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Abstract

In this paper we present a new equality in the framework of Hilbert

C*-modules. As a consequence, we get generalizations of parallelogram

law in the Hilbert C*-module case.
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1 Introduction

Suppose that B(H) denotes the algebra of all bounded linear operators on a
separable complex Hilbert space H. The classical parallelogram law state that

|a+ b|2 + |a− b|2 = 2|a|2 + 2|b|2,

for a, b ∈ C. There are several extensions of parallelogram law among them
we could refer the interested reader to [1, 2, 4, 9].

Also several authors have presented generalizations of parallelogram law
for operators on a Hilbert space.

M. Fujii and H. Zuo [3] showed that if A,B belong to the algebra B(H)
and λ 6= 0 then

|A− B|2 +
1

λ
|λA+B|2 = (1 + λ)|A|2 + (1 +

1

λ
)|B|2. (1)

where |C| = (C∗C)
1

2 denotes the absolute value of C ∈ B(H). Note that
A ≥ 0 means that 〈Ax, x〉 ≥ 0 for all x ∈ H , and A ≤ 0 represents that
−A ≥ 0, and A ≥ B if A and B are self-adjoint operators and A−B ≥ 0, for
any A,B ∈ B(H).

We generalized (1) in the Hilbert C*-module case.
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2 Preliminaries

Let us recall some definitions and basic properties of C*-algebras and Hilbert
C*-modules that we need in the rest of the parer. A Banach ∗-algebra A is
called a C*-algebra if it satises ‖a∗a‖2 = ‖a‖ for any a ∈ A. An element a of
a C*-algebra A is positive if there exists b ∈ A such that a = b∗b. We write
a ≥ 0 to mean that a is positive. The relation ” ≤ ” given by

a ≤ b if and only if b− a is positive

defines a partial ordering on A. Let A be a C*-algebra then the absolute value
of a is defined by |a| = (a∗a)

1

2 . For undefined notions and more details on
C*-algebra theory, we refer to [6].

Let A be a C*-algebra and let H be a right A-module. H is a pre-Hilbert
A-module if H is equipped with an A-valued inner product 〈., .〉 : H×H → A
that possesses the following properties,
(i) 〈u, u〉 ≥ 0, for all u ∈ H and 〈u, u〉 = 0 if and only if u = 0;
(ii) 〈u, αv + βw〉 = α〈u, v〉+ β〈u, w〉, for all α, β ∈ C and u, v, w ∈ H;
(iii) 〈u, v〉 = 〈v, u〉∗, for all u, v ∈ H;
(iv) 〈u, va〉 = 〈u, v〉a, for all a ∈ A and u, v ∈ H;
The action of A on H is C- and A-linear, i.e., µ(ua) = u(µa) = (µu)a for

every µ ∈ C, a ∈ A and u ∈ H. For u ∈ H, we define ‖u‖ = ‖〈u, u〉‖
1

2 . If H
is complete with ‖.‖, it is called a Hilbert A-module or a Hilbert C*-module
over A.
The C*-algebra A itself can be recognized as a Hilbert A-module with the
inner product 〈a, b〉 = a∗b for any a, b ∈ A. For a C*-algebra A the standard
Hilbert A-module ℓ2(A) is defined by

ℓ2(A) = {{aj}j∈N :
∑

j∈N

a∗jaj converges in A}

with A-inner product 〈{aj}j∈N, {bj}j∈N〉 =
∑

j∈N a
∗

jbj . Let H and K be two
Hilbert modules over C*-algebraA. A map T : H → K is said to be adjointable
if there exists a mapping T ∗ : K → H satisfying 〈Tu, v〉 = 〈u, T ∗v〉 where
u ∈ H and v ∈ K. The mapping T ∗ is called the adjoint of T .

For every u in Hilbert C*-module H we define the absolute value of u as
the unique positive square root of 〈u, u〉, that is, |u| = 〈u, u〉

1

2 . We refer the
reader to [5, 7, 8] for more information on Hilbert C*-modules.

In the sequel we denote H and K as Hilbert modules over a unital C*-
algebra A with unit e.

3 Some Identities

In this section we give some equalities to obtain some results.
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Theorem 3.1. Let w, z, u, v ∈ H and a, b ∈ A and α, β ∈ R. Then we have

αβa|w + z|2 + b|βu− αv|2 = β(αa|w|2 + βb|u|2) + α(βa|z|2 + αb|v|2)

+ αβ [a(〈w, z〉+ 〈z, w〉)− b(〈u, v〉+ 〈v, u〉)] . (2)

Proof. For w, z, u, v ∈ H we have

|w + z|2 = 〈w + z, w + z〉

= 〈w,w〉+ 〈w, z〉+ 〈z, w〉+ 〈z, z〉

= |w|2 + 〈w, z〉+ 〈z, w〉+ |z|2, (3)

Also,

|βu− αv|2 = 〈βu− αv, βu− αv〉

= β2〈u, u〉 − αβ〈u, v〉 − αβ〈v, u〉+ α2〈v, v〉

= β2|u|2 − αβ〈u, v〉 − αβ〈v, u〉+ α2|v|2, (4)

By using (3) and (4) we have

αβa|w + z|2 + b|βu− αv|2 = αβa|w|2 + αβa〈w, z〉+ αβa〈z, w〉+ αβa|z|2

+ β2b|u|2 − αβb〈u, v〉 − αβb〈v, u〉+ α2b|v|2

= β(αa|w|2 + βb|u|2) + α(βa|z|2 + αb|v|2)

+ αβ[a(〈w, z〉+ 〈z, w〉)− b(〈u, v〉+ 〈v, u〉)].

