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Generalized Dunkl-Williams inequality
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Abstract

Dunkl and Williams showed that
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for any nonzero elements u, v in a normed linear space X. Pečarić and
Rajić gave a refinement and, moreover, a generalization to operators
A,B belong to the algebra B(H) of all bounded linear operators on a
separable complex Hilbert space H, such that |A|, |B| are invertible as
follows:

|A|A|−1 −B|B|−1|2 ≤ |A|−1(r|A−B|2 + s(|A| − |B|)2)|A|−1,

where r, s > 1 with 1

r
+ 1

s
= 1.

In this paper, we generalized this inequality in the framework of Hilbert
C*-modules. As a consequence we investigate this inequality without
assumption of the invertibility of the absolute value of operator B.
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1 Introduction

Suppose that B(H) denotes the algebra of all bounded linear operators on a
separable complex Hilbert space H.

In [2], Dunkl and Williams showed that for any nonzero elements u, v in a
normed linear space X
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Pečarić and Rajić [6] gave the following refinement of (1): For any nonzero
elements u, v in a normed linear space X

∥

∥

∥

∥

u

‖u‖
−

v

‖v‖

∥

∥

∥

∥

≤

√

2‖u− v‖2 + 2(‖u‖ − ‖v‖)2

max{‖u‖, ‖v‖}
. (2)

Also in [6] they generalized the inequality (2) to the operators A,B belong to
the algebra B(H) such that |A|, |B| are invertible as follows:

Theorem 1.1. Let A,B ∈ B(H) of all bounded linear operators acting on
a complex Hilbert space H such that |A| and |B| are invertible, and let r, s > 1
with 1

r
+ 1

s
= 1. Then

|A|A|−1 −B|B|−1|2 ≤ |A|−1(r|A−B|2 + s(|A| − |B|)2)|A|−1.

The equality holds if and only if (r − 1)(A− B)|A|−1 = B(|A|−1 − |B|−1).

Where |C| = (C∗C)
1

2 denotes the absolute value of C ∈ B(H). Note that
A ≥ 0 means that 〈Ax, x〉 ≥ 0 for all x ∈ H , and A ≤ 0 represents that
−A ≥ 0, and A ≥ B if A and B are self-adjoint operators and A−B ≥ 0, for
any A,B ∈ B(H).

2 Preliminaries

Let us recall some definitions and basic properties of C*-algebras and Hilbert
C*-modules that we need in the rest of the parer. A Banach ∗-algebra A is
called a C*-algebra if it satises ‖a∗a‖2 = ‖a‖ for any a ∈ A. An element a of
a C*-algebra A is positive if there exists b ∈ A such that a = b∗b. We write
a ≥ 0 to mean that a is positive. The relation ” ≤ ” given by
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a ≤ b if and only if b− a is positive

defines a partial ordering on A. Let A be a C*-algebra then the absolute value
of a is defined by |a| = (a∗a)

1

2 . For undefined notions and more details on
C*-algebra theory, we refer to [5].

Let A be a C*-algebra and let H be a right A-module. H is a pre-Hilbert
A-module if H is equipped with an A-valued inner product 〈., .〉 : H×H → A
that possesses the following properties,
(i) 〈u, u〉 ≥ 0, for all u ∈ H and 〈u, u〉 = 0 if and only if u = 0;
(ii) 〈u, αv + βw〉 = α〈u, v〉+ β〈u, w〉, for all α, β ∈ C and u, v, w ∈ H;
(iii) 〈u, v〉 = 〈v, u〉∗, for all u, v ∈ H;
(iv) 〈u, va〉 = 〈u, v〉a, for all a ∈ A and u, v ∈ H;
The action of A on H is C- and A-linear, i.e., µ(ua) = u(µa) = (µu)a for

every µ ∈ C, a ∈ A and u ∈ H. For u ∈ H, we define ‖u‖ = ‖〈u, u〉‖
1

2 . If H
is complete with ‖.‖, it is called a Hilbert A-module or a Hilbert C*-module
over A.
The C*-algebra A itself can be recognized as a Hilbert A-module with the
inner product 〈a, b〉 = a∗b for any a, b ∈ A. For a C*-algebra A the standard
Hilbert A-module ℓ2(A) is defined by

ℓ2(A) = {{aj}j∈N :
∑

j∈N

a∗jaj converges in A}

with A-inner product 〈{aj}j∈N, {bj}j∈N〉 =
∑

j∈N
a∗jbj . Let H and K be two

Hilbert modules over C*-algebraA. A map T : H → K is said to be adjointable
if there exists a mapping T ∗ : K → H satisfying 〈Tu, v〉 = 〈u, T ∗v〉 where
u ∈ H and v ∈ K. The mapping T ∗ is called the adjoint of T .

