Mathematica Aeterna, Vol. 2, 2012, no. 6, 549 - 560

Fuzzy relations on generalized residuated lattices

Yong Chan Kim

Department of Mathematics, Gangneung-Wonju National University, Gangneung, Gangwondo 210-702, Korea yck@gwnu.ac.kr

Abstract

We investigate the properties of fuzzy relations in generalized residuated lattice. In particular, we construct l-preorders (r-preorders) induced by fuzzy relations.

Mathematics Subject Classification: 03E72, 54A40,54B10

Keywords: *l*-preorder, *r*-preorder, *l*-transitive, *r*-transitive, \odot -equivalence relations

1 Introduction

Wille [11] introduced the structures on lattices which are important mathematical tools for data analysis and knowledge processing. MV-algebra was introduced by Chang [2] to provide algebraic models for many valued propositional logic. Recently, it is developed many directions (BL-algebra, residuated algebra) [9,11]. On the other hand, noncommutative structures play an important role in metric spaces, algebraic structures (groups, rings, quantales, pseudo-BL-algebras)[3-8,10]. Georgescu and Iorgulescu [5] introduced pseudo MV-algebras as the generalization of the MV-algebras. Georgescu and Popescu [6] introduced generalized residuated lattice as a noncommutative structure.

In this paper, we study the properties of fuzzy relations in generalized residuated lattice. In particular, we construct l-preorders (r-preorders) induced by fuzzy relations.

2 Preliminaries

Definition 2.1 [6] A triple $(L, \lor, \land, \odot, \rightarrow, \Rightarrow, \bot, \top)$ is called a *generalized* residuated lattice iff it satisfies the following properties:

(L1) $(L, \lor, \land, \bot, \top)$ is a bounded lattice where \bot is the bottom element and \top is the top element;

(L2) (L, \odot, \top) is a monoid;

(L3) adjointness properties, i.e.

$$x \leq y \rightarrow z$$
 iff $x \odot y \leq z$ iff $y \leq x \Rightarrow z$.

Two maps ${}^{0}, *: L \to L$ defined by $a^{0} = a \to \bot$ and $a^{*} = a \Rightarrow \bot$ is called strong negations if $a^{0*} = a$ and $a^{*0} = a$.

In this paper, we assume that $(L, \lor, \land, \odot, \rightarrow, \Rightarrow, *, ^0, \bot, \top)$ be a generalized residuated lattice with strong negations * and 0 .

Definition 2.2 Let X be a set. A function $R : X \times X \to L$ is called *l*-preorder on X if it satisfies the following conditions:

(R) (reflexive) $R(x, x) = \top$ for all $x \in X$,

(LT) (*l*-transitive) $R(x, y) \odot R(y, z) \le R(x, z)$, for all $x, y, z \in X$.

A function $R: X \times X \to L$ is called *r*-preorder on X if it satisfies (R) and the following condition:

(RT) (*r*-transitive) $R(y, z) \odot R(x, y) \le R(x, z)$, for all $x, y, z \in X$.

The pair (X, R) is an *l*-preorder (resp. r-preorder) set.

An *l*-preorder (resp. *r*-preorder) R is called an *l*-order (resp. *r*-order) if $R(x, y) = \top$ implies x = y.

An *l*-preorder R is an \odot -equivalence relation if it satisfies

(S) (symmetric) R(x, y) = R(y, x) for all $x \in X$.

Lemma 2.3 For each $x, y, z, x_i, y_i \in L$, the following properties hold.

(1) \odot is isotone in both arguments. $(2) \rightarrow and \Rightarrow are antitone in the first and isotone in the second argument.$ (3) $x \to y = \top$ iff $x \leq y$ iff $x \Rightarrow y = \top$. (4) $x \to \top = x \Rightarrow \top = \top$ and $\top \to x = \top \Rightarrow x = x$. (5) $x \odot y \leq x \land y$. (6) $x \odot (\bigvee_{i \in \Gamma} y_i) = \bigvee_{i \in \Gamma} (x \odot y_i)$ and $(\bigvee_{i \in \Gamma} x_i) \odot y = \bigvee_{i \in \Gamma} (x_i \odot y).$ (7) $x \to (\bigwedge_{i \in \Gamma} y_i) = \bigwedge_{i \in \Gamma} (x \to y_i) \text{ and } (\bigvee_{i \in \Gamma} x_i) \to y = \bigwedge_{i \in \Gamma} (x_i \to y).$ (8) $x \Rightarrow (\bigwedge_{i \in \Gamma} y_i) = \bigwedge_{i \in \Gamma} (x \Rightarrow y_i) \text{ and } (\bigvee_{i \in \Gamma} x_i) \Rightarrow y = \bigwedge_{i \in \Gamma} (x_i \Rightarrow y).$ (9) $x \odot (x \Rightarrow y) \le y$ and $(x \to y) \odot x \le y$. (10) $(x \Rightarrow y) \odot (y \Rightarrow z) \le (x \Rightarrow z)$ and $(y \to z) \odot (x \to y) \le (x \to z)$. (11) $x \Rightarrow y \leq (y \Rightarrow z) \rightarrow (x \Rightarrow z)$ and $x \rightarrow y \leq (y \rightarrow z) \Rightarrow (x \rightarrow z)$ (12) $\bigwedge_{i\in\Gamma} x_i^* = (\bigvee_{i\in\Gamma} x_i)^* \text{ and } \bigvee_{i\in\Gamma} x_i^* = (\bigwedge_{i\in\Gamma} x_i)^*.$ (13) $\bigwedge_{i\in\Gamma} x_i^0 = (\bigvee_{i\in\Gamma} x_i)^0$ and $\bigvee_{i\in\Gamma} x_i^0 = (\bigwedge_{i\in\Gamma} x_i)^0$. (14) $(x \odot y) \rightarrow z = x \rightarrow (y \rightarrow z)$ and $(x \odot y)^0 = x \rightarrow y^0$. (15) $(x \odot y) \Rightarrow z = y \Rightarrow (x \Rightarrow z)$ and $(x \odot y)^* = y \Rightarrow x^*$. (16) $x \to (y \Rightarrow z) = y \Rightarrow (x \to z)$ and $x \Rightarrow (y \to z) = y \to (x \Rightarrow z)$.

