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Abstract

We investigate the properties of fuzzy relations in generalized resid-
uated lattice. In particular, we construct [-preorders ( r-preorders) in-
duced by fuzzy relations.
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1 Introduction

Wille [11] introduced the structures on lattices which are important mathe-
matical tools for data analysis and knowledge processing. MV-algebra was
introduced by Chang [2] to provide algebraic models for many valued proposi-
tional logic. Recently, it is developed many directions (BL-algebra, residuated
algebra) [9,11]. On the other hand, noncommutative structures play an im-
portant role in metric spaces, algebraic structures (groups, rings, quantales,
pseudo-BL-algebras)[3-8,10]. Georgescu and lorgulescu [5] introduced pseudo
MV-algebras as the generalization of the MV-algebras. Georgescu and Popescu
[6] introduced generalized residuated lattice as a noncommutative structure.

In this paper, we study the properties of fuzzy relations in generalized resid-
uated lattice. In particular, we construct [-preorders ( r-preorders) induced by
fuzzy relations.

2 Preliminaries

Definition 2.1 [6] A triple (L, V,A,®, —,=, L, T) is called a generalized
residuated lattice iff it satisfies the following properties:
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(L1) (L,Vv,A, L, T) is a bounded lattice where L is the bottom element
and T is the top element;

(L2) (L,®, T) is a monoid,;

(L3) adjointness properties,i.e.

r<y—ziff roy<zif y<z= 2

Two maps °,*: L — L defined by a° = a — 1 and a* = a = L is called
strong negations if a®* = a and a** = a.

In this paper, we assume that (L, V, A, ®, —,=.*% 1 T) be a generalized
residuated lattice with strong negations * and °.

Definition 2.2 Let X be a set. A function R : X x X — L is called
l-preorder on X if it satisfies the following conditions:

(R) (reflexive) R(z,z) =T for all z € X,

(LT) (I-transitive) R(z,y) ® R(y, z) < R(x, z), for all z,y,z € X.

A function R : X x X — L is called r-preorder on X if it satisfies (R) and
the following condition:

(RT) (r-transitive) R(y,z) ® R(z,y) < R(z, z), for all z,y,z € X.

The pair (X, R) is an [-preorder (resp. r-preorder) set.

An [-preorder (resp. r-preorder) R is called an [-order (resp. r-order) if
R(z,y) = T implies x = y.

An [-preorder R is an ®-equivalence relation if it satisfies

(S) (symmetric) R(x,y) = R(y,x) for all z € X.

Lemma 2.3 For each x,vy, z,x;,y; € L, the following properties hold.

)
)
)
)
) *© (Vier vi) = Vier(® © yi) and (Vier 7:) © y = Vier(z: © y).

) T = (Nier i) = Nier(r = 4i) and (Vier 7)) = y = Nier(Ti = ).
; T = (Nier ¥i) = Nier(x = yi) and (Vier i) = Y = Nier (i = y).
0
1

r=y)oy=2)<(z=2) and(y—2) O (x—=y) <(r—=2).
r=y<(y=z2) =2 (@=2) andr—-y<(y—z2) = (r—2)
Nier 7 = (Vier )" and Vier v7 = (Nier )"

Nier ©@ = (Vier ©:)° and Vier 77 = (Ajer ©:)°-

(x0y) —wz=2—(y—2) and (zOy)’ =2 — ¢°.
rOY)=z=y=>(r=2) and (x Oy)* =y = x*.
r—=y=z2))=y=@—=2)adr=(y—z2)=y— (r=2).
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Proof. (1)-(11) are proved in [6].

(12) By (8), Aier @7 = (Vier 7). Since (Vier 27) = 0 = A(27)° = A i, we
have Vier 27 = (Vier 27) = 0) = 0= (Azi) = 0 = (Az)".

(14) Since ((xOy) = 2)©(xOy) < z, we have (zOy) — 2) <z — (y — 2).
Since (r = (y = 2)) ©(z0y) < (y = 2) Oy < z, we have z — (y — 2) <
(zoOy) =2

(16) Since (y@((x — (y = 2) )@x =y
yoO(y=2) <z thenzx — (y=2) <y= (r — 2).

Since y ® ((y = (v — z)) @x) = y@((y = (v — z))) Oz =(r—
2)Ox <z theny= (r = 2) <z — (y = 2).

