
Mathematica Aeterna, Vol. 3, 2013, no. 1, 25 - 37

Fuzzy relation equations and Galois connections

Yong Chan Kim

Department of Mathematics, Gangnung-Wonju University,
Gangneung, Gangwondo 210-702, Korea

yck@gwnu.ac.kr

Abstract

In this paper, we study solutions of two types of fuzzy relation equa-

tions Ai → R = Bi and R → Ai = Bi in residuated lattices. We

investigate the relations between Galois connections and solutions of

fuzzy relation equations. Moreover, we give approximation solutions of

two types of fuzzy relation equations.
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1 Introduction

Sanchez [10] introduced the theory of fuzzy relation equations with various
types of composition: max-min, min-max, min-α. Fuzzy relation equations
with new types of composition( pseudo t-norm [5], continuous t-norm [11],
residuated lattice [3,6-9]) is developed [4]. On the other hand, concept lattices
using Galois connections play an important role in information theory [1,3].
Diaz and Medina [3] introduced the relations between isotone Galois connection
and solutions of fuzzy relation equations Ai ⊙ R = Bi.

In this paper, we study solutions of two types of fuzzy relation equations
Ai → R = Bi and R → Ai = Bi in residuated lattices. We investigate the
relations between Galois connections and solutions of fuzzy relation equations
Ai → Ai = Bi and R → Ai = Bi. Moreover, we give approximation solutions
of two types of fuzzy relation equations.

2 Preliminaries

Definition 2.1 [12] A structure (L,∨,∧,⊙,→, 0, 1) is called a residuated
lattice if it satisfies the following conditions:
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(R1) (L,∨,∧, 1, 0) is a bounded where 1 is the universal upper bound and
0 denotes the universal lower bound;

(R2) (L,⊙, 1) is a commutative monoid;
(R3) it satisfies a residuation , i.e.

a⊙ b ≤ c iff a ≤ b → c.

Remark 2.2 [12] A left-continuous t-norm ([0, 1],≤,⊙) defined by a →
b =

∨

{c | a⊙ c ≤ b} is a residuated lattice.

In this paper, we assume (L,∧,∨,⊙,→, 0, 1) is a residuated lattice.

Lemma 2.3 [12] For each x, y, z, xi, yi ∈ L, we have the following proper-
ties.

(1) If y ≤ z, (x⊙ y) ≤ (x⊙ z), x → y ≤ x → z and z → x ≤ y → x.
(2) x⊙ y ≤ x ∧ y ≤ x ∨ y.

(3) x → (
∧

i∈Γ yi) =
∧

i∈Γ(x → yi) and (
∨

i∈Γ xi) → y =
∧

i∈Γ(xi → y).
(4) x → (

∨

i∈Γ yi) ≥
∨

i∈Γ(x → yi).
(5) (

∧

i∈Γ xi) → y ≥
∨

i∈Γ(xi → y).
(6) (x⊙ y) → z = x → (y → z).
(7) x → (y → z) = y → (x → z).
(8) x⊙ (x → y) ≤ y.
(9) (x → y) ⊙ (y → z) ≤ x → z.
(10) x ≤ (x → y) → y.
(11) y → z) ≤ (x⊙ y) → (x⊙ z) and (y → z) ≤ (x → y) → (x → z).
(12)

∧

i∈Γ(xi → yi) ≤ (
∧

i∈Γ xi) → (
∧

i∈Γ yi).
(13)

∧

i∈Γ(xi → yi) ≤ (
∨

i∈Γ xi) → (
∨

i∈Γ yi).
(14) x → y = 1 iff x ≤ y.

3 Fuzzy relation equations and Galois

connections

Definition 3.1 (1) Let Ai ∈ LU , R ∈ LU×V and Bi ∈ LV . We define fuzzy
relation equations as follows

(Ai ⊙ R)(v) =
∨

u∈U

(Ai(u) ⊙ R(u, v)) = Bi(v), i ∈ {1, ..., n} (1)

(R → Ai)(v) =
∧

u∈U

(R(u, v) → Ai(u)) = Bi(v), i ∈ {1, ..., n}. (2)

(2) Let At
j ∈ LV , R ∈ LU×V and Dj ∈ LU for j ∈ {1, ..., m}. We define

fuzzy relation equations as follows

(At
j → R)(u) =

∧

v∈V

(At
j(v) → R(u, v)) = Dj(u), j ∈ {1, ..., m} (3)
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(R → At
j)(u) =

