Fuzzy relation equations and Galois connections

Yong Chan Kim

Department of Mathematics, Gangnung-Wonju University, Gangneung, Gangwondo 210-702, Korea yck@gwnu.ac.kr

Abstract

In this paper, we study solutions of two types of fuzzy relation equations $A_i \rightarrow R = B_i$ and $R \rightarrow A_i = B_i$ in residuated lattices. We investigate the relations between Galois connections and solutions of fuzzy relation equations. Moreover, we give approximation solutions of two types of fuzzy relation equations.

Mathematics Subject Classification: 03E72, 03B52, 08A72, 06A15

Keywords: Fuzzy relation equations, Galois connections, Residuated lattices, Right (left) upper approximation, Right (left) quality

1 Introduction

Sanchez [10] introduced the theory of fuzzy relation equations with various types of composition: max-min, min-max, min- α . Fuzzy relation equations with new types of composition(pseudo t-norm [5], continuous t-norm [11], residuated lattice [3,6-9]) is developed [4]. On the other hand, concept lattices using Galois connections play an important role in information theory [1,3]. Diaz and Medina [3] introduced the relations between isotone Galois connection and solutions of fuzzy relation equations $A_i \odot R = B_i$.

In this paper, we study solutions of two types of fuzzy relation equations $A_i \rightarrow R = B_i$ and $R \rightarrow A_i = B_i$ in residuated lattices. We investigate the relations between Galois connections and solutions of fuzzy relation equations $A_i \rightarrow A_i = B_i$ and $R \rightarrow A_i = B_i$. Moreover, we give approximation solutions of two types of fuzzy relation equations.

2 Preliminaries

Definition 2.1 [12] A structure $(L, \lor, \land, \odot, \rightarrow, 0, 1)$ is called a *residuated lattice* if it satisfies the following conditions:

(R1) $(L, \lor, \land, 1, 0)$ is a bounded where 1 is the universal upper bound and 0 denotes the universal lower bound;

(R2) $(L, \odot, 1)$ is a commutative monoid;

(R3) it satisfies a residuation , i.e.

$$a \odot b \le c \text{ iff } a \le b \to c.$$

Remark 2.2 [12] A left-continuous t-norm $([0,1], \leq, \odot)$ defined by $a \rightarrow b = \bigvee \{c \mid a \odot c \leq b\}$ is a residuated lattice.

In this paper, we assume $(L, \land, \lor, \odot, \rightarrow, 0, 1)$ is a residuated lattice.

Lemma 2.3 [12] For each $x, y, z, x_i, y_i \in L$, we have the following properties. (1) If $x \leq z$ $(x \cap x) \leq (x \cap z)$ $x \to y \leq x \to z$ and $z \to x \leq y \to x$.

(1) If
$$y \leq z$$
, $(x \odot y) \leq (x \odot z)$, $x \to y \leq x \to z$ and $z \to x \leq y \to x$.
(2) $x \odot y \leq x \land y \leq x \lor y$.
(3) $x \to (\bigwedge_{i \in \Gamma} y_i) = \bigwedge_{i \in \Gamma} (x \to y_i)$ and $(\bigvee_{i \in \Gamma} x_i) \to y = \bigwedge_{i \in \Gamma} (x_i \to y)$.
(4) $x \to (\bigvee_{i \in \Gamma} y_i) \geq \bigvee_{i \in \Gamma} (x \to y_i)$.
(5) $(\bigwedge_{i \in \Gamma} x_i) \to y \geq \bigvee_{i \in \Gamma} (x_i \to y)$.
(6) $(x \odot y) \to z = x \to (y \to z)$.
(7) $x \to (y \to z) = y \to (x \to z)$.
(8) $x \odot (x \to y) \leq y$.
(9) $(x \to y) \odot (y \to z) \leq x \to z$.
(10) $x \leq (x \to y) \to y$.
(11) $y \to z) \leq (x \odot y) \to (x \odot z)$ and $(y \to z) \leq (x \to y) \to (x \to z)$.
(12) $\bigwedge_{i \in \Gamma} (x_i \to y_i) \leq (\bigwedge_{i \in \Gamma} x_i) \to (\bigwedge_{i \in \Gamma} y_i)$.
(13) $\bigwedge_{i \in \Gamma} (x_i \to y_i) \leq (\bigvee_{i \in \Gamma} x_i) \to (\bigvee_{i \in \Gamma} y_i)$.
(14) $x \to y = 1$ iff $x \leq y$.

3 Fuzzy relation equations and Galois connections

Definition 3.1 (1) Let $A_i \in L^U$, $R \in L^{U \times V}$ and $B_i \in L^V$. We define fuzzy relation equations as follows

$$(A_i \odot R)(v) = \bigvee_{u \in U} (A_i(u) \odot R(u, v)) = B_i(v), \ i \in \{1, ..., n\}$$
(1)

$$(R \to A_i)(v) = \bigwedge_{u \in U} (R(u, v) \to A_i(u)) = B_i(v), \ i \in \{1, ..., n\}.$$
 (2)

(2) Let $A_j^t \in L^V$, $R \in L^{U \times V}$ and $D_j \in L^U$ for $j \in \{1, ..., m\}$. We define fuzzy relation equations as follows

$$(A_j^t \to R)(u) = \bigwedge_{v \in V} (A_j^t(v) \to R(u, v)) = D_j(u), \ j \in \{1, ..., m\}$$
(3)

Fuzzy relation equations and Galois connections

$$(R \to A_j^t)(u) = \bigwedge_{v \in V} (R(u, v) \to A_j^t(v)) = D_j(u), \ j \in \{1, ..., m\}.$$
(4)

