Mathematica Aeterna, Vol. 4, 2014, no. 7, 747 - 753

Generalized Dunkl-Williams inequality

Bahram Dastourian

Department of Mathematics Dehdasht Branch, Islamic Azad University Dehdasht, Iran bdastorian@gmail.com

Khodarahm Marzban

Department of Mathematics Dehdasht Branch, Islamic Azad University Dehdasht, Iran khmarzban@yahoo.com

Nasiballah Mohammadi

Department of Mathematics Dehdasht Branch, Islamic Azad University Dehdasht, Iran nmohammadi@yahoo.com

Abstract

Dunkl and Williams showed that

$$\left\|\frac{u}{\|u\|} - \frac{v}{\|v\|}\right\| \le \frac{4\|u - v\|}{\|u\| + \|v\|}$$

for any nonzero elements u, v in a normed linear space X. Pečarić and Rajić gave a refinement and, moreover, a generalization to operators A, B belong to the algebra $B(\mathcal{H})$ of all bounded linear operators on a separable complex Hilbert space \mathcal{H} , such that |A|, |B| are invertible as follows:

$$|A|A|^{-1} - B|B|^{-1}|^2 \le |A|^{-1}(r|A - B|^2 + s(|A| - |B|)^2)|A|^{-1},$$

where r, s > 1 with $\frac{1}{r} + \frac{1}{s} = 1$.

In this paper, we generalized this inequality in the framework of Hilbert C^{*}-modules. As a consequence we investigate this inequality without assumption of the invertibility of the absolute value of operator B.

Mathematics Subject Classification: Primary 46L08; Secondary 26D15, 47A63.

Keywords: C*-algebra, Dunkl-Williams inequality, Hilbert C*-module, operator inequality.

1 Introduction

Suppose that $B(\mathcal{H})$ denotes the algebra of all bounded linear operators on a separable complex Hilbert space \mathcal{H} .

In [2], Dunkl and Williams showed that for any nonzero elements u, v in a normed linear space X

$$\left\|\frac{u}{\|u\|} - \frac{v}{\|v\|}\right\| \le \frac{4\|u - v\|}{\|u\| + \|v\|}.$$
(1)

Pečarić and Rajić [6] gave the following refinement of (1): For any nonzero elements u, v in a normed linear space X

$$\left\|\frac{u}{\|u\|} - \frac{v}{\|v\|}\right\| \le \frac{\sqrt{2\|u - v\|^2 + 2(\|u\| - \|v\|)^2}}{\max\{\|u\|, \|v\|\}}.$$
(2)

Also in [6] they generalized the inequality (2) to the operators A, B belong to the algebra $B(\mathcal{H})$ such that |A|, |B| are invertible as follows:

Theorem 1.1. Let $A, B \in B(\mathcal{H})$ of all bounded linear operators acting on a complex Hilbert space H such that |A| and |B| are invertible, and let r, s > 1with $\frac{1}{r} + \frac{1}{s} = 1$. Then

$$|A|A|^{-1} - B|B|^{-1}|^2 \le |A|^{-1}(r|A - B|^2 + s(|A| - |B|)^2)|A|^{-1}.$$

The equality holds if and only if $(r-1)(A-B)|A|^{-1} = B(|A|^{-1} - |B|^{-1})$.

Where $|C| = (C^*C)^{\frac{1}{2}}$ denotes the absolute value of $C \in B(\mathcal{H})$. Note that $A \ge 0$ means that $\langle Ax, x \rangle \ge 0$ for all $x \in H$, and $A \le 0$ represents that $-A \ge 0$, and $A \ge B$ if A and B are self-adjoint operators and $A - B \ge 0$, for any $A, B \in B(\mathcal{H})$.

