Mathematica Aeterna, Vol. 6, 2016, no. 4, 521-526

Generalized Derivations of Hom-Lie color algebras

Yi Zhao
School of Mathematics and Statistics
Northeast Normal University

Abstract

In this paper, we give some basic properties of the generalized derivation algebra $\operatorname{GDer}(L)$ of a Hom-Lie color algebra L. In particular, we prove that $\operatorname{GDer}(L)=\operatorname{QDer}(L)+\mathrm{QC}(L)$.

Mathematics Subject Classification: 17A40, 17B10, 17B56
Keywords: Hom-Lie color algebras; Generalized derivations; Quasiderivations; Centroids.

1 Introduction

Hom-Lie color algebras are a generalization of Lie algebras, where the classical Jacobi identity is twisted by a linear map. The purpose of this paper is to generalize some beautiful results to the generalized derivation algebra of a Hom-Lie color algebra. In this paper, we mainly study the derivation algebra $\operatorname{Der}(L)$, the center derivation algebra $\mathrm{ZDer}(L)$, the quasiderivation algebra $\operatorname{QDer}(L)$, and the generalized derivation algebra $\operatorname{GDer}(L)$ of a Hom-Lie color algebra L.

2 Preliminary Notes

Throughout this paper \mathbf{K} is a field of characteristic zero . A vector space V is Γ-graded, Let V and W be two Γ-graded vectors spaces. A linear map $f: V \rightarrow W$ is said to be homogeneous of degree $\xi \in \Gamma$, if $f(x)$ is homogeneous of degree $\gamma+\xi$ for all the element $x \in V_{\gamma}$. The set of all such maps is denoted by $\operatorname{Hom}(V, W)_{\xi}$. It is a subspace of $\operatorname{Hom}(V, W)$, the vector space of all linear maps from V into W.

Definition 2.1 [1] Let \mathbf{K} and Γ be an abelian group, A map $\Gamma \times \Gamma \rightarrow \mathbf{K}^{*}$ is called a skew-symmetric bi-character on Γ if the following identities hold,for all x, y,z,in Γ
(1) $\varepsilon(x, y) \varepsilon(y, x)=1$,
(2) $\varepsilon(x, y+z)=\varepsilon(x, y) \varepsilon(x, z)$,
(3) $\varepsilon(x+y, z)=\varepsilon(x, z) \varepsilon(y, z)$,

If x and y are two homogeneous elements of degree θ and degree μ,respectively and ε is a skew-symmetric bi-character, then we shorten the notation by writing $\varepsilon(x, y)$ instead of $\varepsilon(\theta, \mu)$.

Definition 2.2 [1] A Hom-Lie color algebra is a quadruple ($L,[\cdot, \cdot], \varepsilon, \alpha$) consisting of a Γ-graded vector space L, a bi-character ε, an even bilinear mapping $[\cdot, \cdot]: L \times L \rightarrow L$ (i.e. $\left[L_{\theta}, L_{\mu}\right] \subseteq L_{\theta+\mu}$ for all $\theta, \mu \in \Gamma$) and an even homomorphism $\alpha: L \rightarrow L$ such that for homogeneous elements $x, y, z \in L$ we have
(1) $[x, y]=-\varepsilon(x, y)[y, x]$,
(2) $\varepsilon(z, x)[\alpha(x),[y, z]]+\varepsilon(x, y)[\alpha(y),[z, x]]+\varepsilon(y, z)[\alpha(z),[x, y]]=0$.

Let $(L,[\cdot, \cdot], \varepsilon, \alpha)$ be a Hom Lie color algebra.It is called multiplicative Hom Lie color algebra if $\alpha[x, y]=[\alpha(x), \alpha(y)]$.