∧

v∈V

(R(u, v) → At
j(v)) = Dj(u), j ∈ {1, ..., m}. (4)

Let U = {u1, ..., um} and V = {v1, ..., vn} be two sets, R ∈ LU×V an
unknown fuzzy relation A1, ..., An ∈ LU and B1, ..., Bn ∈ LV . If v ∈ V ,
Ai(uj) = aij for i ∈ {1, ..., n}, j ∈ {1, ..., m}, R(uj, v) = xj , Bj(v) = bj , then
system (1) can be written by

a11 ⊙ x1 ∨ ... ∨ a1m ⊙ xm = b1
. . .

: : :
an1 ⊙ x1 ∨ ... ∨ anm ⊙ xm = bn

(5)

Put h(x) = (h(x)1, ..., h(x)n) with h(x)i =
∨m

k (aik ⊙ xk) for i ∈ {1, ..., n} and

x = (x1, ..., xm) ∈ Lm.
The system (2) can be written by

x1 → a11 ∧ ... ∧ xm → a1m = b1
. . .

: : :
x1 → an1 ∧ ... ∧ xm → anm = bn

(6)

Put f→(x) = (f→(x)1, ..., f
→(x)n) with f→(x)i =

∧m
k (xk → aik) for i ∈

{1, ..., n} and x = (x1, ..., xm) ∈ Lm.
If u ∈ U , At

j(vi) = aij for i ∈ {1, ..., n}, j ∈ {1, ..., m}, R(u, vi) = yi,
Dj(u) = dj ,

The system (3) can be written by

a11 → y1 ∧ ... ∧ an1 → yn = d1
. . .

: : :
a1m → y1 ∧ ... ∧ anm → yn = dm

(7)

Put g(y) = (g(y)1, ..., g(y)m) with g(y)j =
∧n

l=1
(alj → yl) for j ∈ {1, ..., m}

and y = (y1, ..., yn) ∈ Ln.
The system (4) can be written by

y1 → a11 ∧ ... ∧ yn → an1 = d1
. . .

: : :
y1 → a1m ∧ ... ∧ yn → anm = dm

(8)

Put g→(y) = (g→(y)1, ..., g
→(y)m) with g→(y)j =

∧n
p=1

(yp → apj) for j ∈
{1, ..., m} and y = (y1, ..., yn) ∈ Ln.
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Definition 3.2 [3] Let h : Lm → Ln and g : Ln → Lm be an increasing
function. The pair (h, g) is an isotone Galois connection if

h(a) ≤ b iff a ≤ g(b), ∀a ∈ Lm, b ∈ Ln.

Theorem 3.3 [3] (1) Let h : Lm → Ln and g : Ln → Lm be a func-
tion. Then the pair (h, g) is an isotone Galois connection iff h(f(b)) ≤ b, a ≤
g(h(a)), ∀a ∈ Lm, b ∈ Ln.

(2) (h, g) are an isotone Galois connection.
(3) (5) is solvable iff h(g(b)) = b for b = (b1, ..., bn). Moreover, if (5) is

solvable with h(x) = b, then g(b) is the greatest solution.
(4) (7) is solvable iff g(h(d)) = d for d = (d1, ..., dm). Moreover, if (7) is

solvable with g(y) = d, then h(d) is the least solution.

Definition 3.4 Let f : Lm → Ln and g : Ln → Lm be a decreasing func-
tion. The pair (f, g) is an antitone Galois connection if

y ≤ f(x) iff x ≤ g(y), ∀x ∈ Lm, y ∈ Ln.

Theorem 3.5 (1) Let f : Lm → Ln and g : Ln → Lm be a function.
Then the pair (f, g) is a an antitone Galois connection iff y ≤ f(g(y)), x ≤
g(f(x)), ∀x ∈ Lm, y ∈ Ln.

(2) (f→, g→) and (g→, f→) are an antitone Galois connections.
(3) (6) is solvable iff f→(g→(b)) = b for b = (b1, ..., bn). Moreover, if (6) is

solvable with f→(x) = b, then g→(b) is the greatest solution.
(4) (8) is solvable iff g→(f→(d)) = d for d = (d1, ...dm). Moreover, if (8) is

solvable with g→(y) = d, then f→(d) is the greatest solution.