Let $U = \{u_1, ..., u_m\}$ and $V = \{v_1, ..., v_n\}$ be two sets, $R \in L^{U \times V}$ an unknown fuzzy relation $A_1, ..., A_n \in L^U$ and $B_1, ..., B_n \in L^V$. If $v \in V$, $A_i(u_j) = a_{ij}$ for $i \in \{1, ..., n\}, j \in \{1, ..., m\}, R(u_j, v) = x_j, B_j(v) = b_j$, then system (1) can be written by

$$a_{11} \odot x_1 \lor \ldots \lor a_{1m} \odot x_m = b_1$$

$$\vdots \qquad \vdots$$

$$a_{n1} \odot x_1 \lor \ldots \lor a_{nm} \odot x_m = b_n$$
(5)

Put $h(x) = (h(x)_1, ..., h(x)_n)$ with $h(x)_i = \bigvee_k^m (a_{ik} \odot x_k)$ for $i \in \{1, ..., n\}$ and

$$x = (x_1, ..., x_m) \in L^m.$$

The system (2) can be written by

$$\begin{array}{ll}
x_1 \to a_{11} \wedge \dots \wedge x_m \to a_{1m} &= b_1 \\
\vdots &\vdots \\
x_1 \to a_{n1} \wedge \dots \wedge x_m \to a_{nm} &= b_n
\end{array}$$
(6)

Put $f^{\rightarrow}(x) = (f^{\rightarrow}(x)_1, ..., f^{\rightarrow}(x)_n)$ with $f^{\rightarrow}(x)_i = \bigwedge_k^m (x_k \rightarrow a_{ik})$ for $i \in \{1, ..., n\}$ and $x = (x_1, ..., x_m) \in L^m$.

If $u \in U$, $A_j^t(v_i) = a_{ij}$ for $i \in \{1, ..., n\}$, $j \in \{1, ..., m\}$, $R(u, v_i) = y_i$, $D_j(u) = d_j$,

The system (3) can be written by

$$a_{11} \rightarrow y_1 \wedge \dots \wedge a_{n1} \rightarrow y_n = d_1$$

$$\vdots \qquad \vdots$$

$$a_{1m} \rightarrow y_1 \wedge \dots \wedge a_{nm} \rightarrow y_n = d_m$$
(7)

Put $g(y) = (g(y)_1, ..., g(y)_m)$ with $g(y)_j = \bigwedge_{l=1}^n (a_{lj} \to y_l)$ for $j \in \{1, ..., m\}$ and $y = (y_1, ..., y_n) \in L^n$.

The system (4) can be written by

$$y_1 \to a_{11} \wedge \dots \wedge y_n \to a_{n1} = d_1$$

$$\vdots \qquad \vdots$$

$$y_1 \to a_{1m} \wedge \dots \wedge y_n \to a_{nm} = d_m$$
(8)

Put $g^{\rightarrow}(y) = (g^{\rightarrow}(y)_1, ..., g^{\rightarrow}(y)_m)$ with $g^{\rightarrow}(y)_j = \bigwedge_{p=1}^n (y_p \to a_{pj})$ for $j \in \{1, ..., m\}$ and $y = (y_1, ..., y_n) \in L^n$.

Definition 3.2 [3] Let $h : L^m \to L^n$ and $g : L^n \to L^m$ be an increasing function. The pair (h, g) is an isotone Galois connection if

$$h(a) \leq b \text{ iff } a \leq g(b), \ \forall a \in L^m, b \in L^n$$

Theorem 3.3 [3] (1) Let $h : L^m \to L^n$ and $g : L^n \to L^m$ be a function. Then the pair (h,g) is an isotone Galois connection iff $h(f(b)) \leq b, a \leq g(h(a)), \forall a \in L^m, b \in L^n$.

(2) (h, g) are an isotone Galois connection.

(3) (5) is solvable iff h(g(b)) = b for $b = (b_1, ..., b_n)$. Moreover, if (5) is solvable with h(x) = b, then g(b) is the greatest solution.

(4) (7) is solvable iff g(h(d)) = d for $d = (d_1, ..., d_m)$. Moreover, if (7) is solvable with g(y) = d, then h(d) is the least solution.

Definition 3.4 Let $f: L^m \to L^n$ and $g: L^n \to L^m$ be a decreasing function. The pair (f,g) is an antitone Galois connection if

$$y \leq f(x)$$
 iff $x \leq g(y), \forall x \in L^m, y \in L^n$.

Theorem 3.5 (1) Let $f : L^m \to L^n$ and $g : L^n \to L^m$ be a function. Then the pair (f,g) is a an antitone Galois connection iff $y \leq f(g(y)), x \leq g(f(x)), \forall x \in L^m, y \in L^n$.

(2) $(f^{\rightarrow}, g^{\rightarrow})$ and $(g^{\rightarrow}, f^{\rightarrow})$ are an antitone Galois connections.

(3) (6) is solvable iff $f^{\rightarrow}(g^{\rightarrow}(b)) = b$ for $b = (b_1, ..., b_n)$. Moreover, if (6) is solvable with $f^{\rightarrow}(x) = b$, then $g^{\rightarrow}(b)$ is the greatest solution.

(4) (8) is solvable iff $g^{\rightarrow}(f^{\rightarrow}(d)) = d$ for $d = (d_1, ..., d_m)$. Moreover, if (8) is solvable with $g^{\rightarrow}(y) = d$, then $f^{\rightarrow}(d)$ is the greatest solution.

Proof (1) (\Rightarrow). Since $g(y) \leq g(y)$, then $y \leq f(g(y))$. Since $f(x) \leq f(x)$, then $x \leq g(f(x))$.

 (\Rightarrow) . If $x_1 \leq x_2$ and $x_2 \leq g(f(x_2))$, then $f(x_2) \leq f(x_1)$. If $y_1 \leq y_2$ and $y_2 \leq f(g(y_2))$, then $g(y_2) \leq g(y_1)$. Hence f and g are decreasing functions.