Definition 2.3 [3] Let $(L,[\cdot, \cdot], \alpha)$ be a Hom-Lie color algebra and define the following subvector space \mho of $\operatorname{End}(L)$ consisting of even linear maps u on L as follows:

$$
\mathcal{\mho}=\{u \in \operatorname{End}(L) \mid u \alpha=\alpha u\}
$$

and $\sigma: \mho \rightarrow \mho ; \sigma(u)=\alpha u$. Then \mho is a Hom-Lie color algebra over \mathbf{K} with the bracket

$$
\left[D_{\theta}, D_{\mu}\right]=D_{\theta} D_{\mu}-\varepsilon(\theta, \mu) D_{\mu} D_{\theta}
$$

for all $D_{\theta}, D_{\mu} \in \operatorname{hg}(\mho)$.
Definition 2.4 [3] Let $(L,[\cdot, \cdot], \alpha)$ be a multiplicative Hom-Lie color algebra. A homogeneous bilinear map $D: L \rightarrow L$ is said to be an α^{k}-derivation of L, where $k \in \mathbf{N}$, if it satisfies

$$
\begin{gathered}
D \alpha=\alpha D \\
{\left[D(x), \alpha^{k}(y)\right]+\varepsilon(D, x)\left[\alpha^{k}(x), D(y)\right]=D([x, y])}
\end{gathered}
$$

$\forall x \in \operatorname{hg}(L), y \in L$.
We denote the set of all α^{k}-derivations by $\operatorname{Der}_{\alpha^{k}}(L)$, then $\operatorname{Der}(L):=\bigoplus_{k \geq 0} \operatorname{Der}_{\alpha^{k}}(L)$ provided with the super-commutator and the following even map

$$
\tilde{\alpha}: \operatorname{Der}(\mathrm{L}) \rightarrow \operatorname{Der}(\mathrm{L}) ; \quad \tilde{\alpha}(\mathrm{D})=\mathrm{D} \alpha
$$

is a Hom-subalgebra of \mho and is called the derivation algebra of L.

Definition 2.5 [1] An endomorphism $D \in \operatorname{hg}(\operatorname{Der}(L))$ is said to be a homogeneous generalized α^{k}-derivation of L, if there exist two endomorphisms $D^{\prime}, D^{\prime \prime} \in h g(\operatorname{End}(L))$ such that such that

$$
\begin{gather*}
D \alpha=\alpha D, D \alpha^{\prime}=\alpha^{\prime} D, D \alpha^{\prime \prime}=\alpha^{\prime \prime} D \\
{\left[D(x), \alpha^{k}(y)\right]+\varepsilon(D, x)\left[\alpha^{k}(x), D^{\prime}(y)\right]=D^{\prime \prime}([x, y]),} \tag{1.1}
\end{gather*}
$$

for all $x \in \operatorname{hg}(L), y \in L I f f$ is a quasiderivation of L, for convenience , we write all triple ($\left.f, f^{\prime}, f^{\prime \prime}\right)$ satisfied (1.1) as $\Gamma(L)$.

Definition 2.6 [1] An endomorphism $D \in \operatorname{hg}(\operatorname{Der}(L))$ is said to be a homogeneous α^{k}-quasiderivation, if there exists an endomorphism $D^{\prime} \in h g(\operatorname{End}(L))$ such that

$$
\begin{gather*}
D \alpha=\alpha D, D \alpha^{\prime}=\alpha^{\prime} D \\
{\left[D(x), \alpha^{k}(y)\right]+\varepsilon(D, x)\left[\alpha^{k}(x), D(y)\right]=D^{\prime}([x, y])} \tag{1.2}
\end{gather*}
$$

for all $x \in \operatorname{hg}(L), y \in L$.
Let $\operatorname{GDer}_{\alpha^{k}}(L)$ and $\operatorname{QDer}_{\alpha^{k}}(L)$ be the sets of homogeneous generalized α^{k} derivations and of homogeneous α^{k}-quasiderivations, respectively. That is

$$
\operatorname{GDer}(L):=\bigoplus_{k \geq 0} \operatorname{GDer}_{\alpha^{k}}(L), \quad \operatorname{QDer}(L):=\bigoplus_{k \geq 0} \operatorname{QDer}_{\alpha^{k}}(L)
$$

It is easy to verify that both $\operatorname{GDer}(L)$ and $\operatorname{QDer}(L)$ are Hom-subalgebras of U (see Proposition 2.1)