Proof (1) (⇒). Since g(y) ≤ g(y), then y ≤ f(g(y)). Since f(x) ≤ f(x),
then x ≤ g(f(x)).

(⇒). If x1 ≤ x2 and x2 ≤ g(f(x2)), then f(x2) ≤ f(x1). If y1 ≤ y2 and
y2 ≤ f(g(y2)), then g(y2) ≤ g(y1). Hence f and g are decreasing functions.

Let y ≤ f(x) be given. Then g(y) ≥ g(f(x)) ≥ x. Let x ≤ g(y) be
given. Then f(x) ≥ f(g(y)) ≥ y. Hence the pair (f, g) is an antitone Galois
connection.

(2) By Lemma 2.3(10), we have

f→(g→(b))i =
∧m

j=1
(g→(b)j → aij) =

∧m
j=1

(
∧n

p=1
(bp → apj) → aij)

≥
∧m

j=1
((bi → aij) → aij) ≥ bi.

g→(f→(d))j =
∧n

k=1
(f⇒(d)k → akj) =

∧n
k=1

(
∧n

p=1
(dp → akp) → akj)

≥
∧n

k=1
((dj → akj) → akj) ≥ dj.

By (1), (f→, g→) and (g→, f→) are antitone Galois connections.
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(3) (⇒) Let x = (x1, ..., xm) be a solution of (6). Since
∧m

k=1
(xk → aik) =

bi, i ∈ {1, ..., n}, then

xk → aik ≥
m
∧

k=1

(xk → aik) = bi, i ∈ {1, ..., n}.

Then xk ⊙ bi ≤ aik. Thus xk ≤ bi → aik. Hence xk ≤
∧n

p=1
(bp → apk). So,

bi =
∧m

k=1
(xk → aik) ≥

∧m
k=1

(
∧n

p=1
(bp → apk) → aik)

= f→(g→(b))i ≥
∧m

k=1
((bi → aik) → aik) ≥ bi.

Thus, f→(g→(b))i = bi. Hence g→(b) is the greatest solution.
(4) (⇒) Let y = (y1, ..., yn) be a solution of (8). Since

∧n
p=1

(yp → apj) =
dj, j ∈ {1, ..., m}, then

yp → apj ≥
n
∧

p=1

(yp → apj) = dj, j ∈ {1, ..., m}.

Then dj ⊙ yp ≤ apj. Thus yp ≤ dj → apj. Hence yp ≤
∧m

k=1
(dk → apk). So,

dj =
∧n

p=1
(yp → apj) ≥

∧n
p=1

(
∧m

k=1
(dk → apk) → apj)

= g→(f→(d))j ≥
∧n

p=1
((dj → apj) → apj) ≥ dj.

Thus, g→(f→(d))j = dj. Hence f→(d) is the greatest solution.

Theorem 3.6 (1) If (5) is solvable, then
∧m

k=1
(aik → ajk) ≤ bi → bj .

(2) If (7) is solvable, then
∧n

p=1
(apj → api) ≤ di → dj .

(3) If (6) is solvable, then
∧m

k=1
(aik → ajk) ≤ bi → bj .

(4) If (8) is solvable, then
∧n

p=1
(api → apj) ≤ di → dj .

Proof (1) Since
∨m

k=1
(aik ⊙ xk) = bi, by Lemma 2.3 (11,13), we have

bi → bj =
∨m

k=1
(aik ⊙ xk) →

∨m
k=1

(ajk ⊙ xk)
≥

∧m
k=1

((aik ⊙ xk) → (ajk ⊙ xk))
≥

∧m
k=1

(aik → ajk).

(2) Since g(y)j =
∧n

l=1
(alj → yl) = dj, by Lemma 2.3 (11,12), we have

di → dj =
∧n

l=1
(ali → yl) →

∧n
l=1

(alj → yl)
≥

∧n
l=1

((ali → yl) → (alj → yl))
≥

∧n
l=1

(alj → ali).