Let $y \leq f(x)$ be given. Then $g(y) \geq g(f(x)) \geq x$. Let $x \leq g(y)$ be given. Then $f(x) \geq f(g(y)) \geq y$. Hence the pair (f,g) is an antitone Galois connection.

(2) By Lemma 2.3(10), we have

$$\begin{aligned} f^{\rightarrow}(g^{\rightarrow}(b))_i &= \bigwedge_{j=1}^m (g^{\rightarrow}(b)_j \to a_{ij}) = \bigwedge_{j=1}^m (\bigwedge_{p=1}^n (b_p \to a_{pj}) \to a_{ij}) \\ &\geq \bigwedge_{j=1}^m ((b_i \to a_{ij}) \to a_{ij}) \ge b_i. \\ g^{\rightarrow}(f^{\rightarrow}(d))_j &= \bigwedge_{k=1}^n (f^{\Rightarrow}(d)_k \to a_{kj}) = \bigwedge_{k=1}^n (\bigwedge_{p=1}^n (d_p \to a_{kp}) \to a_{kj}) \\ &\geq \bigwedge_{k=1}^n ((d_j \to a_{kj}) \to a_{kj}) \ge d_j. \end{aligned}$$

By (1), $(f^{\rightarrow}, g^{\rightarrow})$ and $(g^{\rightarrow}, f^{\rightarrow})$ are antitone Galois connections.

(3) (\Rightarrow) Let $x = (x_1, ..., x_m)$ be a solution of (6). Since $\bigwedge_{k=1}^m (x_k \to a_{ik}) = b_i, i \in \{1, ..., n\}$, then

$$x_k \to a_{ik} \ge \bigwedge_{k=1}^m (x_k \to a_{ik}) = b_i, i \in \{1, ..., n\}.$$

Then $x_k \odot b_i \leq a_{ik}$. Thus $x_k \leq b_i \to a_{ik}$. Hence $x_k \leq \bigwedge_{p=1}^n (b_p \to a_{pk})$. So,

$$b_i = \bigwedge_{k=1}^m (x_k \to a_{ik}) \ge \bigwedge_{k=1}^m (\bigwedge_{p=1}^n (b_p \to a_{pk}) \to a_{ik}) = f^{\to} (g^{\to}(b))_i \ge \bigwedge_{k=1}^m ((b_i \to a_{ik}) \to a_{ik}) \ge b_i.$$

Thus, $f^{\rightarrow}(g^{\rightarrow}(b))_i = b_i$. Hence $g^{\rightarrow}(b)$ is the greatest solution.

(4) (\Rightarrow) Let $y = (y_1, ..., y_n)$ be a solution of (8). Since $\bigwedge_{p=1}^n (y_p \to a_{pj}) = d_j, j \in \{1, ..., m\}$, then

$$y_p \to a_{pj} \ge \bigwedge_{p=1}^n (y_p \to a_{pj}) = d_j, j \in \{1, ..., m\}$$

Then $d_j \odot y_p \leq a_{pj}$. Thus $y_p \leq d_j \to a_{pj}$. Hence $y_p \leq \bigwedge_{k=1}^m (d_k \to a_{pk})$. So,

$$d_j = \bigwedge_{p=1}^n (y_p \to a_{pj}) \ge \bigwedge_{p=1}^n (\bigwedge_{k=1}^m (d_k \to a_{pk}) \to a_{pj}) = g^{\to} (f^{\to}(d))_j \ge \bigwedge_{p=1}^n ((d_j \to a_{pj}) \to a_{pj}) \ge d_j.$$

Thus, $g^{\rightarrow}(f^{\rightarrow}(d))_j = d_j$. Hence $f^{\rightarrow}(d)$ is the greatest solution.

Theorem 3.6 (1) If (5) is solvable, then $\bigwedge_{k=1}^{m} (a_{ik} \to a_{jk}) \leq b_i \to b_j$. (2) If (7) is solvable, then $\bigwedge_{p=1}^{n} (a_{pj} \to a_{pi}) \leq d_i \to d_j$. (3) If (6) is solvable, then $\bigwedge_{k=1}^{m} (a_{ik} \to a_{jk}) \leq b_i \to b_j$. (4) If (8) is solvable, then $\bigwedge_{p=1}^{n} (a_{pi} \to a_{pj}) \leq d_i \to d_j$.

Proof (1) Since $\bigvee_{k=1}^{m} (a_{ik} \odot x_k) = b_i$, by Lemma 2.3 (11,13), we have

$$b_{i} \rightarrow b_{j} = \bigvee_{k=1}^{m} (a_{ik} \odot x_{k}) \rightarrow \bigvee_{k=1}^{m} (a_{jk} \odot x_{k})$$

$$\geq \bigwedge_{k=1}^{m} ((a_{ik} \odot x_{k}) \rightarrow (a_{jk} \odot x_{k}))$$

$$\geq \bigwedge_{k=1}^{m} (a_{ik} \rightarrow a_{jk}).$$

(2) Since $g(y)_j = \bigwedge_{l=1}^n (a_{lj} \to y_l) = d_j$, by Lemma 2.3 (11,12), we have

$$d_{i} \rightarrow d_{j} = \bigwedge_{l=1}^{n} (a_{li} \rightarrow y_{l}) \rightarrow \bigwedge_{l=1}^{n} (a_{lj} \rightarrow y_{l})$$

$$\geq \bigwedge_{l=1}^{n} ((a_{li} \rightarrow y_{l}) \rightarrow (a_{lj} \rightarrow y_{l}))$$

$$\geq \bigwedge_{l=1}^{n} (a_{lj} \rightarrow a_{li}).$$

(3) Since $\bigwedge_{k=1}^{m} (x_k \to a_{ik}) = b_i$, by Lemma 2.3 (11,12), we have

$$b_{i} \rightarrow b_{j} = \bigwedge_{k=1}^{m} (x_{k} \rightarrow a_{ik}) \rightarrow \bigwedge_{k=1}^{m} (x_{k} \rightarrow a_{jk})$$