For every u in Hilbert C*-module H we define the absolute value of u as
the unique positive square root of 〈u, u〉, that is, |u| = 〈u, u〉

1

2 . We refer the
reader to [3, 7, 8] for more information on Hilbert C*-modules.

The following Lemma is the Bohr inequality in Hilbert C*-modules (see
[4]).

Lemma 2.1. Suppose that u, v ∈ H.
(i) If λ > 0, then

|u∓ v|2 ≤ (1 + λ)|u|2 + (1 +
1

λ
)|v|2,

(ii) If λ < 0, then

|u∓ v|2 ≥ (1 + λ)|u|2 + (1 +
1

λ
)|v|2.

Furthermore, in (i) and (ii) the equality holds if and only if λu = v.
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In 2011, Dadipour and Moslehian [1] introduced operator version of the
Dunkl-Williams inequality with respect to the p-angular distance as a gener-
alization of the Theorem 1.1 as follows:

Theorem 2.2. Let a, b in C*-algebra A such that |a| and |b| are invertible,
1

r
+ 1

s
= 1 (r > 1) and p ∈ R. Then

|a|a|p−1 − b|b|p−1|2

≤ |a|p−1[r|a− b|2 + s(|a|1−p|b|p − |b|)(|b|p|a|1−p − |b|)]|a|p−1.

The equality holds if and only if (r − 1)(a− b)|a|p−1 = b(|a|p−1 − |b|p−1).

In this paper they extend Theorem 2.2 to the Hilbert C*-modules case.

Theorem 2.3. Let u, v be elements of a Hilbert C*-module H such that |u|
and |v| are invertible, 1

r
+ 1

s
= 1 (r > 1) and p ∈ R. Then

|u|u|p−1 − v|v|p−1|2

≤ |u|p−1[r|u− v|2 + s(|u|1−p|v|p − |v|)(|v|p|u|1−p − |v|)]|u|p−1.

The equality holds if and only if (r − 1)(u− v)|u|p−1 = v(|u|p−1 − |v|p−1).

We improve Theorem 2.3 without assumption of the invertibility of the
absolute value of operator v.

In the sequel we denote H and K as Hilbert modules over a unital C*-
algebra A with unit e.

3 Main Results

We have the following generalization of the Dunkl-Williams type inequality [2]
in the framework of Hilbert C*-modules. As a result, Theorem 2.3 is extended
without demanding the invertibility of |v|.

Theorem 3.1. Let u, v be two elements of H. If A is unital and a, b are
elements in A such that a is invertible, λ > 0, then

|ua− vb|2 ≤ a∗
(

(1 + λ)|u− v|2 + (1 +
1

λ
)|vba−1 − v|2

)

a.

The reverse inequality is valid for λ < 0. The equality holds if and only if
λ(u− v)a = v(a− b).

Proof. First observe that

a∗|u− v|2a = a∗〈u− v, u− v〉a = 〈(u− v)a, (u− v)a〉 = |(u− v)a|2. (3)
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Also,

|vba−1 − v|2 = 〈vba−1 − v, vba−1 − v〉

= 〈vba−1, vba−1〉 − 〈vba−1, v〉 − 〈v, vba−1〉+ 〈v, v〉

= (a∗)−1b∗|v|2ba−1 − (a∗)−1b∗|v|2 − |v|2ba−1 + |v|2, (4)

By multiplying a∗ and a from the left and right (4), respectively, we have

a∗|vba−1 − v|2a = b∗|v|2b− b∗|v|2a− a∗|v|2b+ a∗|v|2a

= 〈vb, vb〉 − 〈vb, va〉 − 〈va, vb〉+ 〈va, va〉

= −〈vb, va− vb〉+ 〈va, va− vb〉

= 〈va− vb, va− vb〉

= |v(a− b)|2. (5)

Using (3), (5) and the part (i) of Lemma 2.1, we obtain

|ua− vb|2 = |(u− v)a+ v(a− b)|2

≤ (1 + λ)|(u− v)a|2 + (1 +
1

λ
)|v(a− b)|2

= (1 + λ)a∗|u− v|2a + (1 +
1

λ
)a∗|vba−1 − v|2a

= a∗
(

(1 + λ)|u− v|2 + (1 +
1

λ
)|vba−1 − v|2

)

a.

