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Abstract

The classical Stone—Weierstrass theorem is generalized in two di-

rections. In the first of them, the assumption of compactness of the

domain of definition is weakened to countable compactness, and in the

second, we waive topological assumptions at all, due to substitution of

a topology by a convergence, and thereon the topological continuity by

the sequential one.
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Introduction

In this article, the classical Stone – Weierstrass theorem is generalized in two
directions. In Section 1, the compactness assumption is weakened, and in
Section 2 topological assumptions are waived at all, due to substitution of
a topology in the domain of definition of functions by a convergence, and
thereon the topological continuity by the sequential one. Thus modified for-
mulation appears natural in the situation when we proceed from some a priori
convergence (say the ordinal convergence in an ordered set, in particular the
dominated pointwise convergence of functions) and are not interested in the
topology – either generating this convergence or generated by it. This situation
is illustrated in Example 2.12.
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1 Generalization for functions on a countably

compact topological space

Recall that a vector space over a field K is called linear ring (or algebra,
but this term is ambiguous) over this field if it is equipped with an associa-
tive multiplication that is distributive w. r. t. the addition and obeys the law
(αx)y = α(xy) = x(αy), where α is a scalar, and x, y are vectors. A linear
ring containing unity is called unital.

By C(T ) we denote the set of all complex-valued continuous functions on
a topological space T .

The Stone – Weierstrass theorem has two versions: for real and for complex
functions. The latter reads (see, e. g., Theorem IV.6.17 in [2]):

Let T be a compact topological space, and B be a unital linear subring

of C(T ). Suppose that B separates points of T and contains the conjugate of

every its element. Then B is dense in C(T ).
In this theorem, the Hausdorff property of T need not be postulated (as

is usually done), because it ensues, as one can easily see, from the separation
condition.

Recall that a set in a topological set is called countably compact if every
its countable open covering contains a finite subcovering. The following two
statements are well-known.

Lemma 1.1. Let f be a continuous mapping of a countably compact topo-

logical space T into some topological space. Then the set im f is also countably

compact.

Lemma 1.2. In order that a topological space T be countably compact it is

necessary and sufficient that every decreasing sequence of its non-void closed

subsets have a non-void intersection.

Corollary 1.3 (of Lemma 1.1). Every continuous function on a countably

compact topological space is bounded and attains both its exact bounds.

Corollary 1.3 allows us to endow C(T ) with the uniform norm ‖x‖ =
max
t∈T

|x(t)|, thus converting it into a Banach space (its completeness is a fa-

miliar fact — see, e. g., Section IV.6 in [2]). So C(T ) is a Banach algebra.

Proposition 1.4. Let T be a countably compact topological space such that

C(T ) separates its points. Then every maximal ideal in C(T ) is of the form

Ms = {x(·) : x(s) = 0}.

Proof. If a continuous function on T does not vanish at any point, then by
Corollary 1.3 both its exact bounds are nonzero. Hence this function is an
invertible element of the linear ring C(T ) and, consequently, cannot belong to
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any proper ideal. So any maximal (and therefore, by definition, proper) ideal
consists only of functions vanishing at least at one point. Obviously, all the
ideals Ms are maximal.

Let t1 and t2 be two different points of T . The assumption that C(T )
separates points of T implies that

Mti \Mt3−i
6= ∅, i = 1, 2. (1)

If I is an ideal such that x(t1) = 0 = x(t2) for all x ∈ I, then I ⊂ Mt1 ∩Mt2 ,
which together with (1) implies that I is a proper subset of both Mt1 and Mt2 .
So I is not maximal.

Note that the above proof has few common with that for compact T (see,
e. g., Example 11.13a in [5]).

Let MA denote the set of all characters (linear multiplicative functionals)
on a Banach algebra A (in case A = C(T ) we write simply M). The expression
χ(x), where χ ∈ MA and x ∈ A, will be otherwise written as x̂(χ), so that
x̂ is a linear functional on MA. As usually, we equip MA with Tikhonov’s
topology. As is easily seen, it coincides with the topology induced by all x̂. It
is well known that the topological space MA is Hausdorff and compact (see
[3, Lemma IX.2.8] or [5, Theorem 11.9a]), so one can endow C (MA) with the
uniform norm. The first Gelfand – Neumark theorem ([3, Lemma IX.3.6], [5,
Theorem 11.18]) states that, for any commutative C∗-algebra A (in particular,
for A = C(T )) the mapping x 7→ x̂ is an isometrical isomorphism of A onto
C (MA).

Theorem 1.5. Let T be a countably compact topological space, and B be a

unital linear subring of the linear ring C(T ). Suppose that B separates points

of T and contains the conjugate of every its element. Then B is dense in

C(T ).