(3) Since
∧m

k=1
(xk → aik) = bi, by Lemma 2.3 (11,12), we have

bi → bj =
∧m

k=1
(xk → aik) →

∧m
k=1

(xk → ajk)
≥

∧m
k=1

((xk → aik) → (xk → ajk))
≥

∧m
k=1

(aik → ajk).
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(4) Since g→(y)j =
∧n

p=1
(yp → apj) = dj, by Lemma 2.3 (11,12), we have

di → dj =
∧n

p=1
(yp → api) →

∧n
p=1

(yp → apj)
≥

∧n
p=1

((yp → api) → (yp → apj))
≥

∧n
p=1

(api → apj).

Example 3.7 The structure (L = [0, 1],⊙,→, 0, 1) is a residuated lattice
defined binary operations ⊙ (called  Lukasiewicz conjection) and → on L =
[0, 1] by

x⊙ y = max{0, x + y − 1}, x → y = min{1 − x + y, 1}.

(1)

0.4 → y1 ∧ 0.6 → y2 ∧ 0.8 → y3 = 0.1
0.2 → y1 ∧ 0.5 → y2 ∧ 0.4 → y3 = 0.7

(9)

(aij) =







0.4 0.2
0.6 0.5
0.8 0.4







Since 0.6 = ∧3

p=1
(ap1 → ap2) 6≤ d2 → d1 = 0.7, by Theorem 3.2(2), h(d) =

(y1, y2, y3) = (∨2

k(a1k ⊙ dk),∨
2

k(a2k ⊙ dk),∨
2

k(a3k ⊙ dk)) = (0, 0.2, 0.1) is not a
solution of (9).

(2)

0.4 → y1 ∧ 0.6 → y2 ∧ 0.8 → y3 = 0.6
0.2 → y1 ∧ 0.5 → y2 ∧ 0.4 → y3 = 0.7

(10)

Then h(d) = (y1, y2, y3) = (∨2

k(a1k ⊙ dk),∨2

k(a2k ⊙ dk),∨
2

k(a3k ⊙ dk)) =
(0, 0.2, 0.4) is a solution of (10)

(3)

y1 → 0.4 ∧ y2 → 0.6 ∧ y3 → 0.8 = 0.8
y1 → 0.2 ∧ y2 → 0.5 ∧ y3 → 0.4 = 0.7

(11)

Then g→(d) = (y1, y2, y3) = (∧2

k(dk → a1k),∧2

k(dk → a2k),∧2

k(dk → a3k)) =
(0.5, 0.8, 0.9) is a solution of (11)

Theorem 3.8 [3] Let h : Lm → Ln and g : Ln → Lm be functions such
that the pair (h, g) is an isotone Galois connection. Let Cl(Lm) = {x ∈
Lm | g(h(x)) = x} and Cl(Ln) = {y ∈ Ln | h(g(y)) = y} be given. Then
h : Cl(Lm) → Cl(Ln) is a bijective function.
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Theorem 3.9 Let f→ : Lm → Ln and g→ : Ln → Lm be functions such
that the pair (f→, g→) is a antitone Galois connection. Let cl(Lm) = {x ∈
Lm | g→(f→(x)) = x} and cl(Ln) = {y ∈ Ln | f→(g→(y)) = y} be given. Then
f→ : cl(Lm) → cl(Ln) is a bijective function.

Proof For x ∈ cl(Lm);i.e. g→(f→(x)) = x, f→(g→(f→(x))) ≥ f→(x) and
g→(f→(x)) ≥ x implies f→(g→(f→(x))) ≤ f→(x). Thus f→(g→(f→(x))) =
f→(x). So, f→(x) ∈ cl(Ln). f→ is well defined.

If f→(x) = f→(z) with x = g→(f→(x)) and g→(f→(z)) = z, then

z = g→(f→(z)) = g→(f→(g→(f→(z))
= g→(f→(g→(f→(x)) = g→(f→(x)) = x.

Hence f→ is injective.
For y ∈ cl(Ln);i.e. f→(g→(y)) = y, there exists g→(y) ∈ Lm such that

g→(y) = g→(f→(g→(y))). Hence f→ is surjective.

Definition 3.10 Let Ai ∈ LU , R ∈ LU×V and Bi ∈ LV , i ∈ {1, ..., n}.
(1) The right upper approximation is defined as

Rru = {R ∈ LU×V | Ai → R ≥ Bi, i ∈ {1, ..., n}}.

(2) The left upper approximation is defined as

Rlu = {R ∈ LU×V | R → Ai ≥ Bi, i ∈ {1, ..., n}}.