2 Preliminaries

Let us recall some definitions and basic properties of C*-algebras and Hilbert C*-modules that we need in the rest of the parer. A Banach *-algebra \mathcal{A} is called a C*-algebra if it satises $||a^*a||^2 = ||a||$ for any $a \in \mathcal{A}$. An element a of a C*-algebra \mathcal{A} is positive if there exists $b \in \mathcal{A}$ such that $a = b^*b$. We write $a \ge 0$ to mean that a is positive. The relation " \leq " given by

748

$a \leq b$ if and only if b - a is positive

defines a partial ordering on \mathcal{A} . Let \mathcal{A} be a C*-algebra then the absolute value of a is defined by $|a| = (a^*a)^{\frac{1}{2}}$. For undefined notions and more details on C*-algebra theory, we refer to [5].

Let \mathcal{A} be a C*-algebra and let \mathcal{H} be a right \mathcal{A} -module. \mathcal{H} is a pre-Hilbert \mathcal{A} -module if \mathcal{H} is equipped with an \mathcal{A} -valued inner product $\langle ., . \rangle : \mathcal{H} \times \mathcal{H} \to \mathcal{A}$ that possesses the following properties,

(i) $\langle u, u \rangle \ge 0$, for all $u \in \mathcal{H}$ and $\langle u, u \rangle = 0$ if and only if u = 0;

(*ii*) $\langle u, \alpha v + \beta w \rangle = \alpha \langle u, v \rangle + \beta \langle u, w \rangle$, for all $\alpha, \beta \in \mathbb{C}$ and $u, v, w \in \mathcal{H}$;

(*iii*) $\langle u, v \rangle = \langle v, u \rangle^*$, for all $u, v \in \mathcal{H}$;

 $(iv) \langle u, va \rangle = \langle u, v \rangle a$, for all $a \in \mathcal{A}$ and $u, v \in \mathcal{H}$;

The action of \mathcal{A} on \mathcal{H} is \mathbb{C} - and \mathcal{A} -linear, i.e., $\mu(ua) = u(\mu a) = (\mu u)a$ for every $\mu \in \mathbb{C}$, $a \in \mathcal{A}$ and $u \in \mathcal{H}$. For $u \in \mathcal{H}$, we define $||u|| = ||\langle u, u \rangle||^{\frac{1}{2}}$. If \mathcal{H} is complete with ||.||, it is called a Hilbert \mathcal{A} -module or a Hilbert C*-module over \mathcal{A} .

The C*-algebra \mathcal{A} itself can be recognized as a Hilbert \mathcal{A} -module with the inner product $\langle a, b \rangle = a^*b$ for any $a, b \in \mathcal{A}$. For a C*-algebra \mathcal{A} the standard Hilbert \mathcal{A} -module $\ell^2(\mathcal{A})$ is defined by

$$\ell^{2}(\mathcal{A}) = \{\{a_{j}\}_{j \in \mathbb{N}} : \sum_{j \in \mathbb{N}} a_{j}^{*}a_{j} \ converges \ in \ \mathcal{A}\}$$

with \mathcal{A} -inner product $\langle \{a_j\}_{j\in\mathbb{N}}, \{b_j\}_{j\in\mathbb{N}} \rangle = \sum_{j\in\mathbb{N}} a_j^* b_j$. Let \mathcal{H} and \mathcal{K} be two Hilbert modules over C*-algebra \mathcal{A} . A map $T : \mathcal{H} \to \mathcal{K}$ is said to be adjointable if there exists a mapping $T^* : \mathcal{K} \to \mathcal{H}$ satisfying $\langle Tu, v \rangle = \langle u, T^*v \rangle$ where $u \in \mathcal{H}$ and $v \in \mathcal{K}$. The mapping T^* is called the adjoint of T.

For every u in Hilbert C*-module \mathcal{H} we define the absolute value of u as the unique positive square root of $\langle u, u \rangle$, that is, $|u| = \langle u, u \rangle^{\frac{1}{2}}$. We refer the reader to [3, 7, 8] for more information on Hilbert C*-modules.

The following Lemma is the Bohr inequality in Hilbert C*-modules (see [4]).

