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Abstract

In 1974, Shah and Rathie defined and studied a generalized-F density func-
tion (GFSR). This paper deals with this density and obtain its distribution
function, mode, moments, reliability function P (X < Y ) when X ∼ Dagum
and Y ∼ GFSR are independent, order statistics, Marshall-Olkin-Shah-Rathie
distribution, and generalized gamma and beta-generated distributions. Ma-
ximum likelihood estimates are derived and applied to three real problems
involving (a) Failure times of the air conditioning system, (b) Failure times
of the Kevlar 49/epoxy strands with preasure of 90%, and (c) Bladder cancer
patients data. The results show that the GFRS distribution is a good proposal
for modeling these data sets.
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1 Introduction

In this section, we start by giving some definitions. The G-function is defined as

Gm,n
p, q

[
x
∣∣∣a1,...,ap
b1,...,bq

]
=

1

2πi

∫
L

∏m
j=1 Γ(bj − s)

∏n
j=1 Γ(1− aj + s)∏q

j=m+1 Γ(1− bj + s)
∏p

j=n+1 Γ(aj − s)
xsds, (1)

where x 6= 0, an empty product is interpreted as unity, 0 ≤ m ≤ q and 0 ≤ n ≤ p
(not both m and n zeros simultaneously). The parameters bj, j = 1, 2, . . . ,m and
aj, j = 1, 2, . . . , n, are such that no pole of

∏m
j=1 Γ(bj − s) coincides with any pole

of
∏n

j=1 Γ(1 − aj + s). See [9, pp. 143-144] for details about the contour L and
conditions of convergence of the integral.

The H-function, which is a generalization of the G-function, is defined as

Hm,n
p, q

[
x
∣∣∣( a1, A1), ... ,( an, An),( an+1, An+1), ... ,( ap, Ap)

( b1, B1), ... ,( bm, Bm),( bm+1, Bm+1), ... ,( bq , Bq)

]
=

1

2πi

∫
L

∏m
j=1 Γ(bj −Bjs)

∏n
j=1 Γ(1− aj + Ajs)∏q

j=m+1 Γ(1− bj +Bjs)
∏p

j=n+1 Γ(aj − Ajs)
xsds. (2)

For more details about H-function, see [10].

We will also need the following integral (corrected form):∫ ∞
0

xs−1Hm1, n1
p1, q1

[
ηxλ
∣∣∣ 1(dj ,Dj)p1

1(ej ,Ej)q1

]
Hm,n
p, q

[
zxλ1

∣∣∣ 1(aj ,Aj)p
1(bj ,Bj)q

]
dx

=
η

λ

− s
λ
Hm+n1, n+m1
p+q1, q+p1

[
zη−

λ1
λ

∣∣∣ 1(aj ,Aj)n, 1(1−ej− sλEj ,
λ1
λ
Ej)q1 , n+1(aj ,Aj)p

1(bj ,Bj)m, 1(1−dj− sλDj ,
λ1
λ
Dj)p1 , m+1(bj ,Bj)q

]
. (3)

For conditions of existence etc., see [10].

Definition 1.1. A random variable X is called a generalized F-variate if its pro-
bability density function is given by (see [17])

f(x, p,m, α, h) = k
xp−1

(1 + αxh)m
, α,m, p, h, x > 0, (4)

where

k =
hα

p
h

B
(p
h
,m− p

h

) , m >
p

h
, (5)

and B(·, ·) is the well-known beta function. We will call X having generalized-F-
Shah-Rathie (GFSR) distribution.
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The corresponding distribution function is given by (see Appendix)

F (x, p,m, α, h) =
k

hΓ(m)α
p
h

G1, 2
2, 2

[
αxh

∣∣∣ ph+1−m, 1
p
h
, 0

]
. (6)

The generalized F-distribution unifies some important sampling distributions.
Particular cases of this distributions are described below:

(i) Snedecor’s F. For h = 1, m = (m1 +m2)/2, α = m1/m2, p = m1/2 with m1,
m2 positive integers, (4) and (6) reduce to:

f(x) =

(
m1

m2

)m1
2

x
m1
2
−1
(

1 +
m1

m2

x

)−m1+m2
2

β(m1

2
, m2

2
)

,

F (x) =
1

Γ
(m1

2

)
Γ
(m2

2

)G1, 2
2, 2

[
m1

m2

x
∣∣∣ m1

2
+1−m1+m2

2
,1

m1
2
,0

]
.