(3) The right quality δr(R) of approximation is defined as

δr(R) =
n
∧

i=1

∧

v∈V

((Ai → R)(v) → Bi(v)).

(4) The left quality δl(R) of approximation is defined as

δl(R) =
n
∧

i=1

∧

v∈V

((R → Ai)(v) → Bi(v)).

Definition 3.11 Let Ai ∈ LU , R ∈ LU×V and Bi ∈ LV , i ∈ {1, ..., n}.
(1) A fuzzy relation Rb is a best approximation solution of Ai → R = Bi

in the approximation space LU×V (resp. Rru) with respect to δr(R) if

δr(Rb) =
∨

R∈LU×V

δr(R), δr(Rb) =
∨

R∈Rru

δr(R).

(2) A fuzzy relation Rb is a best approximation solution of R → Ai = Bi

in the approximation space LU×V (resp. Rlu) with respect to δl(R) if

δl(Rb) =
∨

R∈LU×V

δl(R), δl(Rb) =
∨

R∈Rlu

δl(R).
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Theorem 3.12 Define ≤δr ,≤δl ,≤ru,≤lu on the approximation space LU×V

(resp. Rrl or Rru) as follows:

R1 ≤δr R2 iff δr(R2) ≤ δr(R1),

R1 ≤δl R2 iff δl(R2) ≤ δl(R1),

R1 ≤ru R2 iff Ai → R1 ≤ Ai → R2, i ∈ {1, ..., n}, R1, R2 ∈ Rru

R1 ≤lu R2 iff R1 → Ai ≤ R2 → Ai, i ∈ {1, ..., n}, R1, R2 ∈ Rlu

Then ≤δr ,≤δl ,≤ru,≤lu are preorders. Moreover, R1 ≤lu R2 implies R1 ≤δl R2

and R1 ≤ru R2 implies R1 ≤δr R2.

Proof (1) Since δr(R) = δr(R), R ≤δr R. Thus ≤δr is reflexive.
If R1 ≤δr R2 and R2 ≤δr R3, then δr(R2) ≤ δr(R1) and δr(R3) ≤ δr(R2).

Hence δr(R3) ≤ δr(R1);i.e. R1 ≤δr R3. Thus ≤δr is transitive. So, ≤δr is a
preorder. Similarly, ≤δl ,≤ru,≤lu are preorders.

Since R1 ≤ru R2 iff Bi ≤ Ai → R1 ≤ Ai → R2, i ∈ {1, ..., n}, R1, R2 ∈
Rru, then δr(R2) =

∧n
i=1

∧

v∈V ((Ai → R2) → Bi(v)) ≤
∧n

i=1

∧

v∈V ((Ai →
R1)(v) → Bi(v)) = δr(R1). So, R1 ≤δr R2. Similarly, R1 ≤lu R2 implies
R1 ≤δl R2.

Theorem 3.13 Let Ai ∈ LU , R ∈ LU×V and Bi ∈ LV , i ∈ {1, ..., n}.
(1) R⊙(u, v) =

∨n
p=1

(Ap(u) ⊙ Bp(v)) is the least element in Rru = {R ∈
LU×V | Ai → R ≥ Bi, i ∈ {1, ..., n}} with respect to the ordinary order ≤.

(2) R→(u, v) =
∧n

p=1
(Bp(v) → Ap(u)) is the greatest element in Rlu =

{R ∈ LX×Y | R → Ai ≥ Bi, i ∈ {1, ..., n}} with respect to the ordinary order
≤.

Proof (1) We have R⊙ ∈ Rru from:

(Ai → R⊙)(v) =
∧

u∈U(Ai(u) → R⊙(u, v))
=

∧

u∈U((Ai(u) →
∨n

p=1
Ap(u) ⊙ Bp(v))

≥
∧

u∈U(Ai(u) → Ai(u) ⊙Bi(v))
≥ Bi(v).

Let R ∈ Rru be given.

(Ai → R)(v) =
∧

u∈U(Ai(u) → R(u, v)) ≥ Bi(v)
(⇒)R(u, v) ≥ Ai(u) ⊙Bi(v)
(⇒)R(u, v) ≥

∨n
i=1

(Ai(u) ⊙ Bi(v)).

