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Abstract
In this paper, we study solutions of two types of fuzzy relation equa-
tions A4; - R = B; and R — A; = B; in residuated lattices. We
investigate the relations between Galois connections and solutions of
fuzzy relation equations. Moreover, we give approximation solutions of
two types of fuzzy relation equations.
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1 Introduction

Sanchez [10] introduced the theory of fuzzy relation equations with various
types of composition: max-min, min-max, min-o. Fuzzy relation equations
with new types of composition( pseudo t-norm [5], continuous t-norm [11],
residuated lattice [3,6-9]) is developed [4]. On the other hand, concept lattices
using Galois connections play an important role in information theory [1,3].
Diaz and Medina [3] introduced the relations between isotone Galois connection
and solutions of fuzzy relation equations A; ©® R = B;.

In this paper, we study solutions of two types of fuzzy relation equations
A; =& R = B; and R — A; = B; in residuated lattices. We investigate the
relations between Galois connections and solutions of fuzzy relation equations
A; = A; = B; and R — A; = B;. Moreover, we give approximation solutions
of two types of fuzzy relation equations.

2 Preliminaries

Definition 2.1 [12] A structure (L,V,A,®,—,0,1) is called a residuated
lattice if it satisfies the following conditions:
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(R1) (L,V,A,1,0) is a bounded where 1 is the universal upper bound and
0 denotes the universal lower bound;

(R2) (L, ®,1) is a commutative monoid;

(R3) it satisfies a residuation , i.e.

aOb<cifa<b-—ec

Remark 2.2 [12] A left-continuous t-norm ([0,1], <,®) defined by a —
b=V{c|a®c<b} is a residuated lattice.

In this paper, we assume (L, A, V,®,—,0,1) is a residuated lattice.
Lemma 2.3 [12] For each z,y, z,x;,y; € L, we have the following proper-

ties.

zOy<zANy<zVy.

T = (Nier ¥i) = Nier(® = yi) and (Vier 1) = y = Nier (2 — v).
T = (Vier i) = Vier(r = 4i).

(Aier i) =y > Vier(zi — y).

ier(®i = yi) < (Vier i) = (Vier ¥i)-

X
X
Yy
Nier (i = i) < (Nier i) = (Nier i)
A
r—y=1iff x <y.

3  Fuzzy relation equations and Galois
connections

Definition 3.1 (1) Let A; € LY, R € LYV and B; € LY. We define fuzzy
relation equations as follows

(4 ® R)(v) = \/U(Ai(u) ® R(u,v)) = Bi(v), i € {1,...,n} (1)
(R— A)(v) = A\ (Ru,v) = Aw) = Bi(v), i € {1,...n}.  (2)

(2) Let A' € LY, R € LYV and D; € LY for j € {1,...,m}. We define
fuzzy relation equations as follows

(A5 = R)(u) = A\ (A5(v) = R(u,v)) = Dj(u), j € {L,...m}  (3)

veV
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(R— AY)(u) = A (R(u,v) = A%(v)) = Dj(u), j € {1,...,m}. (4)

veV

Let U = {uy,....,uy,} and V = {v1,...,v,} be two sets, R € LYV an
unknown fuzzy relation A;,...,A, € LY and By,...,B, € LY. If v € V,
AZ(UJ) = Qi for ¢ € {1,...,n}, j S {1,...,m}, R(Uj,’(]) = Zy, Bj(U) = bj, then
system (1) can be written by

a1 ©Ox1V...Vaym ©n, :bl
. . . (5)
Al @21V .oV apm © Ty = by,

Put h(z) = (h(x)1, ..., h(z),) with h(z); = V}'(ax © xy) for i € {1,...,n} and

x= (21, ..., Tp) € L™.
The system (2) can be written by

Ty — api N ... NTpyy, — A1m :bl

. . . (6)
T1 = Qi N oo N Ty — Qpn = by
Put f7(z) = (f7 (@)1, [7(2)n) with f7(2); = Af'(zx — a) for i €
{1,...,n} and x = (21, ..., ) € L™.
Ifu e U, Al(v;)) = ay for i € {1,..,n}, j € {1,...,m}, R(u,v;) = y;,
D](u) = dj>
The system (3) can be written by

air —> Y1 N\ .. N ap1 — Yp :dl
. . . (7)
Aim —> YL N oo N Oy = Y = diy

Put g(y) = (9(4)1, - 9(y)m) with g(y); = Aii(a; — y) for j € {1,...m}
and y = (y1, ..., yn) € L™.
The system (4) can be written by

y1—>a11/\.../\yn—>an1 :dl

(8)