Definition 2.7 [1] If $\mathrm{C}(L):=\bigoplus_{k \geq 0} \mathrm{C}_{\alpha^{k}}(L)$, with $\mathrm{C}_{\alpha^{k}}(L)$ consisting of $D \in$ $h g(\operatorname{End}(L))$ satisfying

$$
\begin{gathered}
D \alpha=\alpha D \\
{\left[D(x), \alpha^{k}(y)\right]=\varepsilon(D, x)\left[\alpha^{k}(x), D(y)\right]=D([x, y])}
\end{gathered}
$$

for all $x \in \operatorname{hg}(L), y \in L$, then $\mathrm{C}(L)$ is called an α^{k}-centroid of L.
Definition 2.8 [1] If $\mathrm{QC}(L):=\bigoplus_{k \geq 0} \mathrm{QC}_{\alpha^{k}}(L)$ with $\mathrm{QC}_{\alpha^{k}}(L)$ consisting of $D \in h g(\operatorname{End}(L))$ such that

$$
\left[D(x), \alpha^{k}(y)\right]=\varepsilon(D, x)\left[\alpha^{k}(x), D(y)\right]
$$

for all $x \in \operatorname{hg}(L), y \in L$, then $\mathrm{QC}(L)$ is called an α^{k}-quasicentroid of L.
Define $\operatorname{ZDer}(L):=\bigoplus_{k \geq 0} \operatorname{Der}_{\alpha^{k}}(L)$, where $\operatorname{Der}_{\alpha^{k}}(L)$ consists of $D \in h g(\operatorname{End}(L))$ such that

$$
\left[D(x), \alpha^{k}(y)\right]=D([x, y])=0
$$

for all $x \in \operatorname{hg}(L), y \in L$.
Definition 2.9 [3] Let $(L,[\cdot, \cdot], \alpha)$ be a multiplicative Hom-Lie color algebra. If $\mathrm{Z}(L):=\bigoplus_{\theta \in \Gamma} \mathrm{Z}_{\theta}(L)$, with $\mathrm{Z}_{\theta}(L)=\left\{x \in L_{\theta} \mid[x, y]=0, \forall x \in \operatorname{hg}(L), y \in\right.$ $L\}$, then $\mathrm{Z}(L)$ is called the center of L.

3 Main Results

Lemma 3.1 Let $(L,[\cdot, \cdot], \alpha)$ be a multiplicative Hom-Lie color algebra. Then the following statements hold:
(1) $\operatorname{GDer}(L), \mathrm{QGer}(L)$ and $\mathrm{C}(L)$ are Hom-subalgebras of \mho.
(2) $\operatorname{ZDer}(L)$ is a Hom-ideal of $\operatorname{Der}(L)$.

Proof. Assume that $D_{1} \in \operatorname{GDer}_{\alpha^{k}}(L), D_{2} \in \operatorname{GDer}_{\alpha^{s}}(L), \forall x \in \operatorname{hg}(L)$ and $y \in L$. We have

$$
\begin{aligned}
{\left[\left(\tilde{\alpha}\left(D_{1}\right)\right)(x), \alpha^{k+1}(y)\right] } & =\left[\left(D_{1} \alpha\right)(x), \alpha^{k+1}(y)\right]=\alpha\left[D_{1}(x), \alpha^{k}(y)\right] \\
& \left.=\tilde{\alpha}\left(D_{1}^{\prime \prime}\right)([x, y])-\varepsilon\left(D_{1}, x\right)\left[\alpha^{k+1}(x), \tilde{\alpha}\left(D_{1}^{\prime}\right)(y)\right]\right) .
\end{aligned}
$$

Since both $\tilde{\alpha}\left(D_{1}^{\prime \prime}\right)$ and $\tilde{\alpha}\left(D_{1}^{\prime}\right)$ are in $h g(\operatorname{End}(L)), \tilde{\alpha}\left(D_{1}\right) \in \operatorname{GDer}_{\alpha^{k+1}}(L)$.
We also have

$$
\begin{aligned}
{\left[D_{1} D_{2}(x), \alpha^{k+s}(y)\right] } & =D_{1}^{\prime \prime} D_{2}^{\prime \prime}([x, y])+\varepsilon\left(D_{1}, D_{2}\right) \varepsilon\left(D_{1}, x\right) \varepsilon\left(D_{2}, x\right)\left[\alpha^{s+k}(x), D_{2}^{\prime} D_{1}^{\prime}(y)\right] \\
& \left.-\varepsilon\left(D_{1}, D_{2}\right) \varepsilon\left(D_{1}, x\right)\left[\alpha^{k}(x), D_{1}^{\prime}(y)\right]\right)-\varepsilon\left(D_{2}, x\right) D_{1}^{\prime \prime}\left(\left[\alpha^{s}(x), D_{2}^{\prime}(y)\right]\right)
\end{aligned}
$$

