Generalized Dunkl-Williams inequality

Bahram Dastourian
Department of Mathematics
Dehdasht Branch, Islamic Azad University
Dehdasht, Iran
bdastorian@gmail.com
\section*{Khodarahm Marzban}
Department of Mathematics
Dehdasht Branch, Islamic Azad University
Dehdasht, Iran
khmarzban@yahoo.com

Nasiballah Mohammadi

Department of Mathematics
Dehdasht Branch, Islamic Azad University
Dehdasht, Iran
nmohammadi@yahoo.com

$$
\begin{aligned}
& \text { Abstract } \\
& \text { Dunkl and Williams showed that } \\
& \left\|\frac{u}{\|u\|}-\frac{v}{\|v\|}\right\| \leq \frac{4\|u-v\|}{\|u\|+\|v\|} .
\end{aligned}
$$

for any nonzero elements u, v in a normed linear space X. Pečarić and Rajić gave a refinement and, moreover, a generalization to operators A, B belong to the algebra $B(\mathcal{H})$ of all bounded linear operators on a separable complex Hilbert space \mathcal{H}, such that $|A|,|B|$ are invertible as follows:

$$
\left.|A| A\right|^{-1}-\left.B|B|^{-1}\right|^{2} \leq|A|^{-1}\left(r|A-B|^{2}+s(|A|-|B|)^{2}\right)|A|^{-1}
$$

where $r, s>1$ with $\frac{1}{r}+\frac{1}{s}=1$.
In this paper, we generalized this inequality in the framework of Hilbert C^{*}-modules. As a consequence we investigate this inequality without assumption of the invertibility of the absolute value of operator B.

Mathematics Subject Classification: Primary 46L08; Secondary 26D15, 47A63.

Keywords: C*-algebra, Dunkl-Williams inequality, Hilbert C*-module, operator inequality.

1 Introduction

Suppose that $B(\mathcal{H})$ denotes the algebra of all bounded linear operators on a separable complex Hilbert space \mathcal{H}.

In [2], Dunkl and Williams showed that for any nonzero elements u, v in a normed linear space X

$$
\begin{equation*}
\left\|\frac{u}{\|u\|}-\frac{v}{\|v\|}\right\| \leq \frac{4\|u-v\|}{\|u\|+\|v\|} \tag{1}
\end{equation*}
$$

Pečarić and Rajić [6] gave the following refinement of (1): For any nonzero elements u, v in a normed linear space X

$$
\begin{equation*}
\left\|\frac{u}{\|u\|}-\frac{v}{\|v\|}\right\| \leq \frac{\sqrt{2\|u-v\|^{2}+2(\|u\|-\|v\|)^{2}}}{\max \{\|u\|,\|v\|\}} \tag{2}
\end{equation*}
$$

Also in [6] they generalized the inequality (2) to the operators A, B belong to the algebra $B(\mathcal{H})$ such that $|A|,|B|$ are invertible as follows:

Theorem 1.1. Let $A, B \in B(\mathcal{H})$ of all bounded linear operators acting on a complex Hilbert space H such that $|A|$ and $|B|$ are invertible, and let $r, s>1$ with $\frac{1}{r}+\frac{1}{s}=1$. Then

$$
\left.|A| A\right|^{-1}-\left.B|B|^{-1}\right|^{2} \leq|A|^{-1}\left(r|A-B|^{2}+s(|A|-|B|)^{2}\right)|A|^{-1}
$$

The equality holds if and only if $(r-1)(A-B)|A|^{-1}=B\left(|A|^{-1}-|B|^{-1}\right)$.
Where $|C|=\left(C^{*} C\right)^{\frac{1}{2}}$ denotes the absolute value of $C \in B(\mathcal{H})$. Note that $A \geq 0$ means that $\langle A x, x\rangle \geq 0$ for all $x \in H$, and $A \leq 0$ represents that $-A \geq 0$, and $A \geq B$ if A and B are self-adjoint operators and $A-B \geq 0$, for any $A, B \in B(\mathcal{H})$.