(ii) Beta second kind. For h = 1, α = 1, p > 0, m > p, (4) and (6) yield:

f(x) =
1

β(p,m− p)
xp−1(1 + x)−m,

F (x) =
1

Γ(p)Γ(m− p)
G1, 2

2, 2

[
x
∣∣∣p+1−m,1

p,0

]
.

(iii) Folded Student-t. For h = 2, α = 1/N , p = 1, m = (N + 1)/2, (4) and (6)
become:

f(x) =
2

√
Nβ

(
1

2
,
N

2

) (1 +
x2

N

)−(N+1
2 )

,

F (x) =
1

Γ

(
1

2

)
Γ

(
N

2

)G1, 2
2, 2

[
1

N
x2
∣∣∣N2 ,1
1
2
,0

]
.

(iv) Folded Cauchy. For h = 2, p = 1, m = 1, α = 1, (4) and (6) become:

f(x) =
2

β

(
1

2
,
1

2

)(1 + x2)−1 =
2

Γ

(
1

2

)
Γ

(
1

2

)(1 + x2)−1 =
2

π(1 + x2)
,

F (x) =
1

Γ

(
1

2

)
Γ

(
1

2

)G1, 2
2, 2

[
x2
∣∣∣ 12 ,1
1
2
,0

]
=

1

π
G1,2

2,2

[
x2
∣∣∣ 12 ,1
1
2
,0

]
.
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(v) Dagum ([5]). For p = v1v3, α = 1/v2, h = v3, m = v1 + 1, (4) and (6) give:

f(x) =
v1v2v3x

−v3−1

(1 + v2x−v3)v1+1
=

v1v2v3x
−v3−1

vv1+1
2 x−v3(v1+1)

(
1 +

1

v2
xv3
)v1+1

=
v1v3x

v1v3−1

vv12

(
1 +

xv3

v2

)v1+1 , (7)

F (x) = (1 + v2x
−v3)−v1 =

1

(v2x−v3)v1
(

1 +
xv3

v2

)v1
=

xv1v3

vv12

(
1 +

xv3

v2

)v1 =
1

Γ(v1)
G1, 1

1, 1

[
xv3

v2

∣∣∣ 1
v1

]
, (8)

by using [9, p. 149]

G1, 2
2, 2

[
z
∣∣∣ 0, 1
a, 0

]
= G1, 1

1, 1

[
z
∣∣∣ 1
a

]
= za(1 + z)−aΓ(a).

(vi) Burr III. Taking v2 = 1 in (7) and (8) and changing v, by α and v3 by σ, we
have:

f(x) =
ασx−σ−1

(1 + x−σ)α+1
=

ασx−σ−1

x−σ(α+1)(1 + xσ)α+1
=

ασxασ−1

(1 + xσ)α+1
,

F (x) =
xασ

(1 + xσ)α
.

(vii) Burr XII-Singh-Maddala ([18]). For p = h, on using [13, p. 390 (125)], (4)
and (6) give:

f(x) =
pα(m− 1)xp−1

(1 + αxp)m
, (9)

F (x) = 1− (1 + αxp)1−m, m > 1. (10)

(viii) Pareto. For p = 1, α = 1/c and m = a+ 1, (9) and (10) give:

f(x) =
aca

(x+ c)a+1
, x, a, c > 0, (11)

F (x) = 1− ca

(x+ c)a
. (12)
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(ix) For p = 1, α = t
−1/q
∗ , h = 1/q and m = q + 1, (4) and (6) yield

f(x) =
1

t∗

[
1 +

(
x

t∗

) 1
q

]−q−1
, (13)

F (x) =

[
1 +

(
t∗
x

) 1
q

]−q
. (14)

The density and distribution functions given in (13) and (14) were studied by
[19] and applied to data concerning sediment deposits in a water flow reservoir.

