Generalizations of Parallelogram law in Hilbert C*-modules

Bahram Dastourian

Department of Mathematics Dehdasht Branch, Islamic Azad University Dehdasht, Iran bdastorian@gmail.com

Abstract

In this paper we present a new equality in the framework of Hilbert C*-modules. As a consequence, we get generalizations of parallelogram law in the Hilbert C*-module case.

Mathematics Subject Classification: Primary 46L08; Secondary 26D15, 47A63.

Keywords: C*-algebra, Hilbert C*-module, operator equality, parallelogram law.

1 Introduction

Suppose that $B(\mathcal{H})$ denotes the algebra of all bounded linear operators on a separable complex Hilbert space \mathcal{H} . The classical parallelogram law state that

$$|a+b|^2 + |a-b|^2 = 2|a|^2 + 2|b|^2$$
,

for $a, b \in \mathbb{C}$. There are several extensions of parallelogram law among them we could refer the interested reader to [1, 2, 4, 9].

Also several authors have presented generalizations of parallelogram law for operators on a Hilbert space.

M. Fujii and H. Zuo [3] showed that if A, B belong to the algebra B(H) and $\lambda \neq 0$ then

$$|A - B|^{2} + \frac{1}{\lambda}|\lambda A + B|^{2} = (1 + \lambda)|A|^{2} + (1 + \frac{1}{\lambda})|B|^{2}.$$
 (1)

where $|C| = (C^*C)^{\frac{1}{2}}$ denotes the absolute value of $C \in B(H)$. Note that $A \ge 0$ means that $\langle Ax, x \rangle \ge 0$ for all $x \in H$, and $A \le 0$ represents that $-A \ge 0$, and $A \ge B$ if A and B are self-adjoint operators and $A - B \ge 0$, for any $A, B \in B(H)$.

We generalized (1) in the Hilbert C*-module case.

2 Preliminaries

Let us recall some definitions and basic properties of C*-algebras and Hilbert C*-modules that we need in the rest of the parer. A Banach *-algebra \mathcal{A} is called a C*-algebra if it satises $||a^*a||^2 = ||a||$ for any $a \in \mathcal{A}$. An element a of a C*-algebra \mathcal{A} is positive if there exists $b \in \mathcal{A}$ such that $a = b^*b$. We write $a \ge 0$ to mean that a is positive. The relation " \le " given by

 $a \leq b$ if and only if b - a is positive

defines a partial ordering on \mathcal{A} . Let \mathcal{A} be a C^{*}-algebra then the absolute value of a is defined by $|a| = (a^*a)^{\frac{1}{2}}$. For undefined notions and more details on C^{*}-algebra theory, we refer to [6].

Let \mathcal{A} be a C*-algebra and let \mathcal{H} be a right \mathcal{A} -module. \mathcal{H} is a pre-Hilbert \mathcal{A} -module if \mathcal{H} is equipped with an \mathcal{A} -valued inner product $\langle ., . \rangle : \mathcal{H} \times \mathcal{H} \to \mathcal{A}$ that possesses the following properties,

(i) $\langle u, u \rangle \ge 0$, for all $u \in \mathcal{H}$ and $\langle u, u \rangle = 0$ if and only if u = 0;

(*ii*) $\langle u, \alpha v + \beta w \rangle = \alpha \langle u, v \rangle + \beta \langle u, w \rangle$, for all $\alpha, \beta \in \mathbb{C}$ and $u, v, w \in \mathcal{H}$;

(*iii*) $\langle u, v \rangle = \langle v, u \rangle^*$, for all $u, v \in \mathcal{H}$;

 $(iv) \langle u, va \rangle = \langle u, v \rangle a$, for all $a \in \mathcal{A}$ and $u, v \in \mathcal{H}$;

The action of \mathcal{A} on \mathcal{H} is \mathbb{C} - and \mathcal{A} -linear, i.e., $\mu(ua) = u(\mu a) = (\mu u)a$ for every $\mu \in \mathbb{C}$, $a \in \mathcal{A}$ and $u \in \mathcal{H}$. For $u \in \mathcal{H}$, we define $||u|| = ||\langle u, u \rangle||^{\frac{1}{2}}$. If \mathcal{H} is complete with ||.||, it is called a Hilbert \mathcal{A} -module or a Hilbert C*-module over \mathcal{A} .