Fuzzy relations on generalized residuated lattices

Proof. (1)-(11) are proved in [6]. (12) By (8), $\bigwedge_{i\in\Gamma} x_i^* = (\bigvee_{i\in\Gamma} x_i)^*$. Since $(\bigvee_{i\in\Gamma} x_i^*) \to 0 = \bigwedge (x_i^*)^0 = \bigwedge x_i$, we have $\bigvee_{i \in \Gamma} x_i^* = ((\bigvee_{i \in \Gamma} x_i^*) \to 0) \Rightarrow 0 = (\bigwedge x_i) \Rightarrow 0 = (\bigwedge x_i)^*.$ (14) Since $((x \odot y) \to z) \odot (x \odot y) \le z$, we have $(x \odot y) \to z) \le x \to (y \to z)$. Since $(x \to (y \to z)) \odot (x \odot y) \le (y \to z) \odot y \le z$, we have $x \to (y \to z) \le z$ $((x \odot y) \rightarrow z.$ (16) Since $(y \odot ((x \to (y \Rightarrow z))) \odot x = y \odot ((x \to (y \Rightarrow z)) \odot x) \leq$ $y \odot (y \Rightarrow z) \leq z$, then $x \to (y \Rightarrow z) \leq y \Rightarrow (x \to z)$. Since $y \odot \left(\left(y \Rightarrow (x \to z) \right) \odot x \right) = \left(y \odot \left(\left(y \Rightarrow (x \to z) \right) \right) \odot x = (x \to z) \right) \right)$ $z) \odot x \leq z$, then $y \Rightarrow (x \to z) \leq x \to (y \Rightarrow z)$.

Other cases are similarly proved.

3 Fuzzy relations on generalized residuated lattices

Theorem 3.1 Let $R_1, R_2, R_3 \in L^{X \times X}$ be fuzzy relations. The compositions of R_1 and R_2 are defined as

$$R_1 \circ R_2(x, z) = \bigvee_{y \in Y} R_1(x, y) \odot R_2(y, z)$$
$$R_1 \otimes R_2(x, z) = \bigvee_{y \in Y} R_2(y, z) \odot R_1(x, y)$$
$$(R_1 \Rightarrow R_2)(x, z) = \bigwedge_{y \in Y} (R_1(x, y) \Rightarrow R_2(y, z))$$
$$(R_1 \to R_2)(x, z) = \bigwedge_{y \in Y} (R_1(x, y) \to R_2(y, z))$$
$$(R_1 \leftarrow R_2)(x, z) = \bigwedge_{y \in Y} (R_2(y, z) \Rightarrow R_1(x, y))$$
$$(R_1 \leftarrow R_2)(x, z) = \bigwedge_{y \in Y} (R_2(y, z) \to R_1(x, y))$$
$$R_i^s(y, x) = R_i(x, y), \forall i \in \{1, 2\}.$$

Then we have the following properties.

(1) $(R_1 \circ R_2)^s = R_2^s \otimes R_1^s$ and $(R_1 \otimes R_2)^s = R_2^s \circ R_1^s$. (2) $(R_1 \circ R_2)^* = R_1^* \Leftarrow R_2$ and $(R_1 \circ R_2)^0 = R_1 \to R_2^0$. (3) $(R_1 \otimes R_2)^* = R_1 \Rightarrow R_2^* \text{ and } (R_1 \otimes R_2)^0 = R_1^0 \leftarrow R_2.$ (4) $(R_1 \Rightarrow R_2)^s = R_2^s \Leftarrow R_1^s$ and $(R_1 \to R_2)^s = R_2^s \leftarrow R_1^s$. (5) $(R_1 \leftarrow R_2)^s = R_2^s \Rightarrow R_1^s \text{ and } (R_1 \leftarrow R_2)^s = R_2^s \to R_1^s.$

$$\begin{array}{l} (6) \ R_{1} \circ R_{2} \leq R_{3} \ iff \ R_{1} \leq R_{3} \leftarrow R_{2}^{s} \ iff \ R_{2} \leq R_{1}^{s} \Rightarrow R_{3}. \\ (7) \ R_{1} \otimes R_{2} \leq R_{3} \ iff \ R_{2} \leq R_{1}^{s} \to R_{3} \ iff \ R_{1} \leq R_{3} \leftarrow R_{2}^{s}. \\ (8) \ (R_{1} \circ R_{2}) \to R_{3} = R_{1} \to (R_{2} \to R_{3}) \ and \ (R_{1} \otimes R_{2}) \Rightarrow R_{3} = R_{1} \Rightarrow \\ (R_{2} \Rightarrow R_{3}), \\ (9) \ (R_{1} \leftarrow R_{2}) \leftarrow R_{3} = R_{1} \leftarrow (R_{2} \otimes R_{3}) \ and \ (R_{1} \leftarrow R_{2}) \leftarrow R_{3} = R_{1} \leftarrow \\ (R_{2} \circ R_{3}), \\ (10) \ R_{1} \Rightarrow (R_{2} \leftarrow R_{3}) = ((R_{1} \Rightarrow R_{2}) \leftarrow R_{3}) \ and \ R_{1} \to (R_{2} \leftarrow R_{3}) = \\ ((R_{1} \to R_{2}) \leftarrow R_{3}). \end{array}$$