Y1 = G N oo AYp = Ay = doy

Put g7 (y) = (7 W), g7 (W)m) With g7 (y); = Ap_1(yp — ay;) for j €
{1,....m} and y = (y1, ..., yn) € L".



28 Yong Chan Kim

Definition 3.2 [3] Let h : L™ — L™ and g : L™ — L™ be an increasing
function. The pair (h, g) is an isotone Galois connection if

h(a) <biff a < g(b), Va € L™ be L".

Theorem 3.3 [3] (1) Let h : L™ — L" and g : L™ — L™ be a func-
tion. Then the pair (h, g) is an isotone Galois connection iff h(f(b)) < b,a <
g(h(a)), Ya € L™, b e L".

(2) (h,g) are an isotone Galois connection.

(3) (5) is solvable iff h(g(b)) = b for b = (by,...,b,). Moreover, if (5) is
solvable with h(x) = b, then g(b) is the greatest solution.

(4) (7) 1s solvable iff g(h(d)) = d for d = (dy, ...,d,,). Moreover, if (7) is
solvable with g(y) = d, then h(d) is the least solution.

Definition 3.4 Let f: L™ — L™ and g : L™ — L™ be a decreasing func-
tion. The pair (f, g) is an antitone Galois connection if

y < f(x)iff x < g(y), Ve € L™ y € L".

Theorem 3.5 (1) Let f : L™ — L™ and g : L™ — L™ be a function.
Then the pair (f,g) is a an antitone Galois connection iff y < f(g(y)),x <
g(f(x)), Ve e L™,y € L™

(2) (f7,97) and (g, f7) are an antitone Galois connections.

(3) (6) is solvable iff f7 (g7 (b)) = b for b= (by,...,b,). Moreover, if (6) is
solvable with [~ (x) = b, then g7 (b) is the greatest solution.

(4) (8) is solvable iff g7 (f7(d)) = d for d = (dy, ...dy,). Moreover, if (8) is
solvable with g~ (y) = d, then f~(d) is the greatest solution.

Proof (1) (=). Since g(y) < g(y), then y < f(g(y)). Since f(z) < f(z),
then x < g(f(x)).

(=). If 21 < 29 and xy < g(f(x2)), then f(xg) < f(z1). If y1 < yo and
y2 < f(g(y2)), then g(y2) < g(y1). Hence f and g are decreasing functions.

Let y < f(x) be given. Then g(y) > g(f(z)) > z. Let x < g(y) be
given. Then f(x) > f(g(y)) > y. Hence the pair (f,g) is an antitone Galois
connection.

(2) By Lemma 2.3(10), we have
g7 (b); — aij) = j= 1( _1(bp = apj) — aij)

(g7 ()i i (
(b = ai) = aij) > b;.

g~ (f7(d)); _/\k (7D = ang) = Ap_y(NZy (dy — ary) — ary)
> Ni=1((dj = ag;) — axj) > dj.

By (1), (f~7,¢7) and (¢, f) are antitone Galois connections.
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(3) (=) Let © = (21, ..., ) be a solution of (6). Since AJL,(xr — ay) =
bi,i € {1,...,n}, then
T — Qi > /\ (LL’k — CLik) = bZ,Z S {1, ,n}
k=1
Then z, © b; < ag. Thus zp < by — ag,. Hence z, < Aj_;(b, — ayr). So,
bi = Nita(we = ai) > Nl (Ap=1 (bp = apr) — air)
= 7097 (1) = N ((bi = aix) = aix) > bi.