Other cases are similarly proved.

o((r= =) o0 <

3  Fuzzy relations on generalized residuated
lattices

Theorem 3.1 Let Ry, Ry, R3 € LX*X be fuzzy relations. The compositions
of Ry and Ry are defined as

Rl OR2($a Z) = \/ Rl(x>y) ®R2(yaz)

yey

Ri @ Ry(z,2) = \/ Ra(y,z) ® Ri(,y)

yey

(Ry = Ro)(x,2) = N\ (Ra(z,y) = Raly, 2))

yey

(Ry = Ro)(z,2) = N\ (Ra(z,y) = Raly, 2))

yey

(R <= Ro)(,2) = N\ (Ra(y, 2) = Ra(z,y))

yey

(R < Ro)(,2) = N\ (Ra(y, 2) = Ra(z,y))

yey

Then we have the following properties.

(RioRy)*=R5® R and (R, ® Ry)® = R0 R;.

(Rl o Rg)* = RI <~ Ry and (Rl o R2)0 =R — Rg
(Rl ® Rg)* =R, => R; and (Rl & RQ)O = R(l] +— Rs.
(Rl = Rg)s = R; <~ Rf and (Rl — Rg)s = RS — R“lQ
(Rl = RQ)S = R; = R‘f and (Rl — Rg)s = R; — R‘f
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(6) Ryo Ry < Ry iff Ry < Rs < R iff Ry < R} = Rs.
(7) Ri ® Ry < R3 iff Ry < R — Rs iff Ri < R3 < Rj.

(8) (RioRy) = Ry = Ry — (Ry — R3) and (R ® Ry) = R3 = R =
(Rg = R3),

(9> (Rl — R2) — Ry = Ry «+ (RQ ®R3) and (R1 <= R2) < R3 = R, <
(R0 R3),

(10) R, = (R2 — Rg) = ((Rl = Rg) — Rg) and R, — (Rg <~ Rg) =
((Rl — RQ) = R3)

Proof (1)
(Ri0R9)*(z,2) = (Ryo0Ry)(x,z)
= Vyev (Ri(7,y) © Ra(y, 2))
= Vyev(Ri(y,2) © R5(2,y))
= (R; ® Ry)(z,2).

(2) By Lemma 2.3 (12,15), we have

(Rio Ry)*(,2) = (Vyer(Ri(w,9) © Ra(y, 2))) =0
= Nyev (Ra(y, 2) = (Ru(,y) = 0))
= (R} < Rs)(z, 2).

(3) By Lemma 2.3 (13,14), we have

(B ® R)(2.2) = (Vyer (Raly, 2) © Ra(w,))) = 0

= Nyev (Ra(y, 2) = (Ra(z,y) = 0))
= (R} < Ry)(z, 2).

(4)
(Rl = R2)5(2,$) = (Rl = Rg)(l’ Z)
= Ayey (Ri(7,y) = Ra(y,2))
= NAyev (Ri(y,2) = R;(2,y))

(6) We have Ry o Ry < Ry iff Ry < (R3 < Rj) iff Ry < (R = R3) because

Rl(l’,y) ® Rg(y,Z) < Rg(!lf,Z) iff Rl(l’, ) < Rg(y, ) — Rg( )
Ri(2,y) © Ra(y, 2) < Rs(x, 2) iff Ro(y,2) < Ri(z,y) = Rs(w, 2).

(8) By Lemma 2.3 (8,15), we have

(R1 ® Ry) = R3)(z,p) /\zeX((Rl ® Ry)(z,2) = R3(z,p))
ex((Vyex(R2(y, 2) © Ri(z,y)) = Rs(z,p)))
cex Nyex (Ba(z,y) = (Ra(y, 2) = Rs(z,p)))
ex(Rl(x y) = (R2 = Rs)(y,p)))
(Rg = Rg) (ZL’,p)

1 O I
’“>>>
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(9)By Lemma 2.3 (14), we have
((R1 < R) < R3)(z,p) = N.ex(R3(z,p) = (B1 < Ro)(w,2))
Neex (R3(2,p) = Nyex(Ra(y, 2) = Rai(z,y)))
= /\ eX /\yEX(R?:(Zap) - (R2(y> Z) — Rl(l’a y)))
/\yEX((\/zeX(R3(Z>p) © RQ(ya Z)) - Rl(l’a y)))
Nyex (B2 ® R3)(y,p) = Ri(z,y)))
= (Ry < (R2 ® R3))(z,p)

(10) By Lemma 2.3 (16), we have

(R1 = (Ry = R3))(7,p) = NAyex(Ba(z,y) = (B2 < R3)(y,p))

= Nyex (B1(7,y) = Noew (R3(z,p) = Ra(y, 2)))
= Nyex Neex(Pa(z,y) = (R3(2,p) — Ra(y, 2)))
= Niex Nyex (Rs(z,p) = (Ri(z,y) = Ra(y, 2)))
= Neex(R3(2,p) = Ayex(Ri(z,y) = Ra(y, 2)))

AR — (B S R)a )
= ((Rl = Rg) <— Rg)(l’,p)

Other cases are similarly proved.