The paper is divided as follows: Section 2 deals with the determination of mode
and a few graphs of the GFSR-distribution for various values of the parameters.
In Section 3, moments about the origin are given while Section 4 deals with the
reliability P (X < Y ) when X ∼ Dagum and Y ∼ GFSR are independent. Section
5, 6, 7 and 8 deal respectively with order statistics, Marshall-Olkin-Shah-Rathie dis-
tribution, generalized gamma- and beta-generated GFSR-distributions. In Section
9, the maximum likelihood estimation method is used to estimate the parameters
and applied to analize real data involving three problems. In the last Section 10, we
conclude the paper.

2 Mode and graphs

From (4), we have

∂f

∂x
= k[−xp−1m(1 + αxh)−m−1αhxh−1 + (1 + αxh)−m(p− 1)xp−2]

= kxp−2(1 + αxh)−m−1[−mαhxh + (1 + αxh)(p− 1)]. (15)

For maximum or minimum,

(p− 1) + αxh(p− 1−mh) = 0

giving

x =

[
p− 1

α(mh− p+ 1)

] 1
h

= A, suppose. (16)

For x > 0, there are two cases: (1) (p − 1) > 0 and (mh − p + 1) > 0, resulting
mh > (p− 1) > 0; (2) (p− 1) < 0 and (mh− p+ 1) < 0, resulting mh < (p− 1) < 0,
which is not possible.
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Differentiating (15), we have

∂2f

∂x2
= kxp−1(1 + αxh)−m−1[−mαh2xh−1 + (p− 1)αhxh−1]

+ [−mαhxh + (1 + αxh)(p− 1)]

× k[(p− 2)xp−3(1 + αxh)−m−1 − xp+h−3αh(m+ 1)(1 + αxh)m−2] (17)

giving

∂2f

∂x2

∣∣∣
x=A

= hAp−2(1 + αAh)−m−1Ah−1αh[−mh+ p− 1] < 0. (18)

Hence, the mode is given by (16) for p > 1.
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Figure 1: Some shapes for the GFSR density.
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3 Moments

The (s− 1)-th moments of X are given by

E(Xs−1) =

Γ

(
s+ p− 1

h

)
Γ

(
m− p− 1 + s

h

)
α

(s−1)
h Γ

(p
h

)
Γ
(
m− p

h

) , (19)

for Re(s) < mh− p+ 1, m > p/h.

Proof. We have (see also [17])

E(Xs−1) = k

∫ ∞
0

xs+p−2

(1 + αxh)m
dx

=
hα

p
h

β
(p
h
,m− p

h

) β
(
p+ s− 1

h
,m− p+ s− 1

h

)
hα

(p+s−1)
h

=

Γ

(
p+ s− 1

h

)
Γ

(
m− p+ s− 1

h

)
α

(s−1)
h Γ

(p
h

)
Γ
(
m− p

h

) , (20)

for m > p/h and 1− p < Re(s) < mh+ 1− p.

4 Reliability

Let X ∼ Dagum(v1, v2, v3) and Y ∼ GFSR(p,m, α, h) be independent, then

P (X < Y ) =

∫ ∞
o

FX(t)fY (t)dt =

∫ ∞
0

tv1v3

vv12

(
1 + tv3

v2

)v1 ktp−1

(1 + αth)m
dt, (21)

where k =
hα

p
h

β
(p
h
,m− p

h

) and m > p/h.

Using

(1 + z)−a =
1

Γ(a)
H11

11

[
z|(1−a,1)(0,1)

]
=

1

Γ(a)
G11

11

[
z|1−a0

]
, (22)

we have
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P (X < Y ) =
k

vv12

1

Γ(v1)Γ(m)

∫ ∞
0

tv1v3+p−1

H1, 1
1, 1

[
tv3

v2

∣∣∣ (1−v1,1
(0,1)

]
H1, 1

1, 1

[
αth
∣∣∣ (1−m,1)

(0,1)

]
dt. (23)