$$\geq \bigwedge_{k=1}^{m} ((x_{k} \rightarrow a_{ik}) \rightarrow (x_{k} \rightarrow a_{jk}))$$

$$\geq \bigwedge_{k=1}^{m} (a_{ik} \rightarrow a_{jk}).$$

(4) Since
$$g^{\rightarrow}(y)_j = \bigwedge_{p=1}^n (y_p \to a_{pj}) = d_j$$
, by Lemma 2.3 (11,12), we have
 $d_i \to d_j = \bigwedge_{p=1}^n (y_p \to a_{pi}) \to \bigwedge_{p=1}^n (y_p \to a_{pj})$
 $\geq \bigwedge_{p=1}^n ((y_p \to a_{pi}) \to (y_p \to a_{pj}))$
 $\geq \bigwedge_{p=1}^n (a_{pi} \to a_{pj}).$

Example 3.7 The structure $(L = [0, 1], \odot, \rightarrow, 0, 1)$ is a residuated lattice defined binary operations \odot (called Lukasiewicz conjection) and \rightarrow on L = [0, 1] by

$$x \odot y = \max\{0, x + y - 1\}, \ x \to y = \min\{1 - x + y, 1\}.$$

(1)

$$\begin{array}{l}
0.4 \to y_1 \land 0.6 \to y_2 \land 0.8 \to y_3 = 0.1 \\
0.2 \to y_1 \land 0.5 \to y_2 \land 0.4 \to y_3 = 0.7
\end{array} \tag{9}$$

$$(a_{ij}) = \left(\begin{array}{cc} 0.4 & 0.2\\ 0.6 & 0.5\\ 0.8 & 0.4 \end{array}\right)$$

Since $0.6 = \wedge_{p=1}^{3}(a_{p1} \to a_{p2}) \not\leq d_2 \to d_1 = 0.7$, by Theorem 3.2(2), $h(d) = (y_1, y_2, y_3) = (\vee_k^2(a_{1k} \odot d_k), \vee_k^2(a_{2k} \odot d_k), \vee_k^2(a_{3k} \odot d_k)) = (0, 0.2, 0.1)$ is not a solution of **(9)**.

(2)

$$\begin{array}{l} 0.4 \to y_1 \land 0.6 \to y_2 \land 0.8 \to y_3 = 0.6 \\ 0.2 \to y_1 \land 0.5 \to y_2 \land 0.4 \to y_3 = 0.7 \end{array} \tag{10}$$

Then $h(d) = (y_1, y_2, y_3) = (\vee_k^2(a_{1k} \odot d_k), \vee_k^2(a_{2k} \odot d_k), \vee_k^2(a_{3k} \odot d_k)) = (0, 0.2, 0.4)$ is a solution of **(10)**

(3)

$$y_1 \to 0.4 \land y_2 \to 0.6 \land y_3 \to 0.8 = 0.8 y_1 \to 0.2 \land y_2 \to 0.5 \land y_3 \to 0.4 = 0.7$$
(11)

Then $g^{\rightarrow}(d) = (y_1, y_2, y_3) = (\wedge_k^2(d_k \to a_{1k}), \wedge_k^2(d_k \to a_{2k}), \wedge_k^2(d_k \to a_{3k})) = (0.5, 0.8, 0.9)$ is a solution of **(11)**

Theorem 3.8 [3] Let $h : L^m \to L^n$ and $g : L^n \to L^m$ be functions such that the pair (h,g) is an isotone Galois connection. Let $Cl(L^m) = \{x \in L^m \mid g(h(x)) = x\}$ and $Cl(L^n) = \{y \in L^n \mid h(g(y)) = y\}$ be given. Then $h : Cl(L^m) \to Cl(L^n)$ is a bijective function. Fuzzy relation equations and Galois connections

Theorem 3.9 Let $f^{\rightarrow} : L^m \rightarrow L^n$ and $g^{\rightarrow} : L^n \rightarrow L^m$ be functions such that the pair $(f^{\rightarrow}, g^{\rightarrow})$ is a antitone Galois connection. Let $cl(L^m) = \{x \in L^m \mid g^{\rightarrow}(f^{\rightarrow}(x)) = x\}$ and $cl(L^n) = \{y \in L^n \mid f^{\rightarrow}(g^{\rightarrow}(y)) = y\}$ be given. Then $f^{\rightarrow} : cl(L^m) \rightarrow cl(L^n)$ is a bijective function.

Proof For $x \in cl(L^m)$; i.e. $g^{\rightarrow}(f^{\rightarrow}(x)) = x$, $f^{\rightarrow}(g^{\rightarrow}(f^{\rightarrow}(x))) \ge f^{\rightarrow}(x)$ and $g^{\rightarrow}(f^{\rightarrow}(x)) \ge x$ implies $f^{\rightarrow}(g^{\rightarrow}(f^{\rightarrow}(x))) \le f^{\rightarrow}(x)$. Thus $f^{\rightarrow}(g^{\rightarrow}(f^{\rightarrow}(x))) = f^{\rightarrow}(x)$. So, $f^{\rightarrow}(x) \in cl(L^n)$. f^{\rightarrow} is well defined.

If
$$f^{\rightarrow}(x) = f^{\rightarrow}(z)$$
 with $x = g^{\rightarrow}(f^{\rightarrow}(x))$ and $g^{\rightarrow}(f^{\rightarrow}(z)) = z$, then

$$z = g^{\rightarrow}(f^{\rightarrow}(z)) = g^{\rightarrow}(f^{\rightarrow}(g^{\rightarrow}(f^{\rightarrow}(z)))$$
$$= g^{\rightarrow}(f^{\rightarrow}(g^{\rightarrow}(f^{\rightarrow}(x))) = g^{\rightarrow}(f^{\rightarrow}(x)) = x.$$

Hence f^{\rightarrow} is injective.

