " (p — 1)aP 7
xz

= koP2(1 + az") ™™ —maha" + (1 + az™)(p — 1)]. (15)
For maximum or minimum,
(p—1)+az"(p—1—mh) =0

giving

= A, suppose. (16)

p—1 z
Tr =
a(mh—p+1)
For > 0, there are two cases: (1) (p —1) > 0 and (mh —p+ 1) > 0, resulting

mh > (p—1)>0;(2) (p—1) <0and (mh—p+1) <0, resulting mh < (p—1) <0,
which is not possible.
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Differentiating (15), we have

2
% = kaP ' (1 4+ az™) "™ —mah®s" ™ + (p — 1)aha™ ]
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022 lz=A .

Hence, the mode is given by (16) for p > 1.
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Figure 1: Some shapes for the GFSR density.
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3 Moments

The (s — 1)-th moments of X are given by

s+p—1 —1+s
- 1>r2§><rm<mp£3 >’ "
h h

for Re(s) < mh —p+1, m > p/h.

Proof. We have (see also [17])
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for m > p/h and 1 —p < Re(s) <mh+1—p. O

4 Reliability

Let X ~ Dagum(vy,ve,v3) and Y ~ GFSR(p, m, a, h) be independent, then

0o e ¢ {o1vs kti”*1
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we have
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Takingm =n=p=g=m=m=p =g =1, s =vv3+p, 2= 1/vp, \y = v3,
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5 Order Statistics
The n-th and 1-st order statistics are given by
Fo(x) = F*(x),
fala) = nF""}(z) f(2),
Fi(r) =1-[1-F(z)]"
fi(z) = n[l = F(a)]" f(2),
where f(z) and F(x) are given in (1) and (3).
6 Marshall-Olkin-Shah-Rathie Distributions
Using (6) in
F
Gy = (25)
F(x) + BF(z)
we have the MOSR distribution as
kG2 [axh %gfom,l}
G(z) = - B - , (26)
AT (m)ak B+ (1= ARGy |aah| B+
hak
where k = 5<3 m_g)
h’ h

As particular cases, we have the following distributions:
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(a) Marshall-Olkin-Dagum distribution: Taking p = vjv3, a = 1/vy, h = vz and
m = v; + 1 in (26), we have

1
G(z) = o . 27
O B v+ (1 8) 0
(b) Marshall-Olkin-Burr III distribution: Taking v = 1 in (27), we get
1
G(r) = (28)

Bl+z )1 +(1-6)
7 Generalized gamma-generated GFSR-distribu-
tions

Using the following distribution function generalized-gamma representation

Cba/c —in(1-F(z)) .
Hi(x) = —a/ w* e ™ dw L a,b,c> 0, (29)
oL
c

and [15], we have

a

Hy(a) = F(lb—;g){_ Inf1 — Fa)]}"
1 F) (%C 1+ %; —b{—In[1 — F(@]}C) , (30)

where F(z) is given in (6).
The generalized gamma-generated Singh-Maddala distribution is obtained from
(30) by substituting p = h:

Hi(x) = b%[(m —1)In(1 + ozxp)]“—l

x 1F1(9;1 + 2 b — 1)1n(1+owcp)]c>. (31)
c c
Using another representation
che —In(F(x)) .
Hy(z)=1-— —a/ w* e " dw, a,b,c >0, (32)
r) "
c

and [15], we get

HQ(x)—l_W —

where F'(x) is given by (6).
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8 Beta-generated GFSR-distribution

Using
1 F(x) S 5 1y
G(l') — m/o w (1 — UJ) w, 051;61 > Oa (34>
and [1], we have
_ (@) . .
Glw) = W2F1(04171 B 1+ s F(x)), (35)

where F(z) is given in (6).
G(z) may be rewritten as

o0

Z 1_a1 T) Fov (a), (36)

=

G(x) =

041751

showing that G(x) is an infinite linear combination of the distribution functions
Fotr(x).

It may be pointed out that [12] obtained a double series infinite linear com-
bination given in their equation (8) for corresponding density function g(x) in a
particular case for Beta-generated Burr XII distribution when p = h.