Proof (1)

$$\begin{aligned} (R_1 \circ R_2)^s(z, x) &= (R_1 \circ R_2)(x, z) \\ &= \bigvee_{y \in V} (R_1(x, y) \odot R_2(y, z)) \\ &= \bigvee_{y \in V} (R_1^s(y, x) \odot R_2^s(z, y)) \\ &= (R_2^s \otimes R_1^s)(z, x). \end{aligned}$$

(2) By Lemma 2.3 (12,15), we have

$$\begin{aligned} (R_1 \circ R_2)^*(x,z) &= \Big(\bigvee_{y \in V} (R_1(x,y) \odot R_2(y,z)) \Big) \Rightarrow 0 \\ &= \bigwedge_{y \in V} \Big(R_2(y,z) \Rightarrow (R_1(x,y) \Rightarrow 0) \Big) \\ &= (R_1^* \Leftarrow R_2)(x,z). \end{aligned}$$

(3) By Lemma 2.3 (13,14), we have

$$(R_1 \otimes R_2)^0(x,z) = \left(\bigvee_{y \in V} (R_2(y,z) \odot R_1(x,y))\right) \to 0$$

= $\bigwedge_{y \in V} \left(R_2(y,z) \to (R_1(x,y) \to 0)\right)$
= $(R_1^0 \leftarrow R_2)(x,z).$

(4)

$$(R_1 \Rightarrow R_2)^s(z, x) = (R_1 \Rightarrow R_2)(x, z)$$

= $\bigwedge_{y \in Y} (R_1(x, y) \Rightarrow R_2(y, z))$
= $\bigwedge_{y \in Y} (R_1^s(y, x) \Rightarrow R_2^s(z, y))$
= $(R_2^s \Leftarrow R_1^s)(z, x).$

(6) We have $R_1 \circ R_2 \leq R_3$ iff $R_1 \leq (R_3 \leftarrow R_2^s)$ iff $R_2 \leq (R_1^s \Rightarrow R_3)$ because

$$R_1(x,y) \odot R_2(y,z) \le R_3(x,z) \text{ iff } R_1(x,y) \le R_2(y,z) \to R_3(x,z) R_1(x,y) \odot R_2(y,z) \le R_3(x,z) \text{ iff } R_2(y,z) \le R_1(x,y) \Rightarrow R_3(x,z).$$

(8) By Lemma 2.3 (8,15), we have

$$\begin{aligned} ((R_1 \otimes R_2) \Rightarrow R_3)(x,p) &= \bigwedge_{z \in X} ((R_1 \otimes R_2)(x,z) \Rightarrow R_3(z,p)) \\ &= \bigwedge_{z \in X} ((\bigvee_{y \in X} (R_2(y,z) \odot R_1(x,y)) \Rightarrow R_3(z,p))) \\ &= \bigwedge_{z \in X} \bigwedge_{y \in X} (R_1(x,y) \Rightarrow (R_2(y,z) \Rightarrow R_3(z,p))) \\ &= \bigwedge_{y \in X} (R_1(x,y) \Rightarrow (R_2 \Rightarrow R_3)(y,p))) \\ &= (R_1 \Rightarrow (R_2 \Rightarrow R_3))(x,p). \end{aligned}$$

552

(9)By Lemma 2.3 (14), we have

$$\begin{aligned} ((R_1 \leftarrow R_2) \leftarrow R_3)(x,p) &= \bigwedge_{z \in X} (R_3(z,p) \rightarrow (R_1 \leftarrow R_2)(x,z)) \\ &= \bigwedge_{z \in X} (R_3(z,p) \rightarrow \bigwedge_{y \in X} (R_2(y,z) \rightarrow R_1(x,y))) \\ &= \bigwedge_{z \in X} \bigwedge_{y \in X} (R_3(z,p) \rightarrow (R_2(y,z) \rightarrow R_1(x,y))) \\ &= \bigwedge_{y \in X} ((\bigvee_{z \in X} (R_3(z,p) \odot R_2(y,z)) \rightarrow R_1(x,y))) \\ &= \bigwedge_{y \in X} ((R_2 \otimes R_3)(y,p) \rightarrow R_1(x,y))) \\ &= (R_1 \leftarrow (R_2 \otimes R_3))(x,p). \end{aligned}$$

(10) By Lemma 2.3 (16), we have

$$\begin{aligned} (R_1 \Rightarrow (R_2 \leftarrow R_3))(x,p) &= \bigwedge_{y \in X} (R_1(x,y) \Rightarrow (R_2 \leftarrow R_3)(y,p)) \\ &= \bigwedge_{y \in X} (R_1(x,y) \Rightarrow \bigwedge_{z \in W} (R_3(z,p) \rightarrow R_2(y,z))) \\ &= \bigwedge_{y \in X} \bigwedge_{z \in X} (R_1(x,y) \Rightarrow (R_3(z,p) \rightarrow R_2(y,z))) \\ &= \bigwedge_{z \in X} \bigwedge_{y \in X} (R_3(z,p) \rightarrow (R_1(x,y) \Rightarrow R_2(y,z))) \\ &= \bigwedge_{z \in X} (R_3(z,p) \rightarrow \bigwedge_{y \in X} (R_1(x,y) \Rightarrow R_2(y,z))) \\ &= \bigwedge_{z \in X} (R_3(z,p) \rightarrow (R_1 \Rightarrow R_2)(x,z)) \\ &= ((R_1 \Rightarrow R_2) \leftarrow R_3)(x,p). \end{aligned}$$

Other cases are similarly proved.