Thus, f7(¢g7(b)); = b;. Hence g7 (b) is the greatest solution.
(4) (=) Let y = (y1, ., yn) be a solution of (8). Since A\)_;(y, — ap;) =
d;j,j € {1,...,m}, then

Yp = pj > /\ (yp = apj) =dj, 5 € {1,...,m}.
p=1

Then d; ® y, < a,;. Thus y, < d; — a,;. Hence y, < AJL;(dp — api). So,

di = N1 (Yp = apj) = Nyt (N1 (di = apr) — apy)

=g ([7(d); = Np=i((dj = ap;) — ap;) > dj.

Thus, g7 (f7(d)); = d;. Hence f7(d) is the greatest solution.

Theorem 3.6 (1) If (5) is solvable, then \jL;(a;x — ajr) < b; — b;.
(2) If (7) is solvable, then Nj_i(ay; — api) < d;i — dj.

(3) If (6) is solvable, then N[ (amw — aji) < b; — b;.

(4) If (8) is solvable, then Nj_i(api — ap;) < d;i — d;.

Proof (1) Since Vi, (ay ® zx) = b;, by Lemma 2.3 (11,13), we have

b = b, = Vi (aix © zx) = Vit (aje © zp)
> Niei (@i © 1) = (@, © 1))
> /\Z”:l(aik — Cij).

(2) Since ¢(y); = Ajuqy(@; — yi) = d;, by Lemma 2.3 (11,12), we have

di = dj = Ny (as — ) — Nz (ag — w)
> Niey (s — ) = (a; — w1))
> Niey (@ — ai).

(3) Since AJL,(zx — ai) = b;, by Lemma 2.3 (11,12), we have

b,’ — bj = /\lel(l'k — aik) — /\lel(l'k — ajk)
> Ny (e = air) — (v — aji))
> Ny (@i — aji).



30 Yong Chan Kim

(4) Since g7 (y); = Ap=1(yp — ap;) = d;, by Lemma 2.3 (11,12), we have

di —>d; = /\Zzl(yp = pi) = /\Zzl(yp — ayp;)
> /\Zzl((yp = api) = (Yp = apj))
> Np=1(api = ap;).

Example 3.7 The structure (L = [0,1],®,—,0,1) is a residuated lattice
defined binary operations ® (called Lukasiewicz conjection) and — on L =
[0,1] by

rOy=max{0,z+y—1}, r >y =min{l —z +y, 1}.

(1)
O.4—>y1/\0.6—>y2/\0.8—>y3:().1 (9)
O.2—>y1/\0.5—>y2/\0.4—>y3 =0.7

0.4 0.2
0.8 0.4

Since 0.6 = AS_ (ap — ap2) £ da — dy = 0.7, by Theorem 3.2(2), h(d) =
(Y1, 92,93) = (Vi(a1x © di.), Vi(ag, © di,), Vi(az, ® dy)) = (0,0.2,0.1) is not a
solution of (9).

(2)

O.4—>y1/\0.6—>y2/\0.8—>y3 =0.6

02 =11 A0S =y AN0.4 — y3=0.7 (10)

Then h(d) = (y1,Y2,y3) = (\/%(alk © dy), \/%(agk © dy), \/%(agk ©dy)) =
(0,0.2,0.4) is a solution of (10)
(3)
Y1 — 0.4/\’3/2 —06Ay; >08=0.8

y1 = 02Ays =05 ANy — 04=0.7 (11)

Then gﬁ(d) = (y1>y2,y3) = (A%(dk — alk)a /\i(dk — a2k)> /\i(dk — a3k)) =
(0.5,0.8,0.9) is a solution of (11)

Theorem 3.8 [3] Let h : L™ — L™ and g : L™ — L™ be functions such
that the pair (h,g) is an isotone Galois connection. Let CI(L™) = {z €
L™ | g(h(x)) = z} and CI(L") = {y € L™ | h(g(y)) = y} be given. Then
h: ClUL™) — CI(L") is a bijective function.
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Theorem 3.9 Let f7 : L™ — L™ and g~ : L™ — L™ be functions such
that the pair (f~,g7") is a antitone Galois connection. Let cl(L™) = {x €
L™ | g7 (f(x)) = x} and cl(L") = {y € L™ | (97 (y)) = y} be given. Then
f7 o ed(L™) = cl(L™) is a bijective function.