Theorem 3.2 Let R € L*X*X be a fuzzy relation. We have the following
properties.

(1) If R is an ®-equivalence relation, then R is an r-preorder.

(2) If R is an r-preorder and symmetric, then R is an ®-equivalence rela-
tion.

(3) If R is an l-preorder (resp. r-preorder), then R® is an r-preorder (resp.
l-preorder).

(4) If R is reflezive, then Ro R, R ® R are reflexive, R < (Ro R), R <
(R®R), R R)<R,(R=R)<R,(R<R)<Rand (R+ R) <R.

(5) R is symmetric iff (R = R) is reflexive iff (R < R) is reflexive iff
(R — R) is reflexive iff (R < R) is reflezive.

(6) If R is symmetric, then (RoR)®* = RQR, (R®R)* = RoR , (R < R)* =
R=R, (R=R*)=R<R, (R« R*=R—R,(R—R°’=R<+ R.
(7) R s l-transitive iff Ro R < R iff R< (R* = R) iff R < (R + R*).
) R is r-transitive iff R R< R iff R< (R° — R) iff R < (R < R).
) If R is an l-preorder, then R = (Ro R) = (R°* = R) = (R <+ R°).
0) If R is an r-preorder, then R = (R® R) = (R®* — R) = (R < R®).
1) R is an ®-equivalence relation iff (R = R) and R are reflexive and
< (R = R) iff (R < R) and R are reflexive and R < (R < R) iff (R — R)
nd R are reflexive and R < (R — R) iff (R < R) and R are reflexive and
< (R + R).

— = © 00

—~
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(12) If R is an ®-equivalence relation, then R = (RoR) = R® R= (R =
R)=(R<R)=(R— R)=(R<+ R).

(13) If R is symmetric, then R = R and R < R are l-preorder, R — R
and R < R are r-preorder.

(14) Let R be reflexive. We define
R=(z,y) =\ R'(z,y)
nenN

n

—_—~
where R = Ro R...o R. Then R>™ is an [-preoder.
(15) Let R be reflexive. We define

R™¥(z,y) =\ R"(z,y)

neN

[7]
where RM = R® R...® R. Then RI*! is an r-preoder.
(16) U™ is an I-preoder and U™ is an r-preoder for U € {R = R*, R —
R°.R< R R« R°,R° = R,R®* — R,R®* < R, R* < R}.

Proof (1) Since R is symmetric, R is r-transitive from:
R(y,z) © R(z,y) = R(z,y) © R(y,x) < R(z,x) = R(z, 2).

(2) Since R is symmetric and R is r-transitive, R is [-transitive.
(3) It follows from

R’(y,2) © B(z,y) = R(z,9) © R(y, ) < R(z,7) = R*(, 2).
(4) Since Ro R(x,xz) > R(z,z) ® R(z,z) = T, Ro R is reflexive.

= /\yGX(R(xv y) - R(yv < )
< (R(z,z) = R(x,2)) = R(z, 2).

Other cases are similarly proved.
(5) It easily proved because

(R= R)(z,7) = Nyex (R(z,y) = R(y,z)) =T
iff R(x,y) < R(y,z) ( by Lemma 2.3 (3)).

Similarly, R(x,y) > R(y,x). Hence R is symmetric. Other cases are similarly
proved.

(6) (RoR’) =R @R°=R®R. (R< R)’=(R° = R°)=(R= R).
Other cases are similarly proved.
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(7) We have Ro R < Riff R < (R* = R) iff R < (R «+ R®) because

(z,y) = R(z,2)

R<
R(x,y) © R(y, z) < Rz, 2) iff R(y,z) < R
< R(y,z) = R(z, 2).

R(z,y) ® R(y, z) < R(z, 2) iff R(x,y)

Other cases are similarly proved.

(8) It is similarly proved as in (7).
) If R is reflexive, then R < (Ro R) R < (R°*= R) and R < (R < R®).
), the results holds.
) It is similarly proved as in (8).
) It follows from (4),(7) and (8).
)
)

By

Since R* = R, by (9,10), we easily prove it.

(9
(7
(10
(11
(12
(13) Since R is symmetric, by (5), R = R is reflexive.