Theorem 3.2 Let $R \in L^{X \times X}$ be a fuzzy relation. We have the following properties.

(1) If R is an \odot -equivalence relation, then R is an r-preorder.

(2) If R is an r-preorder and symmetric, then R is an \odot -equivalence relation.

(3) If R is an l-preorder (resp. r-preorder), then R^s is an r-preorder (resp. l-preorder).

(4) If R is reflexive, then $R \circ R, R \otimes R$ are reflexive, $R \leq (R \circ R), R \leq (R \otimes R), (R \to R) \leq R, (R \Rightarrow R) \leq R, (R \leftarrow R) \leq R$ and $(R \leftarrow R) \leq R$.

(5) R is symmetric iff $(R \Rightarrow R)$ is reflexive iff $(R \Leftarrow R)$ is reflexive iff $(R \to R)$ is reflexive iff $(R \leftarrow R)$ is reflexive.

(6) If R is symmetric, then $(R \circ R)^s = R \otimes R$, $(R \otimes R)^s = R \circ R$, $(R \leftarrow R)^s = R \Rightarrow R$, $(R \Rightarrow R)^s = R \leftarrow R$, $(R \leftarrow R)^s = R \to R$, $(R \to R)^s = R \leftarrow R$.

(7) R is l-transitive iff $R \circ R \leq R$ iff $R \leq (R^s \Rightarrow R)$ iff $R \leq (R \leftarrow R^s)$.

(8) R is r-transitive iff $R \otimes R \leq R$ iff $R \leq (R^s \to R)$ iff $R \leq (R \Leftarrow R^s)$.

(9) If R is an l-preorder, then $R = (R \circ R) = (R^s \Rightarrow R) = (R \leftarrow R^s)$.

(10) If R is an r-preorder, then $R = (R \otimes R) = (R^s \to R) = (R \Leftarrow R^s)$.

(11) R is an \odot -equivalence relation iff $(R \Rightarrow R)$ and R are reflexive and $R \leq (R \Rightarrow R)$ iff $(R \leftarrow R)$ and R are reflexive and $R \leq (R \leftarrow R)$ iff $(R \to R)$ and R are reflexive and $R \leq (R \to R)$ iff $(R \leftarrow R)$ and R are reflexive and $R \leq (R \leftarrow R)$.

(12) If R is an \odot -equivalence relation, then $R = (R \circ R) = R \otimes R = (R \Rightarrow$ $R) = (R \leftarrow R) = (R \rightarrow R) = (R \leftarrow R).$

(13) If R is symmetric, then $R \Rightarrow R$ and $R \leftarrow R$ are l-preorder, $R \rightarrow R$ and $R \Leftarrow R$ are r-preorder.

(14) Let R be reflexive. We define

$$R^{\infty}(x,y) = \bigvee_{n \in N} R^{n}(x,y)$$

where $R^n = \overline{R \circ R} \ldots \circ R$. Then R^{∞} is an *l*-preoder. (15) Let R be reflexive. We define

$$R^{[\infty]}(x,y) = \bigvee_{n \in N} R^{[n]}(x,y)$$

where $R^{[n]} = \overbrace{R \otimes R \dots \otimes R}^{[n]}$. Then $R^{[\infty]}$ is an r-preoder.

(16) U^{∞} is an *l*-preoder and $U^{[\infty]}$ is an *r*-preoder for $U \in \{R \Rightarrow R^s, R \rightarrow R^s\}$ $R^s, R \leftarrow R^s, R \leftarrow R^s, R^s \Rightarrow R, R^s \rightarrow R, R^s \leftarrow R, R^s \leftarrow R\}.$

Proof (1) Since R is symmetric, R is r-transitive from:

$$R(y,z) \odot R(x,y) = R(z,y) \odot R(y,x) \le R(z,x) = R(x,z).$$

- (2) Since R is symmetric and R is r-transitive, R is l-transitive.
- (3) It follows from

$$R^{s}(y,z) \odot R^{s}(x,y) = R(z,y) \odot R(y,x) \le R(z,x) = R^{s}(x,z).$$

(4) Since $R \circ R(x, x) > R(x, x) \odot R(x, x) = \top$, $R \circ R$ is reflexive.

$$\begin{aligned} (R \Rightarrow R)(x,z) &= \bigwedge_{y \in X} (R(x,y) \to R(y,z)) \\ &\leq (R(x,x) \to R(x,z)) = R(x,z). \end{aligned}$$

Other cases are similarly proved.

(5) It easily proved because

$$(R \Rightarrow R)(x, x) = \bigwedge_{y \in X} (R(x, y) \to R(y, x)) = \top$$

iff $R(x, y) \le R(y, x)$ (by Lemma 2.3 (3)).

Similarly, $R(x, y) \ge R(y, x)$. Hence R is symmetric. Other cases are similarly proved.

(6) $(R \circ R)^s = R^s \otimes R^s = R \otimes R$. $(R \leftarrow R)^s = (R^s \Rightarrow R^s) = (R \Rightarrow R)$. Other cases are similarly proved.