and

$$
\begin{aligned}
{\left[D_{2} D_{1}(x), \alpha^{k+s}(y)\right] } & =D_{2}^{\prime \prime} D_{1}^{\prime \prime}([x, y])+\varepsilon\left(D_{2}, D_{1}\right) \varepsilon\left(D_{2}, x\right) \varepsilon\left(D_{1}, x\right)\left[\alpha^{s+k}(x), D_{1}^{\prime} D_{2}^{\prime}(y)\right] \\
& -\varepsilon\left(D_{2}, D_{1}\right) \varepsilon\left(D_{2}, x\right) D_{1}^{\prime \prime}\left(\left[\alpha^{s}(x), D_{2}^{\prime}(y)\right]\right)-\varepsilon\left(D_{1}, x\right) D_{2}^{\prime \prime}\left(\left[\alpha^{k}(x), D_{1}^{\prime}(y)\right]\right) .
\end{aligned}
$$

Thus for all $x \in \operatorname{hg}(L)$ and $y \in L$, we have

$$
\left[\left[D_{1}, D_{2}\right](x), \alpha^{k+s}(y)\right]=\left[D_{1}^{\prime \prime}, D_{2}^{\prime \prime}\right]([x, y])-\varepsilon\left(D_{1}, x\right) \varepsilon\left(D_{2}, x\right)\left[\alpha^{k+s}(x),\left[D_{1}^{\prime}, D_{2}^{\prime}\right](y)\right] .
$$

Since both $\left[D_{1}^{\prime}, D_{2}^{\prime}\right]$ and $\left[D_{1}^{\prime \prime}, D_{2}^{\prime \prime}\right]$ are in $h g(\operatorname{End}(L)),\left[D_{1}, D_{2}\right] \in \operatorname{GDer}_{\alpha^{k+s}}(L)$, $\operatorname{GDer}(L)$ is a Hom-subalgebra of \mho.

Similarly, $\operatorname{QGer}(L)$ is a Hom-subalgebra of \mho.
(2) Assume that $D_{1} \in \operatorname{ZDer}_{\alpha^{k}}(L), D_{2} \in \operatorname{Der}_{\alpha^{s}}(L), \forall x \in \operatorname{hg}(L), y \in L$. Then

$$
\left[\tilde{\alpha}\left(D_{1}\right)(x), \alpha^{k+1}(y)\right]=\alpha\left(\left[D_{1}(x), \alpha^{k}(y)\right]\right)=\alpha D_{1}([x, y])=\tilde{\alpha}\left(D_{1}\right)([x, y])=0
$$

So $\tilde{\alpha}\left(D_{1}\right) \in \operatorname{ZDer}_{\alpha^{k+1}}(L)$. Note that

$$
\left[\left[D_{1}, D_{2}\right]([x, y])\right]=D_{1} D_{2}([x, y])-\varepsilon\left(D_{1}, D_{2}\right) D_{2} D_{1}([x, y])=0
$$

and

$$
\begin{aligned}
{\left[\left[D_{1}, D_{2}\right](x), \alpha^{s+k}(y)\right] } & =\left[\left(D_{1} D_{2}-\varepsilon\left(D_{1}, D_{2}\right) D_{2} D_{1}\right)(x), \alpha^{s+k}(y)\right] \\
& =-\varepsilon\left(D_{2}, D_{1}\right) \varepsilon\left(D_{2}, x\right)\left[D_{\theta}\left(\alpha^{s}(x)\right), \alpha^{k}\left(D_{\mu}(y)\right)\right]=0 .
\end{aligned}
$$

Then $\left[D_{1}, D_{2}\right] \in \operatorname{ZDer}_{\alpha^{k+s}}(L)$, Thus $\mathrm{ZDer}(L)$ is a Hom-ideal of $\operatorname{Der}(L)$.