(R= R)(z,y) ©(R= R)(y,2) < (R(x,p)= R(p,y))© (R(y,p) = R(p, 2)

< (R(z,p) = R(p,y)) © (R(p,y) = R(p, 2)
< R(z,p) = R(p, z)

Hence R = R is I[-transitive. Thus R = R is an [-preorder. Other cases are
similarly proved.
(14) Since R is reflexive and R(z,z) < R*(z,z) < R*®(x,x), then R™ is
reflexive. Suppose there exist x,y, z € X such that
R*(z,y) o R*(y, z) £ R™(x, 2).
By the definition of R*(z,y), there exists x; € X such that
R(ZL’, 1’1) © R(zla T2) ©...O R(xrw y) © Roo(y’ Z) g Roo(l,’ Z)

By the definition of R*(y, z), there exists y; € X such that

)
)
)
R(z,71) @ R(21,72) @ ... @ R(z,,y)

OR(y, y1) @ R(y1,y2) @ .. © R(yn, 2) £ R¥(x, 2).

It is a contradiction for the definition of R>(x, z). Hence R* is [-transitive.
(15) Since R is reflexive and R(z,z) < RP(z,2) < RI*l(z, z), then Rl is
reflexive. Suppose there exist z,y, 2 € X such that

R™¥)(y, 2) @ R™(z,y) £ R™N(z, 2).
By the definition of R>(x,y), there exists x; € X such that
Ry, 2) ® R(xp,y)... ® R(21,12) ® R(z,21) £ R>(x, 2).
By the definition of R[®/(y, z), there exists y; € X such that

R(ymv Z) ©...0 R(ylv 3/2) © R(y7 yl)
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OR(xp,7y)... ©® R(x1,25) © R(z,z1) £ R (x, 2).

It is a contradiction for the definition of RI*l(z, 2). Hence RI* is r-transitive.
(16) For U € {R = R*, R - R°,R < R° R < R*R® = R R° —
R, R* < R, R® + R}, U is reflexive. By (14,15), it is easily proved.

Theorem 3.3 Let X be a set and A € LX. We define Ry, R, : XxX — L
as follows:

R (x,y) = A(z) = A(y), Ro(z,y) = A(z) — A(y).

We have the following properties.

(1) R is l-preorder and R_, is r-preorder.

(2) Ry is l-preorder and R, is r-preorder with R, = R; where Ri(z,y) =
R_(z,y) NR,(y,z) and R, (x,y) = R (z,y) N R=(y,x). Moreover, if A is an
injective function, then Ry is l-order and R, is r-order.

Proof. (1) It follows from, by Lemma 2.3 (10),
(A(z) = A(y)) © (Aly) = A(2)) < (A(z) = A(2))
(A(y) = A(2)) © (A(z) = A(y)) < (A(z) = A(2)).

(2)

Ri(z,y) © Ri(y, 2) < (Alz) = Ay)) © (Aly) = A(2)) < (A(z) = A(z))
Ry(x,y) © Ri(y,z) < (A(y) = A(z)) © (A(z) = Aly)) < (A(z) = A(z))
Ri(z,y) © Ri(y,2) < R, 2)

Ry(y,2) © Be(z,y) < (A(y) = A(2)) © (A(x) = A(y)) < (A(z) = A(2))
Ry (2,y) © Br(y,2) < (A(2) = A(y)) © (A(y) = A(z)) < (A(2) = A(z))
R.(y,2) © Re(z,y) < R.(x,2).

If Ry(z,y) =T, then A(x) = A(y). Since A is injective, = = y.

Example 3.4 Let K = {(z,y) € R* | x > 0} be a set and we define an
operation ® : K x K — K as follows:

(T1,91) @ (22, 42) = (122, 192 + Y1)
Then (K, ®) is a group with e = (1,0), (z,y)"! = (%, —¥).

We have a positive cone P = {(a,b) € R? |a = 19,Eb zm() ,or a > 1} because
PAP ' ={(1,0)},POPCP, (a,) ' ®P®(ab)=Pand PUP' = K.

For (z1,11), (z2,92) € K, we define

(z1,11) < (22,92) < (x1,91) 7" © (w2,92) € P, (22,92) ® (21,y1)" " € P
< xp < Ty Or Ty =2T2,Y1 < Yoo
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Then (K, < ®) is a lattice-group. (ref. [1])

The structure (L, ®, =, —,(3,1),(1,0)) is a generalized residuated lattice
with strong negation where L = (3,1) is the least element and T = (1,0) is
the greatest element from the following statements:

(x1,91) © (22,92) = (21,41) ® (22, 92) V (3,1) = (2122, 2192 + 1) V (5, 1),
(T1,91) = (22,52) = ((21,51) 7" ® (w2,92)) A (1,0) = (22, 24) A(1,0),
(T1,91) = (22,52) = (w2, 92) ® (w1,91)") A (1,0) = (I2 —28 + o) A (1,0).