Lemma 2.1. Suppose that $u, v \in \mathcal{H}$. (i) If $\lambda > 0$, then

$$|u \mp v|^2 \le (1+\lambda)|u|^2 + (1+\frac{1}{\lambda})|v|^2,$$

(*ii*) If $\lambda < 0$, then

$$|u \mp v|^2 \ge (1+\lambda)|u|^2 + (1+\frac{1}{\lambda})|v|^2.$$

Furthermore, in (i) and (ii) the equality holds if and only if $\lambda u = v$.

In 2011, Dadipour and Moslehian [1] introduced operator version of the Dunkl-Williams inequality with respect to the p-angular distance as a generalization of the Theorem 1.1 as follows:

Theorem 2.2. Let a, b in C^* -algebra \mathcal{A} such that |a| and |b| are invertible, $\frac{1}{r} + \frac{1}{s} = 1$ (r > 1) and $p \in \mathbb{R}$. Then

$$\begin{aligned} |a|a|^{p-1} - b|b|^{p-1}|^2 \\ &\leq |a|^{p-1}[r|a-b|^2 + s(|a|^{1-p}|b|^p - |b|)(|b|^p|a|^{1-p} - |b|)]|a|^{p-1}. \end{aligned}$$

The equality holds if and only if $(r-1)(a-b)|a|^{p-1} = b(|a|^{p-1} - |b|^{p-1})$.

In this paper they extend Theorem 2.2 to the Hilbert C*-modules case.

Theorem 2.3. Let u, v be elements of a Hilbert C^* -module \mathcal{H} such that |u|and |v| are invertible, $\frac{1}{r} + \frac{1}{s} = 1$ (r > 1) and $p \in \mathbb{R}$. Then

$$\begin{aligned} |u|u|^{p-1} &- v|v|^{p-1}|^2 \\ &\leq |u|^{p-1}[r|u-v|^2 + s(|u|^{1-p}|v|^p - |v|)(|v|^p|u|^{1-p} - |v|)]|u|^{p-1}. \end{aligned}$$

The equality holds if and only if $(r-1)(u-v)|u|^{p-1} = v(|u|^{p-1} - |v|^{p-1})$.

We improve Theorem 2.3 without assumption of the invertibility of the absolute value of operator v.

In the sequel we denote \mathcal{H} and \mathcal{K} as Hilbert modules over a unital C*algebra \mathcal{A} with unit e.

3 Main Results

We have the following generalization of the Dunkl-Williams type inequality [2] in the framework of Hilbert C^{*}-modules. As a result, Theorem 2.3 is extended without demanding the invertibility of |v|.

Theorem 3.1. Let u, v be two elements of \mathcal{H} . If \mathcal{A} is unital and a, b are elements in \mathcal{A} such that a is invertible, $\lambda > 0$, then

$$|ua - vb|^{2} \le a^{*} \left((1+\lambda)|u - v|^{2} + (1+\frac{1}{\lambda})|vba^{-1} - v|^{2} \right) a.$$

The reverse inequality is valid for $\lambda < 0$. The equality holds if and only if $\lambda(u-v)a = v(a-b)$.

Proof. First observe that

$$a^*|u-v|^2 a = a^* \langle u-v, u-v \rangle a = \langle (u-v)a, (u-v)a \rangle = |(u-v)a|^2.$$
(3)

Also,

$$|vba^{-1} - v|^{2} = \langle vba^{-1} - v, vba^{-1} - v \rangle$$

= $\langle vba^{-1}, vba^{-1} \rangle - \langle vba^{-1}, v \rangle - \langle v, vba^{-1} \rangle + \langle v, v \rangle$
= $(a^{*})^{-1}b^{*}|v|^{2}ba^{-1} - (a^{*})^{-1}b^{*}|v|^{2} - |v|^{2}ba^{-1} + |v|^{2},$ (4)