The reverse inequality followed from (3), (5) and the part (ii) of Lemma 2.1.
The equality case follows from Lemma 2.1.

Lemma 3.2. Let u ∈ H and a, b be two elements of C*-algebra A such that
a is invertible then

||u|ba−1 − |u| |2 = |uba−1 − u|2.

Proof. By definition of |u|2 = 〈u, u〉, we have

|uba−1 − u|2 = 〈uba−1 − u, uba−1 − u〉

= 〈uba−1, uba−1〉 − 〈uba−1, u〉 − 〈u, uba−1〉+ 〈u, u〉

= (a∗)−1b∗|u|2ba−1 − (a∗)−1b∗|u|2 − |u|2ba−1 + |u|2

= ((a∗)−1b∗|u| − |u|)(|u|ba−1 − |u|)

= (|u|ba−1 − |u|)∗(|u|ba−1 − |u|)

= ||u|ba−1 − |u| |2.

Which complete the proof.
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The following Theorem follows by applying Theorem 3.1 and Lemma 3.2.

Theorem 3.3. Let u, v be two elements of H. If A is unital and a, b are
elements in A such that a is invertible, λ > 0, then

|ua− vb|2 ≤ a∗
(

(1 + λ)|u− v|2 + (1 +
1

λ
)||v|ba−1 − |v| |2

)

a.

The reverse inequality is valid for λ < 0. The equality holds if and only if
λ(u− v)a = v(a− b).

We have the following result.

Corollary 3.4. Theorem 3.3 gives Theorem 2.3.

Proof. Let us put a = |u|p−1, b = |v|p−1, λ = r − 1 in Theorem 3.3. Then
a∗ = |u|p−1 and 1

λ
= 1

r−1
= s− 1, where 1

r
+ 1

s
= 1, so

∣

∣u|u|p−1 − v|v|p−1
∣

∣

2
≤ |u|p−1

(

r|u− v|2 + s||v||v|p−1|u|1−p − |v| |2
)

|u|p−1

= |u|p−1
(

r|u− v|2 + s||v|p|u|1−p − |v| |2
)

|u|p−1

= |u|p−1
(

r|u− v|2 + s[(|v|p|u|1−p − |v|)∗(|v|p|u|1−p − |v|)
)

|u|p−1

= |u|p−1
(

r|u− v|2 + s[(|u|1−p|v|p − |v|)(|v|p|u|1−p − |v|)
)

|u|p−1.

The equality holds if and only if

λ(u− v)a = v(a− b) ⇔ (r − 1)(u− v)|u|p−1 = v(|u|p−1 − |v|p−1).

Remark 3.5. Theorem 2.2 followed from Theorem 3.3 if we set u = a, v =
b, a = |a|p−1, b = |b|p−1

A special case of Theorem 3.3, where the Hilbert module is the B(H) over
itself gives rise to the main result of Pečarić and Rajić [6].

Corollary 3.6. Theorem 3.3 gives Theorem 1.1 if we put u = A, v = B, a =
|A|−1, b = |B|−1.

We give the following Example for discussion on Theorem 3.3.

Example 3.7. Let A be the C*-algebra of the set of all diagonal matrices
in M2×2(C) and suppose A is the Hilbert A-module over itself. (Here, diagonal
matrix means a 2×2 matrix (aij) such that a11 = a, a22 = b and a12 = a21 = 0,
for a, b ∈ C.) Consider the following matrices

u =

(

−1 0
0 1

)

, v =

(

1 0
0 2

)
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and

a =

(

1 0
0 1

)

, b =

(

1 0
0 0

)

Then we have

D : = |ua− vb|2 − a∗
(

(1 + λ)|u− v|2 + (1 +
1

λ
)||v|ba−1 − |v| |2

)

a

=

(

−4λ 0

0 −4λ2+7λ+4

λ

)

The matrix D ≤ 0 if λ > 0 and D ≥ 0 if λ < 0. Note that the matrix b is not
invertible.
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