Lemma 3.2 Let $(L,[\cdot, \cdot], \alpha)$ be a multiplicative Hom-Lie color algebra. Then
(1) $[\operatorname{Der}(L), \mathrm{C}(L)] \subseteq \mathrm{C}(L)$.
(2) $[\mathrm{QDer}(L), \mathrm{QC}(L)] \subseteq \mathrm{QC}(L)$.

Proof. Assume that $D_{1} \in \operatorname{Der}_{\alpha^{k}}(L), D_{2} \in \mathrm{C}_{\alpha^{s}}(L), \forall x \in \operatorname{hg}(L)$ and $y \in L$. We have

$$
\begin{aligned}
{\left[D_{1} D_{2}(x), \alpha^{k+s}(y)\right] } & =D_{1}\left(\left[D_{2}(x), \alpha^{s}(y)\right]\right)-\varepsilon\left(D_{1}, D_{2}\right) \varepsilon\left(D_{1}, x\right)\left[\alpha^{k}\left(D_{2}(x)\right), D_{1}\left(\alpha^{s}(y)\right)\right] \\
& =D_{1} D_{2}([x, y])-\varepsilon\left(D_{1}, D_{2}\right) \varepsilon\left(D_{1}, x\right) \varepsilon\left(D_{2}, x\right)\left[\alpha^{k+s}(x), D_{2} D_{1}(y)\right]
\end{aligned}
$$

and

$$
\begin{aligned}
{\left[D_{2} D_{1}(x), \alpha^{k+s}(y)\right] } & =D_{2}\left(\left[D_{1}(x), \alpha^{k}(y)\right]\right) \\
& =D_{2} D_{1}([x, y])-\varepsilon\left(D_{1}, x\right) \varepsilon\left(D_{2}, x\right)\left[\alpha^{k+s}(x), D_{2} D_{1}(y)\right]
\end{aligned}
$$

On the other hand,

$$
\begin{aligned}
& {\left[D_{1} D_{2}(x), \alpha^{k+s}(y)\right]=} D_{1}\left(\left[D_{2}(x), \alpha^{s}(y)\right]\right)-\varepsilon\left(D_{1}, D_{2}\right) \varepsilon\left(D_{1}, x\right)\left[\alpha^{k}\left(D_{2}(x)\right), D_{1}\left(\alpha^{s}(y)\right)\right] \\
&= \varepsilon\left(D_{2}, x\right)\left[D_{1}\left(\alpha^{s}(x)\right), \alpha^{k}\left(D_{2}(y)\right)\right]+\varepsilon\left(D_{1}, x\right) \varepsilon\left(D_{2}, x\right)\left[\alpha^{k+s}(x), D_{1} D_{2}(y)\right] \\
&-\varepsilon\left(D_{1}, D_{2}\right) \varepsilon\left(D_{1}, x\right) \varepsilon\left(D_{2}, x\right)\left[\alpha^{k+s}(x), D_{2} D_{1}(y)\right] \\
& {\left[D_{2} D_{1}(x), \alpha^{k+s}(y)\right]=\varepsilon\left(D_{2}, D_{1}\right) \varepsilon\left(D_{2}, x\right)\left[D_{1}\left(\alpha^{s}(x)\right), \alpha^{k}\left(D_{2}(y)\right)\right] . }
\end{aligned}
$$

Then

$$
\begin{aligned}
{\left[\left[D_{1}, D_{2}\right](x), \alpha^{k+s}(y)\right] } & =\left[D_{1} D_{2}(x), \alpha^{k+s}(y)\right]-\varepsilon\left(D_{1}, D_{2}\right)\left[D_{2} D_{1}(x), \alpha^{k+s}(y)\right] \\
& =\varepsilon\left(D_{1}, x\right) \varepsilon\left(D_{2}, x\right)\left[\alpha^{k+s}(x),\left[D_{1}, D_{2}\right](y)\right]
\end{aligned}
$$

Thus $\left[D_{1}, D_{2}\right] \in \mathrm{C}_{\alpha^{s+k}}(L)$, and we get $[\operatorname{Der}(L), \mathrm{C}(L)] \subseteq \mathrm{C}(L)$.
(2) Similar to the proof of (1).