Proof. Denote B̂ = {x̂, x ∈ B} (⊂ C(M)). Obviously, this is a linear ring.

The C∗-algebras C(T ) and C(M) being isometric, it suffices to show that B̂ is
dense in C(M). Gelfand’s theorem on the one-to-one correspondence between
characters and maximal ideals ([3, Lemma IX.2.1], [5, Theorem 11.5]) and
Proposition 1.4 imply together that M = {δs, s ∈ T}, where δsx = x(s). Let
δt1 6= δt2 . Then, obviously, t1 6= t2, whence by the separation assumption there

exists x ∈ B such that x(t1) 6= x(t2), or, the same, x̂ (δt1) 6= x̂ (δt2). Thus B̂

separated points of M.
The ring B being unital, so is B̂. Its unity is 1̂ – the functional equal to 1

on all characters.
Furthermore, for any x ∈ C(T ) x̂ = ̂̄x (the bar signifies complex conju-

gation) by Theorem 11.18 in [5]. Thus B̂ contains the conjugate of every its
element.
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Now, denseness of B̂ in C(M) follows from compactness of M and the
Stone – Weierstrass theorem.

2 Generalizations for functions on a sequen-

tially compact convergence space

In what follows, T is an arbitrary (until additional assumptions are imposed)
non-void set, and ι is a mapping of T into 2T

N

\ {∅} (i. e., for each t ∈ T ι[t] is
a non-void set of sequences in T ).

We will say that a set A ⊂ T is ι-closed if for any t ∈ T the relation

AN ∩ ι[t] 6= ∅ (2)

implies that t ∈ A. According to this definition the whole set T is always
ι-closed.

Lemma 2.1. The intersection of an arbitrary collection of ι-closed sets is

a ι-closed set.

Proof. Let A = ∩Aα, where α runs through some set of tags and each Aα is a
ι-closed subset of T . Then AN = ∩AN

α, so one can rewrite (2) in the form

AN

α ∩ ι[t] 6= ∅ for all α.

Hence by the assumption on Aα we have t ∈ Aα for all α.

Lemma 2.1 enables us to define the ι-closure of a set V ⊂ T as the smallest
of ι-closed sets containing V . We say that a function x on T is ι-continuous if
x(tn) → x(t) for every t ∈ T and (tn) ∈ ι[t].

By τι we denote the collection of subsets of T that consists of T and the
complements to all ι-closed sets. We will say, following Fréchet [4], that ι

is a convergence (keeping in mind “in T”) if for every t ∈ T it contains all
subsequences of any sequence (tn) ∈ ι[t] (Fréchet postulated one more property
which in the subsequent theorems will ensue from the separation condition —
see Remark 2.11 below). In this case, the pair (T, ι) will be called a convergence
space, and the prefix ι- will be replaced with the adjective ‘sequential’. We say
that a sequence (tn) in such a space converges to a point t ∈ T if (tn) ∈ ι[t],
which will be otherwise written as tn → t (this, of course, does not exclude
that tn → t′ for some t′ 6= t.) Thus a function x on a convergence space is, by
the definition given given in the previous paragraph, sequentially continuous

if the relation tn → t in the domain of definition entails x(tn) → x(t). The
family of all C-valued sequentially continuous functions on T will be denoted
by Cseq(T ).
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Lemma 2.2. Let ι be a convergence in T . Then the union of any two

ι-closed sets is ι-closed, too.

Proof. Let (tn) ∈ (F1 ∪F2)
N. If Fk contains infinitely many tn’s (by the choice

of the sequence this is true either for k = 1 or for k = 2) and is ι-closed, then
Fk (and all the more F1 ∪ F2) contains every point t such that tn → t.

Combining Lemmas 2.1 and 2.2, we get

Corollary 2.3. Let ι be a convergence in T . Then τι is a topology on T .

Lemma 2.4. Let ι be a convergence in T . Then every sequentially contin-

uous function on T is continuous w. r. t. the topology τι.

Proof. Let x ∈ Cseq(T ) and F be a closed set in C. We have to show that its
pre-image x−1(F ) is ι-closed.

By the choice of x, for an arbitrary sequence (tn) ∈ TN quasi-converging
to some t, one has x(tn) → x(t). If herein x(tn) ∈ F, n ∈ N, then, due to
closedness of F, x(t) ∈ F .

We will say that a convergence space is sequentially compact if every se-
quence of its points contains a convergent subsequence. Since the topological
convergence is, obviously, a particular case of the axiomatic one, this definition
concerns topological spaces, as well. For them, it takes the form adopted in
topology.

The following (familiar) statement is immediate from Lemma 1.2.