The C*-algebra \mathcal{A} itself can be recognized as a Hilbert \mathcal{A} -module with the inner product $\langle a, b \rangle = a^*b$ for any $a, b \in \mathcal{A}$. For a C*-algebra \mathcal{A} the standard Hilbert \mathcal{A} -module $\ell^2(\mathcal{A})$ is defined by

$$\ell^{2}(\mathcal{A}) = \{\{a_{j}\}_{j \in \mathbb{N}} : \sum_{j \in \mathbb{N}} a_{j}^{*}a_{j} \text{ converges in } \mathcal{A}\}$$

with \mathcal{A} -inner product $\langle \{a_j\}_{j\in\mathbb{N}}, \{b_j\}_{j\in\mathbb{N}}\rangle = \sum_{j\in\mathbb{N}} a_j^* b_j$. Let \mathcal{H} and \mathcal{K} be two Hilbert modules over C*-algebra \mathcal{A} . A map $T : \mathcal{H} \to \mathcal{K}$ is said to be adjointable if there exists a mapping $T^* : \mathcal{K} \to \mathcal{H}$ satisfying $\langle Tu, v \rangle = \langle u, T^*v \rangle$ where $u \in \mathcal{H}$ and $v \in \mathcal{K}$. The mapping T^* is called the adjoint of T.

For every u in Hilbert C*-module \mathcal{H} we define the absolute value of u as the unique positive square root of $\langle u, u \rangle$, that is, $|u| = \langle u, u \rangle^{\frac{1}{2}}$. We refer the reader to [5, 7, 8] for more information on Hilbert C*-modules.

In the sequel we denote \mathcal{H} and \mathcal{K} as Hilbert modules over a unital C*-algebra \mathcal{A} with unit e.

3 Some Identities

In this section we give some equalities to obtain some results.

Theorem 3.1. Let $w, z, u, v \in \mathcal{H}$ and $a, b \in \mathcal{A}$ and $\alpha, \beta \in \mathbb{R}$. Then we have

$$\begin{aligned} \alpha\beta a|w+z|^2+b|\beta u-\alpha v|^2 &=\beta(\alpha a|w|^2+\beta b|u|^2)+\alpha(\beta a|z|^2+\alpha b|v|^2)\\ &+\alpha\beta\left[a(\langle w,z\rangle+\langle z,w\rangle)-b(\langle u,v\rangle+\langle v,u\rangle)\right].\end{aligned}$$
(2)

Proof. For $w, z, u, v \in \mathcal{H}$ we have

$$|w + z|^{2} = \langle w + z, w + z \rangle$$

= $\langle w, w \rangle + \langle w, z \rangle + \langle z, w \rangle + \langle z, z \rangle$
= $|w|^{2} + \langle w, z \rangle + \langle z, w \rangle + |z|^{2}$, (3)

Also,

$$\begin{aligned} |\beta u - \alpha v|^2 &= \langle \beta u - \alpha v, \beta u - \alpha v \rangle \\ &= \beta^2 \langle u, u \rangle - \alpha \beta \langle u, v \rangle - \alpha \beta \langle v, u \rangle + \alpha^2 \langle v, v \rangle \\ &= \beta^2 |u|^2 - \alpha \beta \langle u, v \rangle - \alpha \beta \langle v, u \rangle + \alpha^2 |v|^2, \end{aligned}$$
(4)

By using (3) and (4) we have

$$\begin{split} \alpha\beta a|w+z|^2+b|\beta u-\alpha v|^2 &= \alpha\beta a|w|^2+\alpha\beta a\langle w,z\rangle+\alpha\beta a\langle z,w\rangle+\alpha\beta a|z|^2\\ &+\beta^2 b|u|^2-\alpha\beta b\langle u,v\rangle-\alpha\beta b\langle v,u\rangle+\alpha^2 b|v|^2\\ &=\beta(\alpha a|w|^2+\beta b|u|^2)+\alpha(\beta a|z|^2+\alpha b|v|^2)\\ &+\alpha\beta[a(\langle w,z\rangle+\langle z,w\rangle)-b(\langle u,v\rangle+\langle v,u\rangle)]. \end{split}$$

Which complete the proof.