Fuzzy relations on generalized residuated lattices

(7) We have $R \circ R \leq R$ iff $R \leq (R^s \Rightarrow R)$ iff $R \leq (R \leftarrow R^s)$ because

$$\begin{aligned} R(x,y) \odot R(y,z) &\leq R(x,z) \text{ iff } R(y,z) \leq R(x,y) \Rightarrow R(x,z) \\ R(x,y) \odot R(y,z) &\leq R(x,z) \text{ iff } R(x,y) \leq R(y,z) \to R(x,z). \end{aligned}$$

Other cases are similarly proved.

(8) It is similarly proved as in (7).

(9) If R is reflexive, then $R \leq (R \circ R) R \leq (R^s \Rightarrow R)$ and $R \leq (R \leftarrow R^s)$. By (7), the results holds.

(10) It is similarly proved as in (8).

(11) It follows from (4),(7) and (8).

(12) Since $R^s = R$, by (9,10), we easily prove it.

(13) Since R is symmetric, by (5), $R \Rightarrow R$ is reflexive.

$$\begin{array}{ll} (R \Rightarrow R)(x,y) \odot (R \Rightarrow R)(y,z) &\leq (R(x,p) \Rightarrow R(p,y)) \odot (R(y,p) \Rightarrow R(p,z)) \\ &\leq (R(x,p) \Rightarrow R(p,y)) \odot (R(p,y) \Rightarrow R(p,z)) \\ &\leq R(x,p) \Rightarrow R(p,z) \end{array}$$

Hence $R \Rightarrow R$ is *l*-transitive. Thus $R \Rightarrow R$ is an *l*-preorder. Other cases are similarly proved.

(14) Since R is reflexive and $R(x,x) \leq R^2(x,x) \leq R^\infty(x,x)$, then R^∞ is reflexive. Suppose there exist $x, y, z \in X$ such that

$$R^{\infty}(x,y) \circ R^{\infty}(y,z) \not\leq R^{\infty}(x,z).$$

By the definition of $R^{\infty}(x, y)$, there exists $x_i \in X$ such that

$$R(x, x_1) \odot R(x_1, x_2) \odot ... \odot R(x_n, y) \circ R^{\infty}(y, z) \not\leq R^{\infty}(x, z).$$

By the definition of $R^{\infty}(y, z)$, there exists $y_j \in X$ such that

 $R(x, x_1) \odot R(x_1, x_2) \odot \ldots \odot R(x_n, y)$

$$\odot R(y, y_1) \odot R(y_1, y_2) \odot \dots \odot R(y_n, z) \not\leq R^{\infty}(x, z).$$

It is a contradiction for the definition of $R^{\infty}(x, z)$. Hence R^{∞} is *l*-transitive.

(15) Since R is reflexive and $R(x,x) \leq R^{[2]}(x,x) \leq R^{[\infty]}(x,x)$, then $R^{[\infty]}$ is reflexive. Suppose there exist $x, y, z \in X$ such that

$$R^{[\infty]}(y,z) \otimes R^{[\infty]}(x,y) \not\leq R^{[\infty]}(x,z).$$

By the definition of $R^{\infty}(x, y)$, there exists $x_i \in X$ such that

$$R^{[\infty]}(y,z) \otimes R(x_n,y) \dots \odot R(x_1,x_2) \odot R(x,x_1) \not\leq R^{[\infty]}(x,z).$$

By the definition of $R^{[\infty]}(y, z)$, there exists $y_j \in X$ such that

$$R(y_m, z) \odot ... \odot R(y_1, y_2) \odot R(y, y_1)$$

 $\odot R(x_n, y) \dots \odot R(x_1, x_2) \odot R(x, x_1) \not\leq R^{[\infty]}(x, z).$

It is a contradiction for the definition of $R^{[\infty]}(x,z)$. Hence $R^{[\infty]}$ is r-transitive. (16) For $U \in \{R \Rightarrow R^s, R \rightarrow R^s, R \leftarrow R^s, R \leftarrow R^s, R^s \Rightarrow R, R^s \rightarrow$

 $R, R^s \leftarrow R, R^s \leftarrow R$, U is reflexive. By (14,15), it is easily proved.

Theorem 3.3 Let X be a set and $A \in L^X$. We define $R_{\Rightarrow}, R_{\rightarrow} : X \times X \to L$ as follows:

$$R_{\Rightarrow}(x,y) = A(x) \Rightarrow A(y), \ R_{\rightarrow}(x,y) = A(x) \rightarrow A(y).$$

We have the following properties.

(1) R_{\Rightarrow} is *l*-preorder and R_{\rightarrow} is *r*-preorder.

(2) R_l is l-preorder and R_r is r-preorder with $R_r = R_l^s$ where $R_l(x, y) =$ $R_{\Rightarrow}(x,y) \wedge R_{\rightarrow}(y,x)$ and $R_r(x,y) = R_{\rightarrow}(x,y) \wedge R_{\Rightarrow}(y,x)$. Moreover, if A is an injective function, then R_l is l-order and R_r is r-order.