For p = h, we have the following beta-generated distribution function from (35)
for Singh-Maddala distribution:

[1— (1 +azP)im]m
a1 B(ay, 51)

Paraiba et al. [12] give a double infinite series involving distribution functions
in their equation (10) for G(x).

G(z) =

gFl(oq,l—61;1+a1;1—(1+cmp)1_m). (37)

9 MLE and applications

Taking a random sample = (z1, ..., z,) from X ~ GFSR(0), 8 = (p, m,a,h)’, the
log-likelihood function is given by

In(L(8]z)) = In(f(z|0)) = nln(k) + (p— 1) Zln(xi) — len(l + )

=n [ln(h) + %ln(a) —In (F (%))_— In (F (m — E)) +InT'(m )]

n
1=

+(p—1))_ In lenl—l—am (38)

1
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The estimation of p, m, o and h are obtained by solving numerically the following
equations:

OIn(L(B|x)) . [ln

Ip /ga) ‘%‘I’ (%)ﬁ‘lf (m—%)} +gln<xi>:o,

On(L(B]z)) _ (=) w(m)] - Xn: n(1 + az®)] =0,

om h —

On(L(O|z)) _mp  ~poa N

Oln(L(@|x)) np [h D D “~az"In(z;)
o we |p Ty (5)-¥(m-3) m; T+tazh

where U(.) is the digamma function.
The model defined in (4) is applied to three real data sets given below:

(i) Air conditioning system: the failure times of the air conditioning system (see
Table 1) of an airplane reported in [8]. The paper [16] analyzed this data.

Table 1: Failure times of the air conditioning system of an airplane.

1 5 11 11 14 14 16 21 42 52 71 87 95 120 246
3 7 11 12 14 16 20 23 47 62 71 90 120 225 261

(ii) Kevlar 49/Epoxy strands: the failure times of Kevlar 49/epoxy strands with
pressure at 90% are given in Table 2. The failure times in hours were originally
given in [3]. The papers [4], [2], and [11] analyzed this data.

Table 2: Failure times of Kevlar 49/epoxy strands.

0.01 0.01 0.02 0.02 0.02 0.03 0.03 0.04 0.05 0.06 0.07 0.07
0.08 0.09 0.09 0.10 0.10 o0.11 0.11 0.12 0.13 0.18 0.19 0.20
023 024 024 029 034 035 036 0.38 040 042 0.43 0.52
0.54 0.56 0.60 0.60 0.63 0.65 0.67 0.68 0.72 0.72 0.72 0.73
0.79 0.79 080 080 0.83 0.85 090 092 095 099 1.00 1.01
1.02 103 105 1.10 1.10 1.11 1.15 1.18 1.20 1.29 1.31 1.33
1.34 140 143 1.45 150 1.51 1.52 1.53 154 1.54 1.55 1.58
1.60 163 1.64 1.80 1.80 1.81 2.02 205 214 217 233 3.03
3.03 334 420 4.69 7.89
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Table 3: Remission times (in months) of bladder cancer patients.

0.08 020 040 050 051 081 090 105 1.19 1.26
1.35 140 146 176 2.02 2.02 207 209 223 226
246 254 262 264 269 269 275 283 287 3.02
325 331 336 336 348 352 357 364 370 3.82
3.88 418 423 426 433 434 440 450 451 487
498 506 509 517 532 532 534 541 541 549
562 571 58 625 654 676 693 694 697 7.09
726 728 732 739 759 762 763 766 787 793
826 837 853 865 866 9.02 922 947 9.74 10.06
10.34 10.66 10.75 11.25 11.64 11.79 11.98 12.02 12.03 12.07
12.63 13.11 13.29 13.80 14.24 14.76 14.77 14.83 1596 16.62
17.12 17.14 1736 18.10 19.13 20.28 21.73 22.69 23.63 25.74
25.82 26.31 3215 3426 36.66 43.01 46.12 79.05

(iii) Bradder cancer patients: remission times (in months) of a random sample of
128 bladder cancer patients is given in [6] and analyzed by [7]. The data are
given in Table 3.

The maximum likelihood method was used together with program R [14], through
the function cobyla contained in the package nloptr, for the estimation of the pa-
rameters. The convergence of the maximization procedure involving generalized
flexible distributions depends on the initial guesses. We used multiple starts based
on the shape of the histogram of the data. The maximum likelihood estimates are
given in the Table 4.