For $y \in cl(L^n)$; i.e. $f^{\rightarrow}(g^{\rightarrow}(y)) = y$, there exists $g^{\rightarrow}(y) \in L^m$ such that $g^{\rightarrow}(y) = g^{\rightarrow}(f^{\rightarrow}(g^{\rightarrow}(y)))$. Hence f^{\rightarrow} is surjective.

Definition 3.10 Let $A_i \in L^U$, $R \in L^{U \times V}$ and $B_i \in L^V$, $i \in \{1, ..., n\}$.

(1) The right upper approximation is defined as

$$\mathcal{R}_{ru} = \{ R \in L^{U \times V} \mid A_i \to R \ge B_i, i \in \{1, ..., n\} \}.$$

(2) The left upper approximation is defined as

$$\mathcal{R}_{lu} = \{ R \in L^{U \times V} \mid R \to A_i \ge B_i, i \in \{1, ..., n\} \}.$$

(3) The right quality $\delta_r(R)$ of approximation is defined as

$$\delta_r(R) = \bigwedge_{i=1}^n \bigwedge_{v \in V} ((A_i \to R)(v) \to B_i(v)).$$

(4) The left quality $\delta_l(R)$ of approximation is defined as

$$\delta_l(R) = \bigwedge_{i=1}^n \bigwedge_{v \in V} ((R \to A_i)(v) \to B_i(v)).$$

Definition 3.11 Let $A_i \in L^U$, $R \in L^{U \times V}$ and $B_i \in L^V$, $i \in \{1, ..., n\}$.

(1) A fuzzy relation R_b is a best approximation solution of $A_i \to R = B_i$ in the approximation space $L^{U \times V}$ (resp. \mathcal{R}_{ru}) with respect to $\delta_r(R)$ if

$$\delta_r(R_b) = \bigvee_{R \in L^{U \times V}} \delta_r(R), \ \delta_r(R_b) = \bigvee_{R \in \mathcal{R}_{ru}} \delta_r(R).$$

(2) A fuzzy relation R_b is a best approximation solution of $R \to A_i = B_i$ in the approximation space $L^{U \times V}$ (resp. \mathcal{R}_{lu}) with respect to $\delta_l(R)$ if

$$\delta_l(R_b) = \bigvee_{R \in L^{U \times V}} \delta_l(R), \ \delta_l(R_b) = \bigvee_{R \in \mathcal{R}_{lu}} \delta_l(R).$$

Theorem 3.12 Define $\leq_{\delta_r}, \leq_{\delta_l}, \leq_{ru}, \leq_{lu}$ on the approximation space $L^{U \times V}$ (resp. \mathcal{R}_{rl} or \mathcal{R}_{ru}) as follows:

 $R_{1} \leq_{\delta_{r}} R_{2} \quad iff \ \delta_{r}(R_{2}) \leq \delta_{r}(R_{1}),$ $R_{1} \leq_{\delta_{l}} R_{2} \quad iff \ \delta_{l}(R_{2}) \leq \delta_{l}(R_{1}),$ $R_{1} \leq_{ru} R_{2} \quad iff \ A_{i} \to R_{1} \leq A_{i} \to R_{2}, i \in \{1, ..., n\}, R_{1}, R_{2} \in \mathcal{R}_{ru}$ $R_{1} \leq_{lu} R_{2} \quad iff \ R_{1} \to A_{i} < R_{2} \to A_{i}, i \in \{1, ..., n\}, R_{1}, R_{2} \in \mathcal{R}_{lu}$

Then $\leq_{\delta_r}, \leq_{\delta_l}, \leq_{ru}, \leq_{lu}$ are preorders. Moreover, $R_1 \leq_{lu} R_2$ implies $R_1 \leq_{\delta_l} R_2$ and $R_1 \leq_{ru} R_2$ implies $R_1 \leq_{\delta_r} R_2$.

Proof (1) Since $\delta_r(R) = \delta_r(R)$, $R \leq_{\delta_r} R$. Thus \leq_{δ_r} is reflexive.

If $R_1 \leq_{\delta_r} R_2$ and $R_2 \leq_{\delta_r} R_3$, then $\delta_r(R_2) \leq \delta_r(R_1)$ and $\delta_r(R_3) \leq \delta_r(R_2)$. Hence $\delta_r(R_3) \leq \delta_r(R_1)$; i.e. $R_1 \leq_{\delta_r} R_3$. Thus \leq_{δ_r} is transitive. So, \leq_{δ_r} is a preorder. Similarly, $\leq_{\delta_l}, \leq_{ru}, \leq_{lu}$ are preorders.

Since $R_1 \leq_{ru} R_2$ iff $B_i \leq A_i \to R_1 \leq A_i \to R_2, i \in \{1, ..., n\}, R_1, R_2 \in \mathcal{R}_{ru}$, then $\delta_r(R_2) = \bigwedge_{i=1}^n \bigwedge_{v \in V} ((A_i \to R_2) \to B_i(v)) \leq \bigwedge_{i=1}^n \bigwedge_{v \in V} ((A_i \to R_1)(v) \to B_i(v)) = \delta_r(R_1)$. So, $R_1 \leq_{\delta_r} R_2$. Similarly, $R_1 \leq_{lu} R_2$ implies $R_1 \leq_{\delta_l} R_2$.

Theorem 3.13 Let $A_i \in L^U$, $R \in L^{U \times V}$ and $B_i \in L^V$, $i \in \{1, ..., n\}$. (1) $R^{\odot}(u, v) = \bigvee_{p=1}^{n} (A_p(u) \odot B_p(v))$ is the least element in $\mathcal{R}_{ru} = \{R \in L^{U \times V} \mid A_i \to R \ge B_i, i \in \{1, ..., n\}\}$ with respect to the ordinary order \le . (2) $R^{\rightarrow}(u, v) = \bigwedge_{p=1}^{n} (B_p(v) \to A_p(u))$ is the greatest element in $\mathcal{R}_{lu} = \{R \in L^{X \times Y} \mid R \to A_i \ge B_i, i \in \{1, ..., n\}\}$ with respect to the ordinary order \le .