Taking m = n = p = g = m1 = n1 = p1 = g1 = 1, s = v1v3 + p, z = 1/v2, λ1 = v3,
η = α, λ = h, A1 = B1 = D1 = E1 = 1, a1 = 1− v1, b1 = 0, d1 = 1−m, e1 = 0 in
(3) to evaluate the integral, we get

P (X < Y ) =
k

vv12 Γ(v1)Γ(m)hα
v1v3+p

h

H2, 2
2, 2

[
1

v2α
v3
h

∣∣∣ (1−v1,1),(1− v1v3+ph
,
v3
h
)

(0,1),(m− v1v3+p
h

,
v3
h
)

]
. (24)

5 Order Statistics

The n-th and 1-st order statistics are given by

Fn(x) = F n(x),

fn(x) = nF n−1(x)f(x),

F1(x) = 1− [1− F (x)]n,

f1(x) = n[1− F (x)]n−1f(x),

where f(x) and F (x) are given in (1) and (3).

6 Marshall-Olkin-Shah-Rathie Distributions

Using (6) in

G(x) =
F (x)

F (x) + βF (x)
, (25)

we have the MOSR distribution as

G(x) =
kG1, 2

2, 2

[
αxh

∣∣∣ ph+1−m,1
p
h
,0

]
hΓ(m)α

p
hβ + (1− β)kG1, 2

2, 2

[
αxh

∣∣∣ ph+1−m,1
p
h
,0

] , (26)

where k =
hα

p
h

β
(p
h
,m− p

h

) .

As particular cases, we have the following distributions:
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(a) Marshall-Olkin-Dagum distribution: Taking p = v1v3, α = 1/v2, h = v3 and
m = v1 + 1 in (26), we have

G(x) =
1

β (1 + v2x−v3)
v1 + (1− β)

. (27)

(b) Marshall-Olkin-Burr III distribution: Taking v2 = 1 in (27), we get

G(x) =
1

β(1 + x−v3)v1 + (1− β)
. (28)

7 Generalized gamma-generated GFSR-distribu-

tions

Using the following distribution function generalized-gamma representation

H1(x) =
cba/c

Γ
(a
c

) ∫ −ln(1−F (x))

0

wa−1e−bw
c

dw , a, b, c > 0, (29)

and [15], we have

H1(x) =
b
a
c

Γ
(

1 +
a

c

){− ln[1− F (x)]}a−1

× 1F1

(a
c

; 1 +
a

c
;−b{− ln[1− F (x)]}c

)
, (30)

where F (x) is given in (6).
The generalized gamma-generated Singh-Maddala distribution is obtained from

(30) by substituting p = h:

H1(x) = b
a
c [(m− 1) ln(1 + αxp)]a−1

× 1F1

(a
c

; 1 +
a

c
;−b[(m− 1) ln(1 + αxp)]c

)
. (31)

Using another representation

H2(x) = 1− cb
a
c

Γ
(a
c

) ∫ − ln(F (x))

0

wa−1e−bw
c

dw, a, b, c > 0, (32)

and [15], we get

H2(x) = 1− b
a
c

Γ
(

1 +
a

c

){− ln[F (x)]}a1F1

(a
c

; 1 +
a

c
;−b{− ln[F (x)]}c

)
, (33)

where F (x) is given by (6).
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8 Beta-generated GFSR-distribution

Using

G(x) =
1

B(α1, β1)

∫ F (x)

0

wα1−1(1− w)β1−1dw, α1, β1 > 0, (34)

and [1], we have

G(x) =
Fα1(x)

α1B(α1, β1)
2F1(α1, 1− β1; 1 + α1;F (x)) , (35)

where F (x) is given in (6).
G(x) may be rewritten as

G(x) =
1

α1B(α1, β1)

∞∑
r=0

(α1)r(1− β1)r
(1− α1)rr!

Fα1+r(x), (36)

showing that G(x) is an infinite linear combination of the distribution functions
Fα1+r(x).

It may be pointed out that [12] obtained a double series infinite linear com-
bination given in their equation (8) for corresponding density function g(x) in a
particular case for Beta-generated Burr XII distribution when p = h.