Proof For x € cl(L™)jie. g7 (f7(2)) =z, f7(g7(f7(x))) > f7(x) and
97 (f7(x)) = = implies f7 (g7 (f7(x))) < f7(x). Thus f~(g7(f7(2))) =
f7(x). So, f7(z) € cl(L™). f~ is well defined.

I £~ (2) = £ (2) with & = g (£ (x)) and g (f(2)) = 2, then

z =g (7)) =97 (7 (g7 (f7(2))
=g (77 (7 (@) =97 (/7 (2) = .
Hence f7 is injective.

For y € cl(L™)ie. f7(g97(y)) = y, there exists ¢~ (y) € L™ such that

97 (y) =97 (f7(g7(y))). Hence f~ is surjective.

Definition 3.10 Let A; € LY, Re€ LYV and B; € LV, i € {1,...,n}.
(1) The right upper approximation is defined as

Rru = {R c LUXV | Az — R > BZ,Z c {1, ,n}}
(2) The left upper approximation is defined as
Riw={Re LV |R— A;>Byic{l,.. n}}
(3) The right quality d,(R) of approximation is defined as
6 (R) = N\ N\ (Ai = R)(v) = B;(v)).
i=1veV
(4) The left quality §;(R) of approximation is defined as
a(r) = A\ AR = Aj)(v) = Bi(v)).

i=1veV

Definition 3.11 Let A; € LY, Re€ LYV and B; € LV, i € {1,...,n}.
(1) A fuzzy relation R, is a best approximation solution of A; — R = B;
in the approximation space LV*V (resp. R,,) with respect to §,(R) if

57‘(Rb) = \/U V(ST(R)v 57‘(Rb> = R\7/3 57‘(R>

(2) A fuzzy relation R, is a best approximation solution of R — A; = B;
in the approximation space LV*V (resp. Ry,) with respect to & (R) if

G(Ry)= '\ &(R), a(Ry)= \ d&(R).

ReLUXV ReERy
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Theorem 3.12 Define <;., <s,, <u, <t on the approzimation space LV*V
(resp. Ry or R.y) as follows:

Ry <5, Ry iff 0,(Rs) < 0,(Ry),

Ry <5, Ry iff 8i(R2) < 01(Ry),
R; <., Ro Zﬁ Az — R < Az — RQ,i S {1, ...,n},Rl,Rg € R
Ry <iu Ry iff Ri = A; < Ry — Ajyie{l,...n}, R, Ry € Ry,

Then <s,,<s,, <ru, i, are preorders. Moreover, Ry <;, Ry implies Ry <5, Ry
and Ry <., Rs implies Ry <s5. Rs.

Proof (1) Since 4,(R) = 6,.(R), R <5, R. Thus <j, is reflexive.

If Rl Sgr, R2 and Rg S(ST Rg, then 67~(R2) S (Sr(Rl) and (ST(R;),) S 67~(R2)
Hence 6,.(R3) < §,(Ry);ie. Ry <5, Rs. Thus <; is transitive. So, <;. is a
preorder. Similarly, <s,, <,,, <;, are preorders.

Since R, <., Ry iff B; < Az — R < AZ — Rg,i S {1,...,n},R1,R2 c
Reu, then 6,(R2) = Ny Avev((Ai = R2) — Bi(v)) < ALy Avev ((Ai —
Ry)(v) — B;(v)) = 0,(R1). So, Ry <s5. Rs. Similarly, Ry <;, R implies
Ry <5, Ry.

Theorem 3.13 Let A; € LY, Re LY*V and B; € LV, i € {1,...,n}.

(1) R®(u,v) = Vp_1(Ap(u) © By(v)) is the least element in R, = {R €
LYV | Ay — R> By,i € {1,...,n}} with respect to the ordinary order <.