2 Preliminaries

Let us recall some definitions and basic properties of C^{*}-algebras and Hilbert C^{*}-modules that we need in the rest of the parer. A Banach $*$-algebra \mathcal{A} is called a C^{*}-algebra if it satises $\left\|a^{*} a\right\|^{2}=\|a\|$ for any $a \in \mathcal{A}$. An element a of a C^{*}-algebra \mathcal{A} is positive if there exists $b \in \mathcal{A}$ such that $a=b^{*} b$. We write $a \geq 0$ to mean that a is positive. The relation " $\leq "$ given by

$$
a \leq b \text { if and only if } b-a \text { is positive }
$$

defines a partial ordering on \mathcal{A}. Let \mathcal{A} be a C^{*}-algebra then the absolute value of a is defined by $|a|=\left(a^{*} a\right)^{\frac{1}{2}}$. For undefined notions and more details on C^{*}-algebra theory, we refer to [5].

Let \mathcal{A} be a C^{*}-algebra and let \mathcal{H} be a right \mathcal{A}-module. \mathcal{H} is a pre-Hilbert \mathcal{A}-module if \mathcal{H} is equipped with an \mathcal{A}-valued inner product $\langle.,\rangle:. \mathcal{H} \times \mathcal{H} \rightarrow \mathcal{A}$ that possesses the following properties,
(i) $\langle u, u\rangle \geq 0$, for all $u \in \mathcal{H}$ and $\langle u, u\rangle=0$ if and only if $u=0$;
(ii) $\langle u, \alpha v+\beta w\rangle=\alpha\langle u, v\rangle+\beta\langle u, w\rangle$, for all $\alpha, \beta \in \mathbb{C}$ and $u, v, w \in \mathcal{H}$;
(iii) $\langle u, v\rangle=\langle v, u\rangle^{*}$, for all $u, v \in \mathcal{H}$;
(iv) $\langle u, v a\rangle=\langle u, v\rangle a$, for all $a \in \mathcal{A}$ and $u, v \in \mathcal{H}$;

The action of \mathcal{A} on \mathcal{H} is \mathbb{C} - and \mathcal{A}-linear, i.e., $\mu(u a)=u(\mu a)=(\mu u) a$ for every $\mu \in \mathbb{C}, a \in \mathcal{A}$ and $u \in \mathcal{H}$. For $u \in \mathcal{H}$, we define $\|u\|=\|\langle u, u\rangle\|^{\frac{1}{2}}$. If \mathcal{H} is complete with $\|$.$\| , it is called a Hilbert \mathcal{A}$-module or a Hilbert C^{*}-module over \mathcal{A}.
The C^{*}-algebra \mathcal{A} itself can be recognized as a Hilbert \mathcal{A}-module with the inner product $\langle a, b\rangle=a^{*} b$ for any $a, b \in \mathcal{A}$. For a C^{*}-algebra \mathcal{A} the standard Hilbert \mathcal{A}-module $\ell^{2}(\mathcal{A})$ is defined by

$$
\ell^{2}(\mathcal{A})=\left\{\left\{a_{j}\right\}_{j \in \mathbb{N}}: \sum_{j \in \mathbb{N}} a_{j}^{*} a_{j} \text { converges in } \mathcal{A}\right\}
$$

with \mathcal{A}-inner product $\left\langle\left\{a_{j}\right\}_{j \in \mathbb{N}},\left\{b_{j}\right\}_{j \in \mathbb{N}}\right\rangle=\sum_{j \in \mathbb{N}} a_{j}^{*} b_{j}$. Let \mathcal{H} and \mathcal{K} be two Hilbert modules over C^{*}-algebra \mathcal{A}. A map $T: \mathcal{H} \rightarrow \mathcal{K}$ is said to be adjointable if there exists a mapping $T^{*}: \mathcal{K} \rightarrow \mathcal{H}$ satisfying $\langle T u, v\rangle=\left\langle u, T^{*} v\right\rangle$ where $u \in \mathcal{H}$ and $v \in \mathcal{K}$. The mapping T^{*} is called the adjoint of T.

For every u in Hilbert C^{*}-module \mathcal{H} we define the absolute value of u as the unique positive square root of $\langle u, u\rangle$, that is, $|u|=\langle u, u\rangle^{\frac{1}{2}}$. We refer the reader to $[3,7,8]$ for more information on Hilbert C^{*}-modules.

The following Lemma is the Bohr inequality in Hilbert C^{*}-modules (see [4]).