For p = h, we have the following beta-generated distribution function from (35)
for Singh-Maddala distribution:

G(x) =
[1− (1 + αxp)1−m]α1

α1B(α1, β1)
2F1

(
α1, 1− β1; 1 + α1; 1− (1 + αxp)1−m

)
. (37)

Paráıba et al. [12] give a double infinite series involving distribution functions
in their equation (10) for G(x).

9 MLE and applications

Taking a random sample x = (x1, ..., xn) from X ∼ GFSR(θ), θ = (p,m, a, h)′, the
log-likelihood function is given by

ln(L(θ|x )) = ln(f(x |θ)) = n ln(k) + (p− 1)
n∑
i=1

ln(xi)−m
n∑
i=1

ln(1 + αxhi )

= n
[
ln(h) +

p

h
ln(α)− ln

(
Γ
(p
h

))
− ln

(
Γ
(
m− p

h

))
+ ln Γ(m)

]
+ (p− 1)

n∑
i=1

ln(xi)−m
n∑
i=1

ln(1 + αxhi ). (38)
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The estimation of p, m, α and h are obtained by solving numerically the following
equations:

∂ ln(L(θ|x ))

∂p
= n

[
ln (a)

h
− 1

h
Ψ
(p
h

)
+

1

h
Ψ
(
m− p

h

)]
+

n∑
i=1

ln (xi) = 0,

∂ ln(L(θ|x ))

∂m
= n

[
−Ψ

(
m− p

h

)
+ Ψ(m)

]
−

n∑
i=1

[
ln(1 + axhi )

]
= 0,

∂ ln(L(θ|x ))

∂α
=
np

ah
−m

n∑
i=1

[
xhi /(1 + axhi )

]
= 0,

∂ ln(L(θ|x ))

∂h
=
np

h2

[
h

p
−ln(a)+Ψ

(p
h

)
−Ψ

(
m− p

h

)]
−m

n∑
i=1

a xi
h ln (xi)

1 + a xih
= 0,

where Ψ(.) is the digamma function.
The model defined in (4) is applied to three real data sets given below:

(i) Air conditioning system: the failure times of the air conditioning system (see
Table 1) of an airplane reported in [8]. The paper [16] analyzed this data.

Table 1: Failure times of the air conditioning system of an airplane.

1 5 11 11 14 14 16 21 42 52 71 87 95 120 246
3 7 11 12 14 16 20 23 47 62 71 90 120 225 261

(ii) Kevlar 49/Epoxy strands: the failure times of Kevlar 49/epoxy strands with
pressure at 90% are given in Table 2. The failure times in hours were originally
given in [3]. The papers [4], [2], and [11] analyzed this data.

Table 2: Failure times of Kevlar 49/epoxy strands.

0.01 0.01 0.02 0.02 0.02 0.03 0.03 0.04 0.05 0.06 0.07 0.07
0.08 0.09 0.09 0.10 0.10 0.11 0.11 0.12 0.13 0.18 0.19 0.20
0.23 0.24 0.24 0.29 0.34 0.35 0.36 0.38 0.40 0.42 0.43 0.52
0.54 0.56 0.60 0.60 0.63 0.65 0.67 0.68 0.72 0.72 0.72 0.73
0.79 0.79 0.80 0.80 0.83 0.85 0.90 0.92 0.95 0.99 1.00 1.01
1.02 1.03 1.05 1.10 1.10 1.11 1.15 1.18 1.20 1.29 1.31 1.33
1.34 1.40 1.43 1.45 1.50 1.51 1.52 1.53 1.54 1.54 1.55 1.58
1.60 1.63 1.64 1.80 1.80 1.81 2.02 2.05 2.14 2.17 2.33 3.03
3.03 3.34 4.20 4.69 7.89
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Table 3: Remission times (in months) of bladder cancer patients.