Proof (1) We have $R^{\odot} \in R_{ru}$ from:

$$(A_i \to R^{\odot})(v) = \bigwedge_{u \in U} (A_i(u) \to R^{\odot}(u, v)) = \bigwedge_{u \in U} ((A_i(u) \to \bigvee_{p=1}^n A_p(u) \odot B_p(v)) \geq \bigwedge_{u \in U} (A_i(u) \to A_i(u) \odot B_i(v)) \geq B_i(v).$$

Let $R \in R_{ru}$ be given.

$$(A_i \to R)(v) = \bigwedge_{u \in U} (A_i(u) \to R(u, v)) \ge B_i(v)$$

$$(\Rightarrow) R(u, v) \ge A_i(u) \odot B_i(v)$$

$$(\Rightarrow) R(u, v) \ge \bigvee_{i=1}^n (A_i(u) \odot B_i(v)).$$

Thus $R \ge R^{\odot}$. So, R^{\odot} is the least element in R_{ru} .

(2) We have $R^{\rightarrow} \in R_{lu}$ from:

$$(R^{\rightarrow} \rightarrow A_i)(v) = \bigwedge_{x \in X} (R^{\rightarrow}(u, v) \rightarrow A_i(u)) = \bigwedge_{x \in X} (\bigwedge_{p=1}^n (B_p(v) \rightarrow A_p(u)) \rightarrow A_i(u)) \geq \bigwedge_{x \in X} ((B_i(v) \rightarrow A_i(u)) \rightarrow A_i(u)) \geq B_i(v).$$

Let $R \in R_{lu}$ be given.

$$(R \to A_i)(v) = \bigwedge_{x \in X} (R(u, v) \to A_i(u)) \ge B_i(v)$$

$$(\Rightarrow)R(u, v) \odot B_i(v) \le A_i(u)$$

$$(\Rightarrow)R(u, v) \le B_i(v) \to A_i(u).$$

Thus $R \leq R^{\rightarrow}$. So, R^{\rightarrow} is the greatest element in R_{lu} .

Definition 3.14 Let $A_i \in L^U$, $R \in L^{U \times V}$ and $B_i \in L^V$, $i \in \{1, ..., n\}$.

(1) A fuzzy relation $R_b^{ru} \in \mathcal{R}_{ru}$ is a best approximation solution of $A_i \to R = B_i$ in the approximation space \mathcal{R}_{ru} with respect to \leq_{ru} if there is no fuzzy relation $R \in \mathcal{R}_{ru}$ such that $R \leq_{ru} R_b^{ru}$ and $A_i \to R \neq A_i \to R_b^{ru}$ for at least one $i \in \{1, 2, ..., n\}$.

(2) A fuzzy relation $R_b^{lu} \in \mathcal{R}_{lu}$ is a best approximation solution of $R \to A_i = B_i$ in the approximation space \mathcal{R}_{lu} with respect to \leq_{lu} if there is no fuzzy relation $R \in \mathcal{R}_{lu}$ such that $R \leq_{lu} R_b^{lu}$ and $R \to A_i \neq R_b^{lu} \to A_i$ for at least one $i \in \{1, 2, ..., n\}$.

Theorem 3.15 Let $A_i \in L^U$, $R \in L^{U \times V}$ and $B_i \in L^V$, $i \in \{1, ..., n\}$.

(1) If the system of $A_i \to R = B_i$ is unsolvable with respect to an unknown $R \in L^{U \times V}$, then $R^{\odot}(u, v) = \bigvee_{p=1}^{n} (A_p(u) \odot B_p(v))$ is the best approximation solution in R_{ru} with respect to the preorder \leq_{ru} , that is, $R_b^{ru} = R^{\odot}$.

(2) If the system of $R \to A_i = B_i$ is unsolvable with respect to an unknown $R \in L^{U \times V}$, then $R^{\to}(u, v) = \bigwedge_{p=1}^{n} (B_p(v) \to A_p(u))$ is the best approximation solution in R_{lu} with respect to the ordinary order \leq_{lu} , that is, $R_b^{lu} = R^{\to}$.

Proof (1) Suppose there exists a fuzzy relation $R \in \mathcal{R}_{ru}$ such that $R \leq_{ru} R^{\odot}$ and $A_i \to R \neq A_i \to R^{\odot}$ for at least one $i \in \{1, 2, ..., n\}$. Since $R \leq_{ru} R^{\odot}$,

$$R \leq_{ru} R^{\odot} \text{ iff } A_i \to R \leq A_i \to R^{\odot}, i \in \{1, ..., n\}, R, R^{\odot} \in \mathcal{R}_{ru}$$

Since $A_i \to R \neq A_i \to R^{\odot}$ for at least one $i \in \{1, 2, ..., n\}$, there exists $v \in V$ such that $(A_i \to R)(v) < (A_i \to R^{\odot})(v)$. By Theorem 3.13(1), since $R \ge R^{\odot}$, then $A_i \to R^{\odot} \le A_i \to R$. It is a contradiction. Thus, $R_b^{ru} = R^{\odot}$.