By multiplying a^* and a from the left and right (4), respectively, we have

$$a^{*}|vba^{-1} - v|^{2}a = b^{*}|v|^{2}b - b^{*}|v|^{2}a - a^{*}|v|^{2}b + a^{*}|v|^{2}a$$
$$= \langle vb, vb \rangle - \langle vb, va \rangle - \langle va, vb \rangle + \langle va, va \rangle$$
$$= -\langle vb, va - vb \rangle + \langle va, va - vb \rangle$$
$$= \langle va - vb, va - vb \rangle$$
$$= |v(a - b)|^{2}.$$
(5)

Using (3), (5) and the part (i) of Lemma 2.1, we obtain

$$\begin{aligned} |ua - vb|^2 &= |(u - v)a + v(a - b)|^2 \\ &\leq (1 + \lambda)|(u - v)a|^2 + (1 + \frac{1}{\lambda})|v(a - b)|^2 \\ &= (1 + \lambda)a^*|u - v|^2a + (1 + \frac{1}{\lambda})a^*|vba^{-1} - v|^2a \\ &= a^*\left((1 + \lambda)|u - v|^2 + (1 + \frac{1}{\lambda})|vba^{-1} - v|^2\right)a. \end{aligned}$$

The reverse inequality followed from (3), (5) and the part (ii) of Lemma 2.1. The equality case follows from Lemma 2.1.

Lemma 3.2. Let $u \in \mathcal{H}$ and a, b be two elements of C^* -algebra \mathcal{A} such that a is invertible then

$$||u|ba^{-1} - |u||^2 = |uba^{-1} - u|^2.$$

Proof. By definition of $|u|^2 = \langle u, u \rangle$, we have

$$\begin{split} |uba^{-1} - u|^2 &= \langle uba^{-1} - u, uba^{-1} - u \rangle \\ &= \langle uba^{-1}, uba^{-1} \rangle - \langle uba^{-1}, u \rangle - \langle u, uba^{-1} \rangle + \langle u, u \rangle \\ &= (a^*)^{-1}b^*|u|^2 ba^{-1} - (a^*)^{-1}b^*|u|^2 - |u|^2 ba^{-1} + |u|^2 \\ &= ((a^*)^{-1}b^*|u| - |u|)(|u|ba^{-1} - |u|) \\ &= (|u|ba^{-1} - |u|)^*(|u|ba^{-1} - |u|) \\ &= ||u|ba^{-1} - |u| |^2. \end{split}$$

Which complete the proof.

The following Theorem follows by applying Theorem 3.1 and Lemma 3.2.

Theorem 3.3. Let u, v be two elements of \mathcal{H} . If \mathcal{A} is unital and a, b are elements in \mathcal{A} such that a is invertible, $\lambda > 0$, then

$$|ua - vb|^{2} \le a^{*} \left((1+\lambda)|u - v|^{2} + (1+\frac{1}{\lambda})||v|ba^{-1} - |v||^{2} \right) a.$$

The reverse inequality is valid for $\lambda < 0$. The equality holds if and only if $\lambda(u-v)a = v(a-b)$.

We have the following result.

Corollary 3.4. Theorem 3.3 gives Theorem 2.3.

Proof. Let us put $a = |u|^{p-1}$, $b = |v|^{p-1}$, $\lambda = r-1$ in Theorem 3.3. Then $a^* = |u|^{p-1}$ and $\frac{1}{\lambda} = \frac{1}{r-1} = s-1$, where $\frac{1}{r} + \frac{1}{s} = 1$, so

$$\begin{aligned} \left| u|u|^{p-1} - v|v|^{p-1} \right|^2 &\leq |u|^{p-1} \left(r|u-v|^2 + s||v||v|^{p-1}|u|^{1-p} - |v||^2 \right) |u|^{p-1} \\ &= |u|^{p-1} \left(r|u-v|^2 + s||v|^p|u|^{1-p} - |v||^2 \right) |u|^{p-1} \\ &= |u|^{p-1} \left(r|u-v|^2 + s[(|v|^{p}|u|^{1-p} - |v|)^*(|v|^p|u|^{1-p} - |v|) \right) |u|^{p-1} \\ &= |u|^{p-1} \left(r|u-v|^2 + s[(|u|^{1-p}|v|^p - |v|)(|v|^p|u|^{1-p} - |v|) \right) |u|^{p-1}. \end{aligned}$$