Lemma 2.5. Every sequentially compact topological space is countably com-

pact.

We say that a convergence space (T, ι) is sequentially Hausdorff if for any
(tn) ∈ TN there exists at most one t ∈ T such that (tn) ∈ ι[t]. Sequentially
compact sequentially Hausdorff convergence spaces will be called briefly SCH-
spaces.

Lemma 2.6. Let a sequence (tn) in an SCH-space (T, ι) converge to some

t. Then it converges to t in the topological space (T, τι).

Proof. Take an arbitrary τι-neighborhood U of t and denote F = T \ U . This
is a sequentially closed set by the construction of τι. We have to show that F
does not contain eventually all tn’s.

Suppose it is wrong, i. e., there exists an infinite set J0 ⊂ N such that
tn ∈ F for all n ∈ J0. Sequential compactness of (T, ι) implies existence of an
infinite set J ⊂ J0 and a point t′ ∈ T such that tn → t′ as n → ∞, n ∈ J

(and therefore t′ ∈ F ). On the other hand, the sequential Hausdorff property
of the space implies that t′ = t and therefore t′ ∈ U . But U ∩ F = ∅.
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Corollary 2.7. Let (T, ι) be an SCH-space. Then the topological space

(T, τι) is sequentially compact.

Lemma 2.5 and Corollary 2.7 yield together

Corollary 2.8. Let (T, ι) be an SCH-space. Then the topological space

(T, τι) is countably compact.

To avoid misunderstanding of the final results we stress that the symbol T
in the notation Cseq(T ) means a convergence space (T, ι), whereas in C(T ) it
stands for the associated topological space (T, τι).

Theorem 2.9. Let (T, ι) be an SCH-space, and B be a unital linear subring

of Cseq(T ). Suppose that B separates points of T and contains constant func-

tions and the conjugate of every its element. Then B is dense in

C(T ).

Proof. Lemma 2.4 asserts that Cseq(T ) ⊂ C(T ), soB satisfies all the conditions
of Theorem 1.5. So does T due to Corollary 2.8. Consequently, the conclusion
of Theorem 1.5 is valid.

Remark 2.10. Lemma 2.4 allows to substitute C(T ) in Theorems 2.9 by
Cseq(T ), thus somewhat weakening the statement, but excluding the topology
from its assertion.

Remark 2.11. THe assumption that B (and all the more Cseq(T )) contains
unity implies, obviously, that for any t ∈ T the stationary sequence (t, t . . .)
converges to t. So we need not postulate this property of convergence, once
we use this notion only in the theorems where the separation property is a
condition.

Example 2.12. Let M(X) and Cb(X) denote the set of all signed measures
on the Baire σ-algebra in a topological space X and the set of all bounded
continuous complex-valued functions on X , respectively. Recall that the weak

convergence of a sequence (µn) in M(X) to µ ∈ M(X) means, by Defini-
tion 8.1.1 in [1] (introduced by Alexandroff), that

∫
fdµn →

∫
fdµ for every

f ∈ Cb(X). This definition is formulated irrespectively of any topology, so it
is natural to consider M(X) equipped with the weak convergence as a conver-
gence space. This space is sequentially Hausdorff, since every µ ∈ M(X)
is uniquely determined by the values of the integrals

∫
fdµ, f ∈ Cb(X)

[1, Theorem 7.10.1].
We regard vectors from R

d as columns. Then elements of the dual space Rd∗

will be rows. Recall that the characteristic function µ# of a signed measure
µ ∈ M(Rd) is defined by µ#(z) =

∫
eizxµ(dx), where z ranges over Rd∗. For

fixed z, it is a function of µ. We denote this function by ϕz. In other words,
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ϕz(µ) = µ#(z). It is well known (see, e. g., Proposition 3.8.6 in [1]) that
every µ ∈ M(Rd) is uniquely determined by its characteristic function. This
means that the functions ϕz, z ∈ Rd∗, separate points of M(Rd). Each of
them is sequentially continuous by the very definition of the weak convergence.
Furthermore, ϕ0(µ) = µ(Rd) = const and ϕ−z = ϕz. Thus Theorem 2.9 asserts
the following: for any sequentially compact set T ⊂ M(Rd), function Λ ∈ C(T )
and positive number ε, there exist natural numbers n,m1, . . . , mn, complex
numbers c1, . . . , cn and vectors z11, . . . , z1m1

, . . . , zn1, . . . , znmn
∈ R

d∗ such that

∣∣∣∣∣Λ(µ)−
n∑

k=1

ck

mk∏

j=1

µ#(zkj)

∣∣∣∣∣ < ε

for all µ ∈ T .
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