(2) Suppose there exists a fuzzy relation $R \in \mathcal{R}_{lu}$ such that $R \leq_{lu} R^{\rightarrow}$ and $R \rightarrow A_i \neq R^{\rightarrow} \rightarrow A_i$ for at least one $i \in \{1, 2, ..., n\}$. Since $R \leq_{lu} R^{\rightarrow}$,

$$R \leq_{lu} R^{\rightarrow} \text{ iff } R \rightarrow A_i \leq R^{\rightarrow} \rightarrow A_i, i \in \{1, ..., n\}, R, R^{\rightarrow} \in \mathcal{R}_{lu}$$

Since $R \to A_i \neq R^{\to} \to A_i$ for at least one $i \in \{1, 2, ..., n\}$, there exists $v \in V$ such that $(R \to A_i)(v) < (R^{\to} \to A_i)(v)$. By Theorem 3.13(2), since $R \leq R^{\to}$, then $R^{\to} \to A_i \leq R \to A_i$. It is a contradiction. Thus, $R_b^{lu} = R^{\to}$.

Theorem 3.16 Let $A_i \in L^U$, $R \in L^{U \times V}$ and $B_i \in L^V$, $i \in \{1, ..., n\}$.

(1) If the system of $A_i \to R = B_i$ is unsolvable with respect to an unknown $R \in L^{U \times V}$, then $R^{\odot}(u, v) = \bigvee_{p=1}^{n} (A_p(u) \odot B_p(v))$ is the best approximation solution in R_{ru} with respect to the approximation quality $\delta_r(R)$.

(2) If the system of $R \to A_i = B_i$ is unsolvable with respect to an unknown $R \in L^{U \times V}$, then $R^{\to}(u, v) = \bigwedge_{p=1}^n (B_p(v) \to A_p(u))$ is the best approximation solution in R_{lu} with respect to the approximation quality $\delta_l(R)$.

Proof (1) Let $R \in \mathcal{R}_{ru}$ be a fuzzy relation. We will show that $\delta_r(R) \leq \delta_r(R^{\odot})$.

Put $A_i \to R = C_i$ for $i \in \{1, ..., n\}$. Since R is solvable, by Theorem 3.3 (5), $C_i \ge B_i$ and $A_i(u) \to \bigvee_{p=1}^n (A_p(u) \odot C_p(v)) = C_i(v)$ such that

$$R(u,v) \ge \bigvee_{p=1} (A_p(u) \odot C_p(v)) \ge \bigvee_{p=1} (A_p(u) \odot B_p(v)) = R^{\odot}(u,v).$$

Thus,

$$\delta_r(R) = \bigwedge_{i=1}^n \bigwedge_{v \in V} ((A_i \to R)(v) \to B_i(v)) \\ \leq \bigwedge_{i=1}^n \bigwedge_{v \in V} ((A_i \to R^{\odot})(v) \to B_i(v)) \\ = \delta_r(R^{\odot}).$$

(2) Let $R \in \mathcal{R}_{lu}$ be a fuzzy relation. We will show that $\delta_l(R) \leq \delta_l(R^{\rightarrow})$.

Put $R \to A_i = C_i$ for $i \in \{1, ..., n\}$. Since R is solvable, by Theorem 3.5(3), $C_i \ge B_i$ and $\bigwedge_{p=1} (C_p(v) \to A_p(u)) \to A_i(u) = C_i(v)$ such that

$$R(u,v) \le \bigwedge_{p=1} (C_p(v) \to A_p(u)) \le \bigwedge_{p=1} (B_p(v) \to A_p(u)) \le R^{\to}(u,v).$$

Thus,

$$\delta_{l}(R) = \bigwedge_{i=1}^{n} \bigwedge_{v \in V} ((R \to A_{i})(v) \to B_{i}(v))$$

$$\leq \bigwedge_{i=1}^{n} \bigwedge_{v \in V} ((R^{\to} \to A_{i})(v) \to B_{i}(v))$$

$$= \delta_{l}(R^{\to}).$$

Example 3.17 Let the structure $(L = [0, 1], \odot, \rightarrow, 0, 1)$ be as same in Example 3.7. Let $U = \{u_1, u_2, u_3\}$ and $V = \{v_1, v_2\}$ be sets. (1) Put

$$A_{1} = (A_{1}(u_{1}), A_{1}(u_{2}), A_{1}(u_{3})) = (0.5, 0.3, 0.9)$$
$$A_{2} = (A_{2}(u_{1}), A_{2}(u_{2}), A_{2}(u_{3})) = (0.7, 0.2, 0.4)$$
$$B_{1} = (B_{1}(v_{1}), B_{1}(v_{2})) = (0.3, 0.6)$$
$$B_{2} = (B_{2}(v_{1}), B_{2}(v_{2})) = (0.7, 0.5)$$

$$\begin{array}{l}
0.5 \to x_1 \land 0.3 \to x_2 \land 0.9 \to x_3 = 0.3 \\
0.7 \to x_1 \land 0.2 \to x_2 \land 0.4 \to x_3 = 0.7
\end{array} \tag{12}$$

Then $(x_1, x_2, x_3) = (R_1(u_1, v_1), R_1(u_2, v_1), R_1(u_3, v_1)) = (0.4, 0.2, 0.3)$ is a solution of **(12)**. Since $h(b)_i = \bigvee_{p=1}^2 (b_p \odot a_{pi})$ for $b = (B_1(v_1), B_2(v_1)) = (0.3, 0.7)$, $h(b) = (R^{\odot}(u_1, v_1), R^{\odot}(u_2, v_1), R^{\odot}(u_3, v_1)) = (0.4, 0, 0.2)$ is the least solution of **(12)** ; i.e. g(h(b)) = b.

$$\begin{array}{l}
0.5 \to x_1 \land 0.3 \to x_2 \land 0.9 \to x_3 = 0.6 \\
0.7 \to x_1 \land 0.2 \to x_2 \land 0.4 \to x_3 = 0.5
\end{array} \tag{13}$$

Then $(x_1, x_2, x_3) = (R_1(u_1, v_2), R_1(u_2, v_2), R_1(u_3, v_2)) = (0.2, 0.1, 0.5)$ is a solution of **(10)**. Since $h(b)_i = \bigvee_{p=1}^2 (b_p \odot a_{pi})$ for $b = (B_1(v_2), B_2(v_2)) = (0.6, 0.5)$, $h(b) = (R^{\odot}(u_1, v_2), R^{\odot}(u_2, v_2), R^{\odot}(u_3, v_2)) = (0.2, 0.1, 0.5)$ is the least solution of **(13)** ; i.e. g(h(b)) = b.