Theorem 3.2. Suppose that $w, z, u, v \in \mathcal{H}$ with $\langle w, z \rangle = \mu \langle u, v \rangle$ for nonzero $\mu \in \mathbb{R}$ and $\alpha, \beta \in \mathbb{R}$. Then

$$\frac{\alpha\beta}{\mu}|w+z|^2 + |\beta u - \alpha v|^2 = \beta(\frac{\alpha}{\mu}|w|^2 + \beta|u|^2) + \alpha(\frac{\beta}{\mu}|z|^2 + \alpha|v|^2).$$
(5)

In particular when $\langle w, z \rangle = \langle u, v \rangle$ so we have

$$\alpha\beta|w+z|^{2} + |\beta u - \alpha v|^{2} = \beta(\alpha|w|^{2} + \beta|u|^{2}) + \alpha(\beta|z|^{2} + \alpha|v|^{2}).$$
(6)

Proof. Put $\mu a = b = e$ in (2) then by assumption we conclude (5).

Applying formula (6) of Theorem 3.2 on the elements of the Hilbert C^{*}module $\ell^2(\mathcal{A})$ we obtain the following result.

Corollary 3.3. Let $\{a_j\}_{j\in J}, \{b_j\}_{j\in J}, \{c_j\}_{j\in J}$ and $\{d_j\}_{j\in J} \in \ell^2(\mathcal{A})$ with $\sum_{j\in J} a_j^* b_j = \sum_{j\in J} c_j^* d_j$ and $\alpha, \beta \in \mathbb{R}$. Then

$$\begin{split} \alpha\beta \sum_{j\in J} |a_j + b_j|^2 + \sum_{j\in J} |\beta c_j - \alpha d_j|^2 \\ &= \beta(\alpha \sum_{j\in J} |a_j|^2 + \beta \sum_{j\in J} |c_j|^2) + \alpha(\beta \sum_{j\in J} |b_j|^2 + \alpha \sum_{j\in J} |d_j|^2). \end{split}$$

Let H and K be Hilbert spaces and let B(H, K) be the set of all bounded linear operators from H into K then B(H, K) is a Hilbert B(H)-module with a B(H)-valued inner product $\langle T, S \rangle = T^*S$ for all $T, S \in B(H, K)$, and with a linear operation of B(H) on B(H, K) by the composition of operators. Then the space $B(H, K) \oplus \cdots \oplus B(H, K) = \{(T_1, \ldots, T_n) : T_i \in B(H, K), i =$

 $1, \ldots, n$ is a Hilbert B(H)-module via $\langle (T_i)_i, (S_i)_i \rangle = \sum_{i=1}^n T^*S$. Applying formula (6) of Theorem 3.2 for elements of this Hilbert module we get the following result.

Corollary 3.4. Suppose that $T_1, ..., T_n, S_1, ..., S_n$ and $Q_1, ..., Q_n, L_1, ..., L_n$ are elements of $B(\mathcal{H}, \mathcal{K})$, i.e., the set of all bounded linear operators from Hinto K, with $\sum_{j=1}^{n} T_j^* S_j = \sum_{j \in J}^{n} Q_j^* L_j$ and $\alpha, \beta \in \mathbb{R}$. Then

$$\alpha\beta\sum_{j=1}^{n}|T_{j}+S_{j}|^{2}+\sum_{j=1}^{n}|\beta Q_{j}-\alpha L_{j}|^{2}$$
$$=\beta(\alpha\sum_{j=1}^{n}|T_{j}|^{2}+\beta\sum_{j=1}|Q_{j}|^{2})+\alpha(\beta\sum_{j=1}^{n}|S_{j}|^{2}+\alpha\sum_{j=1}^{n}|L_{j}|^{2}).$$

4 Generalized parallelogram law

In the following Theorem we get a generalization of parallelogram law in the framework of Hilbert C^{*}-modules, whose this is a Theorem 4.1 of [3] in operator equality the moreover part is the Theorem 3.2 of [3] in operator inequality where the Hilbert module is the $B(\mathcal{H})$ over itself.

Theorem 4.1. Let $u, v \in \mathcal{H}$ and λ be nonzero element of \mathbb{R} , then the following statements hold.