Furthermore, we have (z,y) = (z,y)* = (z,y)°* from:

@) = @)= () = (D),
(9)° = (o) = (3,1) = (@)

(1) Let X = {a,b,c} be a set. Let A € L as
A(a) = (0.6,2), A(b) = (0.8,-1), A(c) = (0.5,3).
From Theorem 3.3, we obtain R_,., R_,, R;, R, € LX*X as

((1,0) (1,0) (33
R, = (

—~ 00
|t

)
=

—_ = =
o O
~— —
—~
00|
|l\)
©
~—

A~ N /N

—~
—_
2O

—~

|l

—_

—_
~—

S
1o
|
N—
—~
—
(=N
S~—

oot
S wlnk
N—

|3
SN—

~—~

—~
=W oot
N
S—

A~~~ A~ NN~

RIS oot =

—~
—_
O

S~—

,\A
ot 0o
L — D =

wikh O Ctwlon Ooo

—~~
RSP
|2
N—
=
N—

—~

—~
Ut =
—~

|o?
|

v_-\__/v

RT(
(6’ 3)

(2) Let X = {a,b,c} be a set. Define R € LX*¥ as

(1 0) (0.6,2)  (0.7,1)
(071)(9—1) (1,0)
(

0
® R(c, a) £ R(b,a) = (0.6,2), R is not [-transitive.

ot O
=

R:

1
Since (0.63, —1) (b, 0.

c)
Since (0.63, —1) = R(c,b) ® R(a,c) £ R(a,b) = (0.6,2), R is not r-transitive.
(0.63,0.3) (0.7,1)
RoR = 063 01 (1,0)  (0.9,-1)

0.7,1)  (0.9,—-1)  (1,0)
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Since RoR = R" = \/,,cy R" = R for n > 2, by Theorem 3.2 (14), R? = R*®
is an [-order.

(1,0)  (0.63,—0.1) (0.7,1)
R®R= ( (0.63,0.3)  (1,0)  (0.9,—1) )
(0.7,1)  (0.9,—1)  (1,0)

Since R® R = R =\, .y RM = RI> for n > 2, by Theorem 3.2 (15),
RP = R[=lis an r-order.

(@m (0.6,2) @?»
R+ R=|(062) (1,0) (%2
(0.7,1) (0.9,—1) (1,0)

Since R is symmetric, by Theorem 3.2 (13), R = R and R < R are [-preorder,
R — R and R < R are r-preorder.
(3) Let X = {a,b,c} be a set. Define R € LX*¥ as

(1) ¢.-3 &3

R = (%’_g) (5%’1) (g>%)

CE N S 8

We obtain

RoR=| (1) (-9 (B
D (H-x) &6

(1L0) (22 (23

R=R=| (32 (1,00 (33
W (e (@0

Lo (D (2

Ror=| 1) 1o &9
(1_70>%) (%’_%) (1’0)
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Since R is symmetric, by Theorem 3.2 (6), R R = (RoR)’>, R< R=(R=
R)* and R <+ R = (R — R)*. Since (22, —4) = R(a,b) © R(b,a) £ R(a,a) =
(0.5,1), R is not [-transitive. Since R is symmetric, by Theorem 3.2 (13),
R = R and R < R are [-preorder and R — R and R < R are r-preorder.

(4) Let X = {a,b,c} be a set. Define R € LX*¥ as

Since R is an [-preorder, R = RoR = R* = R = R < R®. Furthermore, since
R is an r-preorder, R=R® R=R°— R= R < R°.
(5)Let X = {a,b,c} be a set. Define R € LX*¥ as

We obtain
(3,1) (5, 1) (0.64,0.6)
ROR((;,l) (0.56,—-2.7)  (3,1) )
CRVNENCNY (3:1)
Since (0.64,0.6) = R(a,b) ® R(b,c) £ R(a,c) = (0.6,0), R is not [-
transitive. (056, 2.7 (%’ ) (%7 )
R®R= ( (3,1) (0.56,—-2.7) (3,1) )
(3:1) CRVNENCNY
Since (0.56, —2.7) = R(b,a) ®R(a,b) £ R(a,a) = (0.5,1), R is not r-transitive.
(L0 (53 (3.0
R=R=| (3%) (10 (5-3)
(1’_2) (%>%) (1>0)

Since (R = R*)* = R = R° forallm € N, R® = R = R® is an [-order.
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