For $i \in \{1, 2\}$,

$$\begin{array}{l}
0.5 \to R(u_1, v_i) \land 0.3 \to R(u_2, v_i) \land 0.9 \to R(u_3, v_i) = B_1(v_i) \\
0.7 \to R(u_1, v_i) \land 0.2 \to R(u_2, v_i) \land 0.4 \to R(u_3, v_i) = B_2(v_i)
\end{array} \tag{14}$$

we obtain:

$$R = R_1 = \begin{pmatrix} 0.4 & 0.2 \\ 0.2 & 0.1 \\ 0.3 & 0.5 \end{pmatrix} \quad R = R^{\odot} = \begin{pmatrix} 0.4 & 0.2 \\ 0 & 0.1 \\ 0.2 & 0.5 \end{pmatrix}$$

(2)

$$\begin{array}{l} x_1 \to 0.5 \land x_2 \to 0.3 \land x_3 \to 0.9 = 0.3 \\ x_1 \to 0.7 \land x_2 \to 0.2 \land x_3 \to 0.4 = 0.7 \end{array}$$
(15)

Since $g^{\rightarrow}(b)_i = \bigwedge_{p=1}^2 (b_p \to a_{pi})$ for $b = (B_1(v_1), B_2(v_1)) = (0.3, 0.7), g^{\rightarrow}(b) = (R^{\rightarrow}(u_1, v_1), R^{\rightarrow}(u_2, v_1), R^{\rightarrow}(u_3, v_1)) = (1, 0.5, 0.7)$ is not a solution of **(15)**; i.e. $f^{\rightarrow}(g^{\rightarrow}(b)) > b$.

$$\begin{array}{l} x_1 \to 0.5 \land x_2 \to 0.3 \land x_3 \to 0.9 = 0.6 \\ x_1 \to 0.7 \land x_2 \to 0.2 \land x_3 \to 0.4 = 0.5 \end{array}$$
(16)

Then $(x_1, x_2, x_3) = (R_1(u_1, v_2), R_1(u_2, v_2), R_1(u_3, v_2)) = (0.9, 0.7, 0.8)$ is a solution of **(16)**. Since $g^{\rightarrow}(c)_i = \bigwedge_{p=1}^2 (c_p \rightarrow a_{pi})$ for $c = (B_1(v_2), B_2(v_2)) = (0.6, 0.5), g^{\rightarrow}(c) = (R^{\rightarrow}(u_1, v_2), R^{\rightarrow}(u_2, v_2), R^{\rightarrow}(u_3, v_2)) = (0.9, 0.7, 0.9)$ is the greatest solution of **(16)** ; i.e. $f^{\rightarrow}(g^{\rightarrow}(c)) = c$.

For $i \in \{1, 2\}$,

$$\begin{array}{l}
R(u_1, v_i) \to 0.5 \land R(u_2, v_i) \to 0.3 \land R(u_3, v_i) \to 0.9 = B_1(v_i) \\
R(u_1, v_i) \to 0.7 \land R(u_2, v_i) \to 0.2 \land R(u_3, v_i) \to 0.4 = B_2(v_i)
\end{array} \tag{17}$$

Put

$$R_2 = \begin{pmatrix} 1 & 0.9 \\ 0.5 & 0.7 \\ 0.7 & 0.8 \end{pmatrix} \quad R^{\rightarrow} = \begin{pmatrix} 1 & 0.9 \\ 0.5 & 0.7 \\ 0.7 & 0.9 \end{pmatrix}$$

Then

$$\delta_l(R_2) = \delta_l(R^{\rightarrow}) = \bigwedge_{i=1}^2 \bigwedge_{v \in V} ((R^{\rightarrow} \to A_i)(v) \to B_i(v)) = 0.8.$$

References

- R. Bělohlávek, Lattices of fixed points of Galois connections, Math. Logic Quart., 47, (2001) 111-116.
- [2] G. Birkhoff, Lattice Theory, Amer. Math. Soc. Colloq. Publ., 25, New York, 1968.
- [3] J.C. Díaz, J. Medina, Solving systems for fuzzy relation equations by fuzzy property-oriented concepts, Information Sciences, (article in press).
- [4] S. Gottwald, On the existence of soltion of systems of fuzzy equations, Fuzzy Sets and Systems, 12 (1984), 301-302.
- [5] A.A. Molai, E. Khorram, An algorithm for solving fuzzy relation equations with max-T composition operator, *Information Sciences*, **178** (2008), 1293-1308.
- [6] W. Pedrycz, Inverse problem in fuzzy relation equations, *Fuzzy Sets and Systems*, 36 (1990), 277-291.
- [7] I. Perfilieva, Fuzzy function as an approximate solution to a system of fuzzy relation equations, *Fuzzy Sets and Systems*, 147 (2004), 363-383.
- [8] I. Perfilieva, L. Noskova, System of fuzzy relation equations with infcomposition: Commplete set of solutions, *Fuzzy Sets and Systems*, 159 (2008), 2256-2271.

- [9] I. Perfilieva, Finitary solvablity conditions for system of fuzzy relation equations *Information Sciences*, (article in press).
- [10] E. Sanchez, Resolution of composite fuzzy relation equations, Inform. and Control, 30 (1976), 38-48.
- [11] B.S. Shieh, Solutions of fuzzy relation equations based on continuous tnorms, *Information Sciences*, 177 (2007), 4208-4215.
- [12] E. Turunen, *Mathematics Behind Fuzzy Logic*, A Springer-Verlag Co., 1999.

Received: December, 2012