0.08 0.20 0.40 0.50 0.51 0.81 0.90 1.05 1.19 1.26
1.35 1.40 1.46 1.76 2.02 2.02 2.07 2.09 2.23 2.26
2.46 2.54 2.62 2.64 2.69 2.69 2.75 2.83 2.87 3.02
3.25 3.31 3.36 3.36 3.48 3.52 3.57 3.64 3.70 3.82
3.88 4.18 4.23 4.26 4.33 4.34 4.40 4.50 4.51 4.87
4.98 5.06 5.09 5.17 5.32 5.32 5.34 5.41 5.41 5.49
5.62 5.71 5.85 6.25 6.54 6.76 6.93 6.94 6.97 7.09
7.26 7.28 7.32 7.39 7.59 7.62 7.63 7.66 7.87 7.93
8.26 8.37 8.53 8.65 8.66 9.02 9.22 9.47 9.74 10.06

10.34 10.66 10.75 11.25 11.64 11.79 11.98 12.02 12.03 12.07
12.63 13.11 13.29 13.80 14.24 14.76 14.77 14.83 15.96 16.62
17.12 17.14 17.36 18.10 19.13 20.28 21.73 22.69 23.63 25.74
25.82 26.31 32.15 34.26 36.66 43.01 46.12 79.05

(iii) Bradder cancer patients: remission times (in months) of a random sample of
128 bladder cancer patients is given in [6] and analyzed by [7]. The data are
given in Table 3.

The maximum likelihood method was used together with program R [14], through
the function cobyla contained in the package nloptr, for the estimation of the pa-
rameters. The convergence of the maximization procedure involving generalized
flexible distributions depends on the initial guesses. We used multiple starts based
on the shape of the histogram of the data. The maximum likelihood estimates are
given in the Table 4.

Table 4: Maximum likelihood estimates for GFSR model.

Data set p m α h

Airplane 1.9878 1.8149e+06 1.1506e-06 0.3101
Kevlar 49 0.6838 0.0632 3.8119e-10 51.2312
Bladder 1.3171 2.0631 0.0143 1.8289

The density and distribution function for histogram and empirical distribution
function for each data set are given in the Figure 2.

We compare the GFSR model with: (i) gamma-Dagum (GD) model presented
by [16], (ii) Dagum-Poisson (DP) model presented by [11], and (iii) McLomax model
presented by [7].

(i) Gamma-Dagum (GD) model:

f(x) =
λδβα

Γ(α)
x−δ−1(1 + λx−δ)−β−1

[
ln(1 + λx−δ)

]α−1
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and

F (x) = 1− 1

Γ(α)
γ
(
α, β ln(1 + λx−δ)

)
,

for x > 0, λ, δ, β > 0, integer α > 0, where

γ(α, x) =

∫ x

0

tα−1 exp(−t)dt.

0 50 100 150 200 250
0.000

0.005

0.010

0.015

0.020

Airplanes

0 50 100 150 200 250
0.0

0.2

0.4

0.6

0.8

1.0
Airplanes

GFSR
ecdf

0 2 4 6 8
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Kevlar 49 

0 2 4 6 8
0.0

0.2

0.4

0.6

0.8

1.0
Kevlar 49 

GFSR
ecdf

0 20 40 60 80
0.00

0.02

0.04

0.06

0.08

Bladder 

0 20 40 60 80
0.0

0.2

0.4

0.6

0.8

1.0
Bladder 

GFSR
ecdf

Figure 2: Adjusted GFSR distribution for the three data sets.
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(ii) Dagum-Poisson (DP) model:

f(x) =
βλδθx−δ−1(1 + λx−δ)−β−1 exp[θ(1 + λx−δ)−β]

exp(θ)− 1

and

F (x) =
1− exp[θ(1 + λx−δ)−β]

1− exp(θ)
,

for x > 0, λ, β, δ, θ > 0.

(iii) McLomax model:

f(x) =
cαβα(β + x)−α−1

B(ac−1, η + 1)

[
1−
(

β

β + x

)α]a−1{
1−
[
1−
(

β

β + x

)α]c}η
,

for x > 0, a, c, α, β > 0, η ≥ 0.