Table 4: Maximum likelihood estimates for GFSR model.

Data set P m Q h
Airplane  1.9878 1.8149e+06 1.1506e-06  0.3101
Kevlar 49 0.6838 0.0632 3.8119e-10 51.2312
Bladder 1.3171 2.0631 0.0143  1.8289

The density and distribution function for histogram and empirical distribution
function for each data set are given in the Figure 2.

We compare the GFSR model with: (i) gamma-Dagum (GD) model presented
by [16], (ii) Dagum-Poisson (DP) model presented by [11], and (iii) McLomax model
presented by [7].

(i) Gamma-Dagum (GD) model:

@) = Fo

2 N1+ Az %) In(1 + )\x_é)]a_l
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and

F(z)=1- ﬁv (o, BIn(1 + Az7?%)),

forx >0, A\, 6, >0, integer a > 0, where

fy(a,:c):/ t* L exp(—t)dt.
0
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Figure 2: Adjusted GFSR distribution for the three data sets.
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(ii) Dagum-Poisson (DP) model:

B0 (14 Ax0) P L explf(1 4+ Az 0) P
B exp(f) — 1

()

and
1 —explf(1+ Az0)7F]
Fla) = 1 — exp(6) ’

forz >0, \, 8, 6, 8 >0.

(iii) McLomax model:

fior= S - (G2 )] (- () T

forx >0, a, ¢, a, 3 >0,n>0.

We apply Kolmogorov-Smirnov (KS), Anderson-Darling (AD) and Cramér-von-
Mises (CvM) statistics to assess the goodness of fit of the model. In general, the
smaller the values of KS, AD, CvM, the better the fit (see [20]). The Akaike Informa-
tion Criterion (AIC), corrected Akaike Information Criterion (AICc) and Bayesian
Information Criterion (BIC) were used to compare the models. These criteria are

defined by

AIC = —21n(
BIC = — 21In(

(216)) + 2p,
(2]0)) + plog(n),

2p(p +1)
n—p—1|’

N

AlCc = —2In(f(x|0)) + 2p + [

where In(f(x|0)) is the log-likelihood function, p the number of parameters of the
model and n the sample size. The best model has the lowest value according to the
criterion used. All the results are shown in Table 5.

Based on the statistics and selection criteria, we conclude that the GFSR model
fits all the data set better than the other models. In addition, Figure 2 show that
our proposed model is a good alternative for modeling the data.

10 Concluding remarks

The generalized-F-Shah-Rathie (GFSR) distribution defined in 1974 is studied in
some detail. Some properties are given along with some new distributions obtained
from GFSR-distribution. The GFSR-distribution is applied to analize three real
data sets demonstrating its utility.
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Table 5: Model selection criterion and goodness-of-fit statistic.
Airplane Kevlar 49 Bladder
GFSR GD GFSR DP GFSR McLomax
AIC  310.68 311.16 204.18 208.09 827.31 829.82

AICc 312.28 204.60 208.51 827.63
BIC  316.29 214.64 218.55 838.71 844.09
KS 0.0891 0.0406 0.0338

AD 0.4272 0.4314 0.3123 0.4632 0.1111 0.1685
CvM 0.0791 0.0800 0.0409 0.0657 0.0171 0.0254
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Appendix - Distribution function

Using [9, p. 149]

in (4), we have

Re(hs +1) > 0,



34

R. T. Nojosa, F. R. F. da Silva and P. N. Rathie

R
hF(m)aLﬁl 2mi Jp,

h I'(s+++1)
_hf(:bjap;_l = [ h Hml]
K h h
(using (1))
k P=lq_ i 1
=) ras")iGy) {awh o }
m)ar B n
_ k EGézg h h-‘rl—ml _ 1 G;:g h %—l—]z;—m,l :
hT'(m)arh 7.0 T (E) T (m — B) 50
h h
(see [9])

where z > 0 and k is given in (5).

The contour integral can be written as a o F}, giving an alternative expression as

ah P

mB <%+1,m—%>

F(z) = 2F1<m,%;£+1;—cwch) )

h
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