Lemma 2.1. Suppose that $u, v \in \mathcal{H}$.
(i) If $\lambda>0$, then

$$
|u \mp v|^{2} \leq(1+\lambda)|u|^{2}+\left(1+\frac{1}{\lambda}\right)|v|^{2}
$$

(ii) If $\lambda<0$, then

$$
|u \mp v|^{2} \geq(1+\lambda)|u|^{2}+\left(1+\frac{1}{\lambda}\right)|v|^{2}
$$

Furthermore, in (i) and (ii) the equality holds if and only if $\lambda u=v$.

In 2011, Dadipour and Moslehian [1] introduced operator version of the Dunkl-Williams inequality with respect to the p-angular distance as a generalization of the Theorem 1.1 as follows:

Theorem 2.2. Let a, b in C^{*}-algebra \mathcal{A} such that $|a|$ and $|b|$ are invertible, $\frac{1}{r}+\frac{1}{s}=1(r>1)$ and $p \in \mathbb{R}$. Then

$$
\begin{aligned}
\left.|a| a\right|^{p-1} & -\left.b|b|^{p-1}\right|^{2} \\
& \leq|a|^{p-1}\left[r|a-b|^{2}+s\left(|a|^{1-p}|b|^{p}-|b|\right)\left(|b|^{p}|a|^{1-p}-|b|\right)\right]|a|^{p-1} .
\end{aligned}
$$

The equality holds if and only if $(r-1)(a-b)|a|^{p-1}=b\left(|a|^{p-1}-|b|^{p-1}\right)$.
In this paper they extend Theorem 2.2 to the Hilbert C*-modules case.
Theorem 2.3. Let u, v be elements of a Hilbert C^{*}-module \mathcal{H} such that $|u|$ and $|v|$ are invertible, $\frac{1}{r}+\frac{1}{s}=1(r>1)$ and $p \in \mathbb{R}$. Then

$$
\begin{aligned}
\left.|u| u\right|^{p-1} & -\left.v|v|^{p-1}\right|^{2} \\
& \leq|u|^{p-1}\left[r|u-v|^{2}+s\left(|u|^{1-p}|v|^{p}-|v|\right)\left(|v|^{p}|u|^{1-p}-|v|\right)\right]|u|^{p-1} .
\end{aligned}
$$

The equality holds if and only if $(r-1)(u-v)|u|^{p-1}=v\left(|u|^{p-1}-|v|^{p-1}\right)$.
We improve Theorem 2.3 without assumption of the invertibility of the absolute value of operator v.

In the sequel we denote \mathcal{H} and \mathcal{K} as Hilbert modules over a unital C^{*} algebra \mathcal{A} with unit e.

3 Main Results

We have the following generalization of the Dunkl-Williams type inequality [2] in the framework of Hilbert C*-modules. As a result, Theorem 2.3 is extended without demanding the invertibility of $|v|$.

Theorem 3.1. Let u, v be two elements of \mathcal{H}. If \mathcal{A} is unital and a, b are elements in \mathcal{A} such that a is invertible, $\lambda>0$, then

$$
|u a-v b|^{2} \leq a^{*}\left((1+\lambda)|u-v|^{2}+\left(1+\frac{1}{\lambda}\right)\left|v b a^{-1}-v\right|^{2}\right) a .
$$

The reverse inequality is valid for $\lambda<0$. The equality holds if and only if $\lambda(u-v) a=v(a-b)$.

Proof. First observe that

$$
\begin{equation*}
a^{*}|u-v|^{2} a=a^{*}\langle u-v, u-v\rangle a=\langle(u-v) a,(u-v) a\rangle=|(u-v) a|^{2} . \tag{3}
\end{equation*}
$$

Also,

$$
\begin{align*}
\left|v b a^{-1}-v\right|^{2} & =\left\langle v b a^{-1}-v, v b a^{-1}-v\right\rangle \\
& =\left\langle v b a^{-1}, v b a^{-1}\right\rangle-\left\langle v b a^{-1}, v\right\rangle-\left\langle v, v b a^{-1}\right\rangle+\langle v, v\rangle \\
& =\left(a^{*}\right)^{-1} b^{*}|v|^{2} b a^{-1}-\left(a^{*}\right)^{-1} b^{*}|v|^{2}-|v|^{2} b a^{-1}+|v|^{2}, \tag{4}
\end{align*}
$$