Which complete the proof.

Theorem 3.2. Suppose that w, z, u, v ∈ H with 〈w, z〉 = µ〈u, v〉 for nonzero
µ ∈ R and α, β ∈ R. Then

αβ

µ
|w + z|2 + |βu− αv|2 = β(

α

µ
|w|2 + β|u|2) + α(

β

µ
|z|2 + α|v|2). (5)

In particular when 〈w, z〉 = 〈u, v〉 so we have

αβ|w + z|2 + |βu− αv|2 = β(α|w|2 + β|u|2) + α(β|z|2 + α|v|2). (6)

Proof. Put µa = b = e in (2) then by assumption we conclude (5).

Applying formula (6) of Theorem 3.2 on the elements of the Hilbert C*-
module ℓ2(A) we obtain the following result.

Corollary 3.3. Let {aj}j∈J , {bj}j∈J , {cj}j∈J and {dj}j∈J ∈ ℓ2(A) with
∑

j∈J a
∗

jbj =∑

j∈J c
∗

jdj and α, β ∈ R. Then

αβ
∑

j∈J

|aj + bj|
2 +

∑

j∈J

|βcj − αdj|
2

= β(α
∑

j∈J

|aj |
2 + β

∑

j∈J

|cj|
2) + α(β

∑

j∈J

|bj |
2 + α

∑

j∈J

|dj|
2).
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Let H and K be Hilbert spaces and let B(H,K) be the set of all bounded
linear operators from H into K then B(H,K) is a Hilbert B(H)-module with
a B(H)-valued inner product 〈T, S〉 = T ∗S for all T, S ∈ B(H,K), and
with a linear operation of B(H) on B(H,K) by the composition of operators.
Then the space B(H,K)⊕ · · · ⊕ B(H,K)

︸ ︷︷ ︸

n

= {(T1, . . . , Tn) : Ti ∈ B(H,K), i =

1, . . . , n} is a Hilbert B(H)-module via 〈(Ti)i, (Si)i〉 =
∑n

i=1
T ∗S. Applying

formula (6) of Theorem 3.2 for elements of this Hilbert module we get the
following result.

Corollary 3.4. Suppose that T1, ..., Tn, S1, ..., Sn and Q1, ..., Qn, L1, ..., Ln

are elements of B(H,K), i.e., the set of all bounded linear operators from H

into K, with
∑n

j=1
T ∗

j Sj =
∑n

j∈J Q
∗

jLj and α, β ∈ R. Then

αβ

n∑

j=1

|Tj + Sj|
2 +

n∑

j=1

|βQj − αLj|
2

= β(α
n∑

j=1

|Tj|
2 + β

∑

j=1

|Qj|
2) + α(β

n∑

j=1

|Sj|
2 + α

n∑

j=1

|Lj |
2).

4 Generalized parallelogram law

In the following Theorem we get a generalization of parallelogram law in the
framework of Hilbert C*-modules, whose this is a Theorem 4.1 of [3] in operator
equality the moreover part is the Theorem 3.2 of [3] in operator inequality
where the Hilbert module is the B(H) over itself.

Theorem 4.1. Let u, v ∈ H and λ be nonzero element of R, then the
following statements hold.

(i) |u− v|2 +
1

λ
|λu+ v|2 = (1 + λ)|u|2 + (1 +

1

λ
)|v|2.

(ii) |u+ v|2 +
1

λ
|λu− v|2 = (1 + λ)|u|2 + (1 +

1

λ
)|v|2.

Moreover,
(I) |u∓v|2+ |λu±v|2 ≤ (1+λ)|u|2+(1+ 1

λ
)|v|2 ⇔ 0 < λ ≤ 1 or λu = ∓v,

(II) |u ∓ v|2 + |λu ± v|2 ≥ (1 + λ)|u|2 + (1 + 1

λ
)|v|2 ⇔ λ < 0 or λ ≥ 1 or

λu = ∓v.

Proof. (i) Put w = u, z = −v, α = −1, β = λ in (5) of Theorem 3.2. Note that
in this case µ = −1. For part (ii) let us put w = u, z = v, α = 1, β = λ in
(6).
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The following Example shows that the equality in Theorem 4.1 holds for
every nonzero λ ∈ R, and the first part of the moreover part is true for λ ∈ (0, 1]
and another part is holds for λ ∈ (−∞, 0) ∪ [1,+∞).

Example 4.2. Let A be the C*-algebra of the set of all diagonal matrices
in M2×2(C) and suppose A is the Hilbert A-module over itself. (Here, diagonal
matrix means a 2×2 matrix (aij) such that a11 = a, a22 = b and a12 = a21 = 0,
for a, b ∈ C.) Consider,

A =

(
−1 0
0 4

)

, B =

(
2 0
0 3

)

Then we have

|A∓B|2 +
1

λ
|λA∓ B|2 − (1 + λ)|A|2 − (1 +

1

λ
)|B|2 = 0

for every nonzero real number λ. Also we have

C := |A− B|2 + |λA+B|2 − (1 + λ)|A|2 − (1 +
1

λ
)|B|2

=

(
λ3

−5λ2+8λ−4

λ
0

0 16λ3+8λ2
−15λ−9

λ

)

The matrix C ≤ 0 if λ ∈ (0, 1] and C ≥ 0 if λ ∈ (−∞, 0) ∪ [1,+∞).
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