Proof. (1) It follows from, by Lemma 2.3 (10),

$$(A(x) \Rightarrow A(y)) \odot (A(y) \Rightarrow A(z)) \le (A(x) \Rightarrow A(z))$$
$$(A(y) \to A(z)) \odot (A(x) \to A(y)) \le (A(x) \to A(z)).$$

1	0	1
(Z)
	_	1

 $R_l(x,y) \odot R_l(y,z) \leq (A(x) \Rightarrow A(y)) \odot (A(y) \Rightarrow A(z)) \leq (A(x) \Rightarrow A(z))$ $R_l(x,y) \odot R_l(y,z) \leq (A(y) \to A(x)) \odot (A(z) \to A(y)) \leq (A(z) \to A(x))$ $R_l(x,y) \odot R_l(y,z) \leq R_l(x,z).$ $P(u, z) \cap P(w, u) \leq (A(u) \to A(z)) \cap (A(w) \to A(u)) \leq (A(w) \to A(z))$

$$R_r(y,z) \odot R_r(x,y) \leq (A(y) \to A(z)) \odot (A(x) \to A(y)) \leq (A(x) \to A(z))$$

$$R_r(x,y) \odot R_r(y,z) \leq (A(z) \Rightarrow A(y)) \odot (A(y) \Rightarrow A(x)) \leq (A(z) \Rightarrow A(x))$$

$$R_r(y,z) \odot R_r(x,y) \leq R_r(x,z).$$

If $R_l(x,y) = \top$, then A(x) = A(y). Since A is injective, x = y.

Example 3.4 Let $K = \{(x, y) \in \mathbb{R}^2 \mid x > 0\}$ be a set and we define an operation $\otimes : K \times K \to K$ as follows:

$$(x_1, y_1) \otimes (x_2, y_2) = (x_1 x_2, x_1 y_2 + y_1).$$

Then (K, \otimes) is a group with $e = (1, 0), (x, y)^{-1} = (\frac{1}{x}, -\frac{y}{x}).$ We have a positive cone $P = \{(a, b) \in R^2 \mid a = 1, b \ge 0, \text{ or } a > 1\}$ because $P \cap P^{-1} = \{(1,0)\}, P \odot P \subset P, (a,b)^{-1} \odot P \odot (a,b) = P \text{ and } P \cup P^{-1} = K.$ For $(x_1, y_1), (x_2, y_2) \in K$, we define

$$(x_1, y_1) \le (x_2, y_2) \quad \Leftrightarrow (x_1, y_1)^{-1} \odot (x_2, y_2) \in P, \ (x_2, y_2) \odot (x_1, y_1)^{-1} \in P \\ \Leftrightarrow x_1 < x_2 \ \text{ or } \ x_1 = x_2, y_1 \le y_2.$$

Then $(K, \leq \otimes)$ is a lattice-group. (ref. [1])

The structure $(L, \odot, \Rightarrow, \rightarrow, (\frac{1}{2}, 1), (1, 0))$ is a generalized residuated lattice with strong negation where $\bot = (\frac{1}{2}, 1)$ is the least element and $\top = (1, 0)$ is the greatest element from the following statements:

$$\begin{array}{ll} (x_1, y_1) \odot (x_2, y_2) &= (x_1, y_1) \otimes (x_2, y_2) \lor (\frac{1}{2}, 1) = (x_1 x_2, x_1 y_2 + y_1) \lor (\frac{1}{2}, 1), \\ (x_1, y_1) \Rightarrow (x_2, y_2) &= ((x_1, y_1)^{-1} \otimes (x_2, y_2)) \land (1, 0) = (\frac{x_2}{x_1}, \frac{y_2 - y_1}{x_1}) \land (1, 0), \\ (x_1, y_1) \rightarrow (x_2, y_2) &= ((x_2, y_2) \otimes (x_1, y_1)^{-1}) \land (1, 0) = (\frac{x_2}{x_1}, -\frac{x_2 y_1}{x_1} + y_2) \land (1, 0). \end{array}$$

Furthermore, we have $(x, y) = (x, y)^{*\circ} = (x, y)^{\circ*}$ from:

$$(x,y)^* = (x,y) \Rightarrow (\frac{1}{2},1) = (\frac{1}{2x},\frac{1-y}{x}),$$
$$(x,y)^{*\circ} = (\frac{1}{2x},\frac{1-y}{x}) \to (\frac{1}{2},1) = (x,y).$$

(1) Let $X = \{a, b, c\}$ be a set. Let $A \in L^X$ as

$$A(a) = (0.6, 2), \ A(b) = (0.8, -1), \ A(c) = (0.5, 3).$$

From Theorem 3.3, we obtain $R_{\Rightarrow}, R_{\rightarrow}, R_l, R_r \in L^{X \times X}$ as

$$R_{\Rightarrow} = \begin{pmatrix} (1,0) & (1,0) & (\frac{5}{6},\frac{5}{3}) \\ (\frac{3}{4},\frac{15}{4}) & (1,0) & (\frac{5}{8},-1) \\ (1,0) & (1,0) & (1,0) \end{pmatrix}$$
$$R_{\rightarrow} = \begin{pmatrix} (1,0) & (1,0) & (\frac{5}{6},\frac{4}{3}) \\ (\frac{3}{4},\frac{11}{4}) & (1,0) & (\frac{5}{8},\frac{29}{8}) \\ (1,0) & (1,0) & (1,0) \end{pmatrix}$$
$$R_{l} = \begin{pmatrix} (1,0) & (\frac{3}{4},\frac{11}{4}) & (\frac{5}{6},\frac{5}{3}) \\ (\frac{3}{4},\frac{15}{4}) & (1,0) & (\frac{5}{8},5) \\ (\frac{5}{6},\frac{4}{3}) & (\frac{5}{8},\frac{29}{8}) & (1,0) \end{pmatrix}$$
$$R_{r} = \begin{pmatrix} (1,0) & (\frac{3}{4},\frac{15}{4}) & (\frac{5}{6},\frac{4}{3}) \\ (\frac{3}{4},\frac{11}{4}) & (1,0) & (\frac{5}{8},\frac{29}{8}) \\ (\frac{5}{6},\frac{5}{3}) & (\frac{5}{8},5) & (1,0) \end{pmatrix}$$