By multiplying a^{*} and a from the left and right (4), respectively, we have

$$
\begin{align*}
a^{*}\left|v b a^{-1}-v\right|^{2} a & =b^{*}|v|^{2} b-b^{*}|v|^{2} a-a^{*}|v|^{2} b+a^{*}|v|^{2} a \\
& =\langle v b, v b\rangle-\langle v b, v a\rangle-\langle v a, v b\rangle+\langle v a, v a\rangle \\
& =-\langle v b, v a-v b\rangle+\langle v a, v a-v b\rangle \\
& =\langle v a-v b, v a-v b\rangle \\
& =|v(a-b)|^{2} . \tag{5}
\end{align*}
$$

Using (3), (5) and the part (i) of Lemma 2.1, we obtain

$$
\begin{aligned}
|u a-v b|^{2} & =|(u-v) a+v(a-b)|^{2} \\
& \leq(1+\lambda)|(u-v) a|^{2}+\left(1+\frac{1}{\lambda}\right)|v(a-b)|^{2} \\
& =(1+\lambda) a^{*}|u-v|^{2} a+\left(1+\frac{1}{\lambda}\right) a^{*}\left|v b a^{-1}-v\right|^{2} a \\
& =a^{*}\left((1+\lambda)|u-v|^{2}+\left(1+\frac{1}{\lambda}\right)\left|v b a^{-1}-v\right|^{2}\right) a .
\end{aligned}
$$

The reverse inequality followed from (3), (5) and the part (ii) of Lemma 2.1. The equality case follows from Lemma 2.1.

Lemma 3.2. Let $u \in \mathcal{H}$ and a, b be two elements of C^{*}-algebra \mathcal{A} such that a is invertible then

$$
\| u\left|b a^{-1}-|u|\right|^{2}=\left|u b a^{-1}-u\right|^{2} .
$$

Proof. By definition of $|u|^{2}=\langle u, u\rangle$, we have

$$
\begin{aligned}
\left|u b a^{-1}-u\right|^{2} & =\left\langle u b a^{-1}-u, u b a^{-1}-u\right\rangle \\
& =\left\langle u b a^{-1}, u b a^{-1}\right\rangle-\left\langle u b a^{-1}, u\right\rangle-\left\langle u, u b a^{-1}\right\rangle+\langle u, u\rangle \\
& =\left(a^{*}\right)^{-1} b^{*}|u|^{2} b a^{-1}-\left(a^{*}\right)^{-1} b^{*}|u|^{2}-|u|^{2} b a^{-1}+|u|^{2} \\
& =\left(\left(a^{*}\right)^{-1} b^{*}|u|-|u|\right)\left(|u| b a^{-1}-|u|\right) \\
& =\left(|u| b a^{-1}-|u|\right)^{*}\left(|u| b a^{-1}-|u|\right) \\
& =\| u\left|b a^{-1}-|u|\right|^{2} .
\end{aligned}
$$

Which complete the proof.

The following Theorem follows by applying Theorem 3.1 and Lemma 3.2.
Theorem 3.3. Let u, v be two elements of \mathcal{H}. If \mathcal{A} is unital and a, b are elements in \mathcal{A} such that a is invertible, $\lambda>0$, then

$$
|u a-v b|^{2} \leq a^{*}\left((1+\lambda)|u-v|^{2}+\left(1+\frac{1}{\lambda}\right)| | v\left|b a^{-1}-|v|\right|^{2}\right) a .
$$

The reverse inequality is valid for $\lambda<0$. The equality holds if and only if $\lambda(u-v) a=v(a-b)$.