Theorem 3.3 Let $(L,[\cdot, \cdot], \alpha)$ be a multiplicative Hom-Lie color algebra. Then

$$
\operatorname{GDer}(L)=\mathrm{QDer}(L)+\mathrm{QC}(L) .
$$

Proof. Let $D_{1} \in \operatorname{GDer}_{\alpha^{k}}(L)$. Then for all $x, y \in \operatorname{hg}(L)$, there exist $D_{1}^{\prime}, D_{1}^{\prime \prime} \in$ End (L) such that

$$
\left[D_{1}(x), \alpha^{k}(y)\right]+\varepsilon\left(D_{1}, x\right)\left[\alpha^{k}(x), D_{1}^{\prime}(y)\right]=D_{1}^{\prime \prime}([x, y])
$$

Since $\varepsilon\left(D_{1}, y\right) \varepsilon(x, y)\left[\alpha^{k}(y), D_{1}(x)\right]+\varepsilon(x, y)\left[D_{1}^{\prime}(y), \alpha^{k}(x)\right]=\varepsilon(x, y) D_{1}^{\prime \prime}([y, x])$,

$$
\left[D_{1}^{\prime}(y), \alpha^{k}(x)\right]+\varepsilon\left(D_{1}, y\right)\left[\alpha^{k}(y), D_{1}(x)\right]=D_{1}^{\prime \prime}([y, x])
$$

Hence $D_{1}^{\prime} \in \operatorname{GDer}_{\alpha^{k}}(L)$. For all $x, y \in \operatorname{hg}(L)$, we have

$$
\left[\frac{D_{1}+D_{1}^{\prime}}{2}(x), \alpha^{k}(y)\right]+\varepsilon\left(D_{1}, x\right)\left[\alpha^{k}(x), \frac{D_{1}+D_{1}^{\prime}}{2}(y)\right]=D_{1}^{\prime \prime}([x, y])
$$

and

$$
\left[\frac{D_{1}-D_{1}^{\prime}}{2}(x), \alpha^{k}(y)\right]-\varepsilon\left(D_{1}, x\right)\left[\alpha^{k}(x), \frac{D_{1}-D_{1}^{\prime}}{2}(y)\right]=0,
$$

Hence

$$
D_{1} \in \operatorname{QDer}(L)+\mathrm{QC}(L)
$$

and

$$
\operatorname{GDer}(L) \subseteq \mathrm{QDer}(L)+\mathrm{QC}(L)
$$

It is easy to vertify that $\mathrm{QDer}(L)+\mathrm{QC}(L) \subseteq \mathrm{GDer}(L)$. Therefore $\mathrm{QDer}(L)+$ $\mathrm{QC}(L)=\operatorname{GDer}(L)$.

ACKNOWLEDGEMENTS. The authors thank Professor Liangyun Chen for their helpful com- ments and suggestions. We also give our special thanks to referees for many helpful suggestions.

References

[1] Abdaoui K., Ammar F. and Makhlouf A., Constructions and cohomology of color Hom-Lie algebras. arXiv:1307.2612 (2013).
[2] Ammar F. and Makhlouf A., Hom-Lie superalgebras and Hom-Lie admissible superalgebras. J. Algebra 324 (2010), no. 7, 1513-1528.
[3] Ammar F., Ayadi I., Mabrouk S. and Makhlouf A., Quadratic color HomLie algebras. arXiv:1204.5155 (2012).
[4] Ammar F., Makhlouf A. and Saadoui N, Cohomology of Hom-Lie superalgebras and q-deforemed Witt superalgebra. arXiv:1204.6244 (2012).
[5] Benoist Y., La partie semi-simple de l'algèbre des dérivations d'une algèbre de Lie nilpotente, C. R. Acad. Sci. Paris 307 (1988), 901-904.
[6] Chen L., Ma Y. and Ni L., Gerneralized derivations of Lie color algebras. Results Math. 63 (2013), no. 3-4, 923-936.
[7] Gohr A., On Hom-algebras with surjective twisting, J. Algebra 324 (2010), no. 7, 1483-1491.
[8] Hartwig J., Larsson D. and Silvestrov S., Deformations of Lie algebras using σ-derivations. J. Algebra 295 (2006), no. 2, 314-361.

Received: July, 2016