(2) Let $X = \{a, b, c\}$ be a set. Define $R \in L^{X \times X}$ as

$$R = \begin{pmatrix} (1,0) & (0.6,2) & (0.7,1) \\ (0.6,2) & (1,0) & (0.9,-1) \\ (0.7,1) & (0.9,-1) & (1,0) \end{pmatrix}$$

Since $(0.63, -1) = R(b, c) \odot R(c, a) \not\leq R(b, a) = (0.6, 2)$, R is not *l*-transitive. Since $(0.63, -1) = R(c, b) \odot R(a, c) \not\leq R(a, b) = (0.6, 2)$, R is not *r*-transitive.

$$R \circ R = \begin{pmatrix} (1,0) & (0.63,0.3) & (0.7,1) \\ (0.63,-0.1) & (1,0) & (0.9,-1) \\ (0.7,1) & (0.9,-1) & (1,0) \end{pmatrix}$$

Since $R \circ R = R^n = \bigvee_{n \in N} R^n = R^\infty$ for $n \ge 2$, by Theorem 3.2 (14), $R^2 = R^\infty$ is an *l*-order.

$$R \otimes R = \begin{pmatrix} (1,0) & (0.63,-0.1) & (0.7,1) \\ (0.63,0.3) & (1,0) & (0.9,-1) \\ (0.7,1) & (0.9,-1) & (1,0) \end{pmatrix}$$

Since $R \otimes R = R^{[n]} = \bigvee_{n \in N} R^{[n]} = R^{[\infty]}$ for $n \ge 2$, by Theorem 3.2 (15), $R^{[2]} = R^{[\infty]}$ is an *r*-order.

$$\begin{split} R \Rightarrow R &= \begin{pmatrix} (1,0) & (0.6,2) & (0.7,1) \\ (0.6,2) & (1,0) & (0.9,-1) \\ (\frac{2}{3},\frac{10}{3}) & (\frac{6}{7},\frac{10}{7}) & (1,0) \end{pmatrix} \\ R &\leftarrow R &= \begin{pmatrix} (1,0) & (0.6,2) & (\frac{2}{3},\frac{10}{3}) \\ (0.6,2) & (1,0) & (\frac{6}{7},\frac{10}{7}) \\ (0.7,1) & (0.9,-1) & (1,0) \end{pmatrix} \\ R &\to R &= \begin{pmatrix} (1,0) & (0.6,2) & (0.7,1) \\ (0.6,2) & (1,0) & (0.9,-1) \\ (\frac{2}{3},\frac{10}{3}) & (\frac{6}{7},\frac{8}{7}) & (1,0) \end{pmatrix} \\ R &\leftarrow R &= \begin{pmatrix} (1,0) & (0.6,2) & (\frac{2}{3},\frac{10}{3}) \\ (0.6,2) & (1,0) & (\frac{6}{7},\frac{8}{7}) \\ (0.7,1) & (0.9,-1) & (1,0) \end{pmatrix} \end{split}$$

Since R is symmetric, by Theorem 3.2 (13), $R \Rightarrow R$ and $R \leftarrow R$ are *l*-preorder, $R \rightarrow R$ and $R \leftarrow R$ are *r*-preorder.

(3) Let $X = \{a, b, c\}$ be a set. Define $R \in L^{X \times X}$ as

$$R = \begin{pmatrix} \left(\frac{1}{2}, 1\right) & \left(\frac{5}{6}, -\frac{2}{3}\right) & \left(\frac{5}{7}, \frac{2}{7}\right) \\ \left(\frac{5}{6}, -\frac{2}{3}\right) & \left(\frac{1}{2}, 1\right) & \left(\frac{5}{9}, \frac{14}{9}\right) \\ \left(\frac{5}{7}, \frac{2}{7}\right) & \left(\frac{5}{9}, \frac{14}{9}\right) & \left(\frac{1}{2}, 1\right) \end{pmatrix}$$

We obtain

$$\begin{split} R \circ R &= \begin{pmatrix} \left(\frac{25}{36}, -\frac{11}{9}\right) & \left(\frac{1}{2}, 1\right) & \left(\frac{1}{2}, 1\right) \\ \left(\frac{1}{2}, 1\right) & \left(\frac{25}{36}, -\frac{11}{9}\right) & \left(\frac{25}{42}, -\frac{4}{21}\right) \\ \left(\frac{1}{2}, 1\right) & \left(\frac{25}{42}, -\frac{4}{21}\right) & \left(\frac{25}{49}, \frac{24}{49}\right) \end{pmatrix} \\ R \Rightarrow R &= \begin{pmatrix} \left(1, 0\right) & \left(\frac{3}{5}, 2\right) & \left(\frac{2}{3}, \frac{8}{3}\right) \\ \left(\frac{3}{5}, 2\right) & \left(1, 0\right) & \left(\frac{6}{7}, \frac{8}{7}\right) \\ \left(\frac{10}{7}, -\frac{4}{3}\right) & \left(\frac{9}{10}, 1\right) & \left(1, 0\right) \end{pmatrix} \\ R \to R &= \begin{pmatrix} \left(1, 0\right) & \left(\frac{3}{5}, \frac{7}{5}\right) & \left(\frac{2}{3}, 2\right) \\ \left(\frac{3}{5}, \frac{7}{5}\right) & \left(1, 0\right) & \left(\frac{6}{7}, \frac{6}{7}\right) \\ \left(\frac{10}{7}, \frac{4}{5}\right) & \left(\frac{9}{10}, -\frac{2}{5}\right) & \left(1, 0\right) \end{pmatrix} \end{split}$$