(i)
$$|u-v|^2 + \frac{1}{\lambda}|\lambda u+v|^2 = (1+\lambda)|u|^2 + (1+\frac{1}{\lambda})|v|^2.$$

(*ii*)
$$|u+v|^2 + \frac{1}{\lambda}|\lambda u-v|^2 = (1+\lambda)|u|^2 + (1+\frac{1}{\lambda})|v|^2.$$

Moreover,

 $\begin{array}{ll} (I) & |u \mp v|^2 + |\lambda u \pm v|^2 \leq (1+\lambda)|u|^2 + (1+\frac{1}{\lambda})|v|^2 \Leftrightarrow 0 < \lambda \leq 1 \text{ or } \lambda u = \mp v, \\ (II) & |u \mp v|^2 + |\lambda u \pm v|^2 \geq (1+\lambda)|u|^2 + (1+\frac{1}{\lambda})|v|^2 \Leftrightarrow \lambda < 0 \text{ or } \lambda \geq 1 \text{ or } \lambda u = \mp v. \end{array}$

Proof. (i) Put $w = u, z = -v, \alpha = -1, \beta = \lambda$ in (5) of Theorem 3.2. Note that in this case $\mu = -1$. For part (ii) let us put $w = u, z = v, \alpha = 1, \beta = \lambda$ in (6).

The following Example shows that the equality in Theorem 4.1 holds for every nonzero $\lambda \in \mathbb{R}$, and the first part of the moreover part is true for $\lambda \in (0, 1]$ and another part is holds for $\lambda \in (-\infty, 0) \cup [1, +\infty)$.

Example 4.2. Let \mathcal{A} be the C*-algebra of the set of all diagonal matrices in $M_{2\times 2}(\mathbb{C})$ and suppose \mathcal{A} is the Hilbert \mathcal{A} -module over itself. (Here, diagonal matrix means a 2×2 matrix (a_{ij}) such that $a_{11} = a, a_{22} = b$ and $a_{12} = a_{21} = 0$, for $a, b \in \mathbb{C}$.) Consider,

$$A = \begin{pmatrix} -1 & 0 \\ 0 & 4 \end{pmatrix}, \qquad B = \begin{pmatrix} 2 & 0 \\ 0 & 3 \end{pmatrix}$$

Then we have

$$|A \mp B|^{2} + \frac{1}{\lambda}|\lambda A \mp B|^{2} - (1+\lambda)|A|^{2} - (1+\frac{1}{\lambda})|B|^{2} = 0$$

for every nonzero real number λ . Also we have

$$C := |A - B|^{2} + |\lambda A + B|^{2} - (1 + \lambda)|A|^{2} - (1 + \frac{1}{\lambda})|B|^{2}$$
$$= \begin{pmatrix} \frac{\lambda^{3} - 5\lambda^{2} + 8\lambda - 4}{\lambda} & 0\\ 0 & \frac{16\lambda^{3} + 8\lambda^{2} - 15\lambda - 9}{\lambda} \end{pmatrix}$$

The matrix $C \leq 0$ if $\lambda \in (0,1]$ and $C \geq 0$ if $\lambda \in (-\infty,0) \cup [1,+\infty)$.

References

- Y.J. Cho, V. Čuljak, M. Matić and J. Pečarić, On parallelogram law and Bohr's inequality in n-inner product spaces, Inequality theory and applications, (Chinju/Masan, 2001), Nova Sci. Publ., Hauppauge, NY, 2 (2003), 79-90.
- [2] O. Eğecioğlu, Parallelogram-law-type identities, Linear Algebra Appl., 225 (1995), 1-12.
- M. Fujii and H. Zuo, Matrix order in Bohr inequality for operators, Banach J. Math. Anal., 4 (1) (2010), 21-27.
- [4] M. Kato, A note on a generalized parallelogram law and the Littlewood matrices, Bull. Kyushu Inst. Tech. Math. Natur. Sci., 33 (1986), 37-39.
- [5] E.C. Lance, Hilbert C*-Modules, London Math. Soc. Lecture Note Series, 210, Cambridge University Press, Cambridge, 1995.

- [6] J.G. Murphy, Operator Theory and C*-Algebras, Academic Press, San Diego, 1990.
- [7] I. Raeburn and D.P. Williams, Morita Equivalence and Continuous-Trace C*-Algebras, London Math. Soc. Lecture Note Series, 210, Mathematical Surveys and Monographs, 60, American Mathematical Society (AMS), Providence, RI, 1998.
- [8] N. Wegge–Olsen, K-Theory and C*-Algebras A Friendly Approch, Oxford University press, Oxford, England, 1993.
- [9] W.L. Zeng, An extension of the parallelogram characterization of inner product spaces, J. Math. Res. Exposition, 2 (3) (1982), 23-25.

Received: July, 2014