The equality holds if and only if

$$\lambda(u-v)a = v(a-b) \Leftrightarrow (r-1)(u-v)|u|^{p-1} = v(|u|^{p-1} - |v|^{p-1}).$$

Remark 3.5. Theorem 2.2 followed from Theorem 3.3 if we set $u = a, v = b, a = |a|^{p-1}, b = |b|^{p-1}$

A special case of Theorem 3.3, where the Hilbert module is the $B(\mathcal{H})$ over itself gives rise to the main result of Pečarić and Rajić [6].

Corollary 3.6. Theorem 3.3 gives Theorem 1.1 if we put $u = A, v = B, a = |A|^{-1}, b = |B|^{-1}$.

We give the following Example for discussion on Theorem 3.3.

Example 3.7. Let \mathcal{A} be the C*-algebra of the set of all diagonal matrices in $M_{2\times 2}(\mathbb{C})$ and suppose \mathcal{A} is the Hilbert \mathcal{A} -module over itself. (Here, diagonal matrix means a 2×2 matrix (a_{ij}) such that $a_{11} = a, a_{22} = b$ and $a_{12} = a_{21} = 0$, for $a, b \in \mathbb{C}$.) Consider the following matrices

$$u = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}, \qquad v = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}$$

and

$$a = \left(\begin{array}{cc} 1 & 0\\ 0 & 1 \end{array}\right), \qquad b = \left(\begin{array}{cc} 1 & 0\\ 0 & 0 \end{array}\right)$$

Then we have

$$D := |ua - vb|^{2} - a^{*} \left((1 + \lambda)|u - v|^{2} + (1 + \frac{1}{\lambda})||v|ba^{-1} - |v||^{2} \right) a$$
$$= \begin{pmatrix} -4\lambda & 0\\ 0 & -\frac{4\lambda^{2} + 7\lambda + 4}{\lambda} \end{pmatrix}$$

The matrix $D \leq 0$ if $\lambda > 0$ and $D \geq 0$ if $\lambda < 0$. Note that the matrix b is not invertible.

References

.

- F. Dadipour and M.S. Moslehian, An approach to operator Dunkl-Williams inequalities, Publ. Math. Debrecen, 79 (1-2) (2011), 109–118
- [2] C.F. Dunkl and K.S. Williams, A simple norm inequality, Amer. Math. Monthly., 71 (1964), 53–54.
- [3] E.C. Lance, Hilbert C*-Modules, London Math. Soc. Lecture Note Series, 210, Cambridge University Press, Cambridge, 1995.
- [4] M.S. Moslehian and R. Rajić, Generalizations of Bohrs inequality in Hilbert C*-modules, Linear Multilinear Alg., 58 (3) (2010), 323–331.
- [5] J.G. Murphy, Operator Theory and C*-Algebras, Academic Press, San Diego, 1990.
- [6] J. Pečarić and R. Rajić, Inequalities of the Dunkl-Williams type for absolute value operators, J. Math. Inequal., 4 (1) (2010), 1–10, .
- [7] I. Raeburn and D.P. Williams, Morita Equivalence and Continuous-Trace C*-Algebras, London Math. Soc. Lecture Note Series, 210, Mathematical Surveys and Monographs, 60, American Mathematical Society (AMS), Providence, RI, 1998.
- [8] N. Wegge–Olsen, K-Theory and C*-Algebras A Friendly Approch, Oxford University press, Oxford, England, 1993.

Received: July, 2014