(2) R7(u,v) = Nj—1(Bp(v) — Ap(u)) is the greatest element in Ry, =
{Re LXY | R — A; > By,i € {1,...,n}} with respect to the ordinary order
<.

Proof (1) We have R® € R,, from:

(Ai = R2)(v) = Ayev(Ai(u) = R (u,v)

(Ai = R)(v) = Auev (Ai(u) = R(u,v)) > B;(v)
(=)R(u,v) > A;j(u) ® B;(v)
(=)R(u,v) > Vi (4i(u) © Bi(v))

Thus R > R®. So, R® is the least element in R,,.
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(2) We have R~ € Ry, from:

Thus R < R7. So, R is the greatest element in Ry,.

Definition 3.14 Let A; € LY, R e LY*V and B; € LV, i € {1,....,n}.

(1) A fuzzy relation R}* € R,, is a best approximation solution of A; —
R = B; in the approximation space R, with respect to <, if there is no fuzzy
relation R € R,, such that R <., Rj* and A; — R # A; — R;" for at least
one i €{1,2,...,n}.

(2) A fuzzy relation R € Ry, is a best approximation solution of R —
A; = B; in the approximation space Ry, with respect to <y, if there is no fuzzy
relation R € R;, such that R <;, Ré“ and R — A; # Ré“ — A; for at least one
ie€{1,2,...,n}.

Theorem 3.15 Let A; € LY, Re LY*V and B; € LV, i € {1,...,n}.

(1) If the system of A; — R = B; is unsolvable with respect to an unknown
R e LYV, then R®(u,v) = Vi_ (Ap(u) © By(v)) is the best approximation
solution in R, with respect to the preorder <,,, that is, R}" = R®.

(2) If the system of R — A; = B; is unsolvable with respect to an unknown
R e LYV, then R7(u,v) = Ny (By(v) = Ay(u)) is the best approximation
solution in Ry, with respect to the ordinary order <, that is, Rf,“ = R™.

Proof (1) Suppose there exists a fuzzy relation R € R, such that R <,,
R® and A; - R # A; — R° for at least one i € {1,2,...,n}. Since R <,, R®,

R<,,R°iff Ai—-R<A —R°ic{l,..,n},R R°ER,,
Since A; = R # A; — R for at least one i € {1,2,...,n}, there exists v € V

such that (4; — R)(v) < (A; — R®)(v). By Theorem 3.13(1), since R > R®,
then A; - R® < A, — R. Tt is a contradiction. Thus, R}" = R®.
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(2) Suppose there exists a fuzzy relation R € R;, such that R <;, R~ and
R — A; # R~ — A, for at least one i € {1,2,...,n}. Since R <;, R,

R<, R7 iff R>A <R’ — A,ic{l,..,n},R,R” € Ry,

Since R — A; # R7 — A, for at least one i € {1,2,...,n}, there exists v € V
such that (R — A4;)(v) < (R~ — A;)(v). By Theorem 3.13(2), since R < R,
then R~ — A; < R — A,. It is a contradiction. Thus, R"* = R™.

Theorem 3.16 Let A; € LY, Re LY*V and B; € LV, i € {1,...,n}.

(1) If the system of A; — R = B; is unsolvable with respect to an unknown
R e LYYV then R®(u,v) = Vp_i(Ay(u) © By(v)) is the best approzimation
solution in R, with respect to the approzimation quality 6,(R).

(2) If the system of R — A; = B; is unsolvable with respect to an unknown
R e LYY then R7(u,v) = Ny (By(v) = Ap(u)) is the best approzimation
solution in Ry, with respect to the approzimation quality 6;(R).

Proof (1) Let R € R,, be a fuzzy relation. We will show that §,(R) <
5-(R®).

Put A; - R = C; fori € {1,...,n}. Since R is solvable, by Theorem 3.3
(5), C; > By and A;(u) = Vy—1(Ap(u) © Cp(v)) = Cj(v) such that

R(u,v) > \/ (4,(u) © Cp(v)) = \/ (4y(u) © By(v)) = R (u,v).