We apply Kolmogorov-Smirnov (KS), Anderson-Darling (AD) and Cramér-von-
Mises (CvM) statistics to assess the goodness of fit of the model. In general, the
smaller the values of KS, AD, CvM, the better the fit (see [20]). The Akaike Informa-
tion Criterion (AIC), corrected Akaike Information Criterion (AICc) and Bayesian
Information Criterion (BIC) were used to compare the models. These criteria are
defined by

AIC =− 2 ln(f(x |θ)) + 2p,

BIC =− 2 ln(f(x |θ)) + p log(n),

AICc =− 2 ln(f(x |θ)) + 2p+

[
2p(p+ 1)

n− p− 1

]
,

where ln(f(x |θ)) is the log-likelihood function, p the number of parameters of the
model and n the sample size. The best model has the lowest value according to the
criterion used. All the results are shown in Table 5.

Based on the statistics and selection criteria, we conclude that the GFSR model
fits all the data set better than the other models. In addition, Figure 2 show that
our proposed model is a good alternative for modeling the data.

10 Concluding remarks

The generalized-F-Shah-Rathie (GFSR) distribution defined in 1974 is studied in
some detail. Some properties are given along with some new distributions obtained
from GFSR-distribution. The GFSR-distribution is applied to analize three real
data sets demonstrating its utility.
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Table 5: Model selection criterion and goodness-of-fit statistic.
Airplane Kevlar 49 Bladder

GFSR GD GFSR DP GFSR McLomax
AIC 310.68 311.16 204.18 208.09 827.31 829.82
AICc 312.28 204.60 208.51 827.63
BIC 316.29 214.64 218.55 838.71 844.09
KS 0.0891 0.0406 0.0338
AD 0.4272 0.4314 0.3123 0.4632 0.1111 0.1685
CvM 0.0791 0.0800 0.0409 0.0657 0.0171 0.0254
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Appendix - Distribution function

Using [9, p. 149]

(1 + z)a =
1

Γ(−a)
G1, 1

1, 1

[
z
∣∣∣1+a

0

]
in (4), we have

F (x) =

∫ x

0

f(y)dy =
k

Γ(m)

∫ x

0

yp−1G1, 1
1, 1

[
αyh

∣∣∣1−m
0

]
dy

=
k

Γ(m)

1

α
p−1
h

∫ x

0

(αyh)
p−1
h G1, 1

1, 1

[
αyh

∣∣∣1−m
0

]
dy

=
k

Γ(m)α
p−1
h

∫ x

0

G1, 1
1, 1

[
αyh

∣∣∣ p−1
h

+1−m
p−1
h

]
dy

(see [9])

=
k

Γ(m)α
p−1
h

1

2πi

∫
L

Γ

(
p− 1

h
− s
)

Γ

(
m− p− 1

h
+ s

)
αs
∫ x

0

yhsdsdy

(using (1))

=
k

Γ(m)α
p−1
h

1

2πi

∫
L

Γ

(
p− 1

h
− s
)

Γ

(
m− p− 1

h
+ s

)
αs

xhs+1

h(s+ 1
h
)
ds,

Re(hs+ 1) > 0,
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=
kx

hΓ(m)α
p−1
h

1

2πi

∫
L

Γ

(
p− 1

h
− s
)

Γ
(
m− p−1

h
+ s
)

Γ
(
s+ 1

h

)
Γ
(
s+ 1

h
+ 1
) (αxh)sds

=
kx

hΓ(m)α
p−1
h

G1, 2
2, 2

[
αxh

∣∣∣ p−1
h

+1−m,1− 1
h

p−1
h
,− 1

h

]
(using (1))

=
k

hΓ(m)α
p
h

(αxh)
1
hG1, 2

2, 2

[
αxh

∣∣∣ p−1
h

+1−m,1− 1
h

p−1
h
,− 1

h

]
=

k

hΓ(m)α
p
h

G1, 2
2, 2

[
αxh

∣∣∣ ph+1−m,1
p
h
,0

]
=

1

Γ
(p
h

)
Γ
(
m− p

h

)G1, 2
2, 2

[
αxh

∣∣∣ ph+1−m,1
p
h
,0

]
,

(see [9])

where x > 0 and k is given in (5).
The contour integral can be written as a 2F1, giving an alternative expression as

F (x) =
α
p
hxp

mB
(p
h

+ 1,m− p

h

)2F1

(
m,

p

h
;
p

h
+ 1;−αxh

)
.
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