Since R is symmetric, by Theorem 3.2 (6), $R \otimes R = (R \circ R)^s$, $R \leftarrow R = (R \Rightarrow$ $(R)^s$ and $R \leftarrow R = (R \rightarrow R)^s$. Since $(\frac{25}{36}, -\frac{11}{9}) = R(a, b) \odot R(b, a) \not\leq R(a, a) = R(a, b)$ (0.5, 1), R is not *l*-transitive. Since \tilde{R} is symmetric, by Theorem 3.2 (13), $R \Rightarrow R$ and $R \leftarrow R$ are *l*-preorder and $R \rightarrow R$ and $R \leftarrow R$ are *r*-preorder. (4) Let $X = \{a, b, c\}$ be a set. Define $R \in L^{X \times X}$ as

$$R = \begin{pmatrix} (1,0) & (\frac{5}{8},\frac{5}{2}) & (\frac{5}{6},\frac{5}{3}) \\ (\frac{5}{7},\frac{30}{7}) & (1,0) & (\frac{5}{8},-\frac{5}{4}) \\ (1,-2) & (\frac{5}{7},\frac{10}{3}) & (1,0) \end{pmatrix}$$

Since R is an l-preorder, $R = R \circ R = R^s \Rightarrow R = R \leftarrow R^s$. Furthermore, since R is an *r*-preorder, $R = R \otimes R = R^s \rightarrow R = R \Leftarrow R^s$.

(5)Let $X = \{a, b, c\}$ be a set. Define $R \in L^{X \times X}$ as

$$R = \begin{pmatrix} (\frac{1}{2}, 1) & (0.8, -1) & (0.6, 0) \\ (0.7, -2) & (\frac{1}{2}, 1) & (0.8, 2) \\ (0.5, 2) & (0.6, -1) & (\frac{1}{2}, 1) \end{pmatrix}$$

We obtain

$$R \circ R = \begin{pmatrix} \left(\frac{1}{2}, 1\right) & \left(\frac{1}{2}, 1\right) & \left(0.64, 0.6\right) \\ \left(\frac{1}{2}, 1\right) & \left(0.56, -2.7\right) & \left(\frac{1}{2}, 1\right) \\ \left(\frac{1}{2}, 1\right) & \left(\frac{1}{2}, 1\right) & \left(\frac{1}{2}, 1\right) \end{pmatrix}$$

Since $(0.64, 0.6) = R(a, b) \odot R(b, c) \leq R(a, c) = (0.6, 0), R$ is not *l*transitive.

$$R \otimes R = \begin{pmatrix} (0.56, -2.7) & (\frac{1}{2}, 1) & (\frac{1}{2}, 1) \\ (\frac{1}{2}, 1) & (0.56, -2.7) & (\frac{1}{2}, 1) \\ (\frac{1}{2}, 1) & (\frac{1}{2}, 1) & (\frac{1}{2}, 1) \end{pmatrix}$$

Since $(0.56, -2.7) = R(b, a) \odot R(a, b) \leq R(a, a) = (0.5, 1), R$ is not *r*-transitive.

$$R \Rightarrow R^{s} = \begin{pmatrix} (1,0) & (\frac{5}{8},\frac{5}{2}) & (\frac{3}{4},0) \\ (\frac{5}{7},\frac{30}{7}) & (1,0) & (\frac{5}{8},-\frac{5}{4}) \\ (1,-2) & (\frac{5}{6},\frac{10}{3}) & (1,0) \end{pmatrix}$$

Since $(R \Rightarrow R^s)^n = R \Rightarrow R^s$ for all $n \in N$, $R^\infty = R \Rightarrow R^s$ is an *l*-order.

References

- [1] G. Birkhoff, Lattice Theory, Amer. Math. Soc. Colloq. Publ., 25, New York, 1968.
- [2] C.C. Chang, Algebraic analysis of many valued logics, Trans. of A.M.S.,88 (2) (1958), 467-490.

- [3] A. Dvurecenskij, Pseudo MV-algebras are intervals in l-groups, J. Australian Math. Soc., 72 (2002), 427-445.
- [4] A. Dvurecenskij, On pseudo MV-algebras, Soft Computing, 5 (2001), 347-354.
- [5] G. Georgescu, A. lorgulescu, Pseudo MV-algebras, *Multiple-Valued Logics*, 6 (2001),193-215.
- [6] G. Georgescu, A. Popescu, Non-commutative fuzzy Galois connections, Soft Computing, 7 (2003), 458-467.
- [7] G. Georgescu, A. Popescu, Non-commutative fuzzy structures and pairs of weak negations, *Fuzzy Sets and Systems*, 143 (2004), 129-155.
- [8] N. Galatos, C. Tsinakis, Generalized MV-alebras, J. of Algebra, 283 (2005), 254-291.
- [9] U. Höhle, E. P. Klement, Non-classical logic and their applications to fuzzy subsets, Kluwer Academic Publisher, Boston, 1995.
- [10] Y.C. Kim, J.W. Park, Pseudo MV-algebras induced by functions, Int. Math. Forums, 4 (2) (2009), 89-99.
- [11] E. Turunen, *Mathematics Behind Fuzzy Logic*, A Springer-Verlag Co., 1999.
- [12] R. Wille, Restructuring lattice theory; an approach based on hierarchies of concept, in: 1. Rival(Ed.), Ordered Sets, Reidel, Dordrecht, Boston, 1982, 445-470.

Received: July, 2012