We have the following result.
Corollary 3.4. Theorem 3.3 gives Theorem 2.3.
Proof. Let us put $a=|u|^{p-1}, b=|v|^{p-1}, \lambda=r-1$ in Theorem 3.3. Then $a^{*}=|u|^{p-1}$ and $\frac{1}{\lambda}=\frac{1}{r-1}=s-1$, where $\frac{1}{r}+\frac{1}{s}=1$, so

$$
\begin{aligned}
\left.|u| u\right|^{p-1}-\left.v|v|^{p-1}\right|^{2} & \leq|u|^{p-1}\left(r|u-v|^{2}+\left.s| | v| | v\right|^{p-1}|u|^{1-p}-\left.|v|\right|^{2}\right)|u|^{p-1} \\
& =|u|^{p-1}\left(r|u-v|^{2}+\left.s| | v\right|^{p}|u|^{1-p}-\left.|v|\right|^{2}\right)|u|^{p-1} \\
& =|u|^{p-1}\left(r|u-v|^{2}+s\left[\left(|v|^{p}|u|^{1-p}-|v|\right)^{*}\left(|v|^{p}|u|^{1-p}-|v|\right)\right)|u|^{p-1}\right. \\
& =|u|^{p-1}\left(r|u-v|^{2}+s\left[\left(|u|^{1-p}|v|^{p}-|v|\right)\left(|v|^{p}|u|^{1-p}-|v|\right)\right)|u|^{p-1} .\right.
\end{aligned}
$$

The equality holds if and only if

$$
\lambda(u-v) a=v(a-b) \Leftrightarrow(r-1)(u-v)|u|^{p-1}=v\left(|u|^{p-1}-|v|^{p-1}\right) .
$$

Remark 3.5. Theorem 2.2 followed from Theorem 3.3 if we set $u=a, v=$ $b, a=|a|^{p-1}, b=|b|^{p-1}$

A special case of Theorem 3.3, where the Hilbert module is the $B(\mathcal{H})$ over itself gives rise to the main result of Pečarić and Rajić [6].

Corollary 3.6. Theorem 3.3 gives Theorem 1.1 if we put $u=A, v=B, a=$ $|A|^{-1}, b=|B|^{-1}$.

We give the following Example for discussion on Theorem 3.3.
Example 3.7. Let \mathcal{A} be the C^{*}-algebra of the set of all diagonal matrices in $M_{2 \times 2}(\mathbb{C})$ and suppose \mathcal{A} is the Hilbert \mathcal{A}-module over itself. (Here, diagonal matrix means a 2×2 matrix $\left(a_{i j}\right)$ such that $a_{11}=a, a_{22}=b$ and $a_{12}=a_{21}=0$, for $a, b \in \mathbb{C}$.) Consider the following matrices

$$
u=\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right), \quad v=\left(\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right)
$$

and

$$
a=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), \quad b=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)
$$

Then we have

$$
\begin{aligned}
& D: \\
&=|u a-v b|^{2}-a^{*}\left((1+\lambda)|u-v|^{2}+\left(1+\frac{1}{\lambda}\right)| | v\left|b a^{-1}-|v|\right|^{2}\right) a \\
&=\left(\begin{array}{cc}
-4 \lambda & 0 \\
0 & -\frac{4 \lambda^{2}+7 \lambda+4}{\lambda}
\end{array}\right)
\end{aligned}
$$

The matrix $D \leq 0$ if $\lambda>0$ and $D \geq 0$ if $\lambda<0$. Note that the matrix b is not invertible.

References

[1] F. Dadipour and M.S. Moslehian, An approach to operator DunklWilliams inequalities, Publ. Math. Debrecen, 79 (1-2) (2011), 109-118
[2] C.F. Dunkl and K.S. Williams, A simple norm inequality, Amer. Math. Monthly., 71 (1964), 53-54.
[3] E.C. Lance, Hilbert C*-Modules, London Math. Soc. Lecture Note Series, 210, Cambridge University Press, Cambridge, 1995.
[4] M.S. Moslehian and R. Rajić, Generalizations of Bohrs inequality in Hilbert C*-modules, Linear Multilinear Alg., 58 (3) (2010), 323-331.
[5] J.G. Murphy, Operator Theory and C*-Algebras, Academic Press, San Diego, 1990.
[6] J. Pečarić and R. Rajić, Inequalities of the Dunkl-Williams type for absolute value operators, J. Math. Inequal., 4 (1) (2010), 1-10, .
[7] I. Raeburn and D.P. Williams, Morita Equivalence and Continuous-Trace C*-Algebras, London Math. Soc. Lecture Note Series, 210, Mathematical Surveys and Monographs, 60, American Mathematical Society (AMS), Providence, RI, 1998.
[8] N. Wegge-Olsen, K-Theory and C*-Algebras - A Friendly Approch, Oxford University press, Oxford, England, 1993.

Received: July, 2014