Thus,

(2) Let R € Ry, be a fuzzy relation. We will show that 6;(R) < 6;(R™).
Put R — A, = C; fori € {1,...,n}. Since R is solvable, by Theorem 3.5(3),
C; > B; and A\,—1(Cp(v) = Ap(u)) = A;(u) = Cj(v) such that
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Example 3.17 Let the structure (L = [0, 1], ®,—,0,1) be as same in Ex-
ample 3.7. Let U = {uq,us,us} and V = {vy,v5} be sets.
(1) Put

Bl = (Bl(’U1>,Bl(U2)) = (03,06)
); Ba(

0.5 =21 N03 = 22N0.9 = 23 =0.3
O.7—>ZL’1/\0.2—)1’2/\0.4—)£E3:O.7

Then (.]71, I, LU3) (Rl(ul, Ul) Rl(UQ, Ul) Rl(U3, ’Ul)) (O 4 0.2 03) is a solu-
tion of (12). Since h( )i = ( ® ay;) for b = (By(vy), B2(vl)) = (0.3,0.7),
h(b) = (R®(uq,v1), R®(uz ) (U3,’U1>> (0.4,0,0.2) is the least solution
of (12) ;i.e. g(h(b)) =b.

(12)

0.5 =21 N03 = 22N0.9 = 23 =0.6

Then (.]71, I, LU3) (Rl (Ul, Ug) Rl (Ug, Ug) Rl (U3, ’02)) (O 2 0.1 05) is a solu-
tion of (10). Since h(b); = V;_;(b, ® ay;) for b = (B;(v2), Bg('l}g)) = (0.6,0.5),
h(b) = (R®(uy, va), R®(us ) (Ug,’l}g)) (0.2,0.1,0.5) is the least solution
of (13) ;i.e. g(h(b)) =b.

(13)

For i € {1,2},
05— R(Ul, Ui) N0.3 — R(Ug, Ui) AN0.9 — R(U3,’UZ‘) = Bl(vi) (14)
0.7 = R(uy,v;) AN 0.2 = R(ug,v;) A0.4 — R(usz,v;) = By(v;)
we obtain:
0.4 0.2 0.4 0.2
R=R =] 02 0.1 R=R°=| 0 0.1
0.3 0.5 0.2 0.5
(2)
1 = 05AN2y —-03A23 —09=0.3 (15)

ZL’1—>O.7/\[L’2—>0.2/\£E3—)0.4:O.7

Since g7 (b); = Aoy (by = api) for b = (By(v1), Ba(vy)) = (0.3,0.7), g7 (b) =
(R (ug,v1), R (u2,v1), R (us,v1)) = (1,0.5,0.7) is not a solution of (15) ;i.e.
f7 (g7 (b)) > b.

1 — 05Nz = 03ANx3 —0.9=0.6

xr1 — 0.7A Tog — 0.2 N\ 23 — 04=0.5 (16)
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Then (x1,x9,z3) = (Ry(u1,v2), Ri(us, vs), Ri(us,v2)) = (0.9,0.7,0.8) is a so-
lution of (16). Since g7 (c); = Ai—i(¢y = ap;) for ¢ = (Bi(va), Ba(va)) =
(06,05), g_)(C) = (R*(ul,vg),R*(uz,vg),R_)(u;),,w)) = <09,07,09> is the
greatest solution of (16) ;i.e. f7(g7(c)) = c.

For i € {1,2},
R(ul,vi) — 0.5 A R(Ug, Ui) — 0.3 A R(U3,’UZ‘) — 0.9 = Bl(vi) (17)
R(uy,v;) = 0.7 A R(ug,v;) = 0.2 A R(us, v;) — 0.4 = By(v;)
Put
1 09 1 0.9
Ry=1| 05 0.7 R7=1| 05 0.7
0.7 0.8 0.7 0.9
Then )
0(Ry) =0)(R™) = /\ /\ ((R” — A;)(v) = B;(v)) =0.8.
i=1veV
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