Thus R ≥ R⊙. So, R⊙ is the least element in Rru.
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(2) We have R→ ∈ Rlu from:

(R→ → Ai)(v) =
∧

x∈X(R→(u, v) → Ai(u))
=

∧

x∈X(
∧n

p=1
(Bp(v) → Ap(u)) → Ai(u))

≥
∧

x∈X((Bi(v) → Ai(u)) → Ai(u))
≥ Bi(v).

Let R ∈ Rlu be given.

(R → Ai)(v) =
∧

x∈X(R(u, v) → Ai(u)) ≥ Bi(v)
(⇒)R(u, v) ⊙Bi(v) ≤ Ai(u)
(⇒)R(u, v) ≤ Bi(v) → Ai(u).

Thus R ≤ R→. So, R→ is the greatest element in Rlu.

Definition 3.14 Let Ai ∈ LU , R ∈ LU×V and Bi ∈ LV , i ∈ {1, ..., n}.
(1) A fuzzy relation Rru

b ∈ Rru is a best approximation solution of Ai →
R = Bi in the approximation space Rru with respect to ≤ru if there is no fuzzy
relation R ∈ Rru such that R ≤ru Rru

b and Ai → R 6= Ai → Rru
b for at least

one i ∈ {1, 2, ..., n}.
(2) A fuzzy relation Rlu

b ∈ Rlu is a best approximation solution of R →
Ai = Bi in the approximation space Rlu with respect to ≤lu if there is no fuzzy
relation R ∈ Rlu such that R ≤lu Rlu

b and R → Ai 6= Rlu
b → Ai for at least one

i ∈ {1, 2, ..., n}.

Theorem 3.15 Let Ai ∈ LU , R ∈ LU×V and Bi ∈ LV , i ∈ {1, ..., n}.
(1) If the system of Ai → R = Bi is unsolvable with respect to an unknown

R ∈ LU×V , then R⊙(u, v) =
∨n

p=1
(Ap(u) ⊙ Bp(v)) is the best approximation

solution in Rru with respect to the preorder ≤ru, that is, R
ru
b = R⊙.

(2) If the system of R → Ai = Bi is unsolvable with respect to an unknown
R ∈ LU×V , then R→(u, v) =

∧n
p=1

(Bp(v) → Ap(u)) is the best approximation
solution in Rlu with respect to the ordinary order ≤lu, that is, R

lu
b = R→.

Proof (1) Suppose there exists a fuzzy relation R ∈ Rru such that R ≤ru

R⊙ and Ai → R 6= Ai → R⊙ for at least one i ∈ {1, 2, ..., n}. Since R ≤ru R⊙,

R ≤ru R⊙ iff Ai → R ≤ Ai → R⊙, i ∈ {1, ..., n}, R, R⊙ ∈ Rru

Since Ai → R 6= Ai → R⊙ for at least one i ∈ {1, 2, ..., n}, there exists v ∈ V

such that (Ai → R)(v) < (Ai → R⊙)(v). By Theorem 3.13(1), since R ≥ R⊙,
then Ai → R⊙ ≤ Ai → R. It is a contradiction. Thus, Rru

b = R⊙.
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(2) Suppose there exists a fuzzy relation R ∈ Rlu such that R ≤lu R→ and
R → Ai 6= R→ → Ai for at least one i ∈ {1, 2, ..., n}. Since R ≤lu R→,

R ≤lu R→ iff R → Ai ≤ R→ → Ai, i ∈ {1, ..., n}, R, R→ ∈ Rlu

Since R → Ai 6= R→ → Ai for at least one i ∈ {1, 2, ..., n}, there exists v ∈ V

such that (R → Ai)(v) < (R→ → Ai)(v). By Theorem 3.13(2), since R ≤ R→,
then R→ → Ai ≤ R → Ai. It is a contradiction. Thus, Rlu

b = R→.

Theorem 3.16 Let Ai ∈ LU , R ∈ LU×V and Bi ∈ LV , i ∈ {1, ..., n}.
(1) If the system of Ai → R = Bi is unsolvable with respect to an unknown

R ∈ LU×V , then R⊙(u, v) =
∨n

p=1
(Ap(u) ⊙ Bp(v)) is the best approximation

solution in Rru with respect to the approximation quality δr(R).
(2) If the system of R → Ai = Bi is unsolvable with respect to an unknown

R ∈ LU×V , then R→(u, v) =
∧n

p=1
(Bp(v) → Ap(u)) is the best approximation

solution in Rlu with respect to the approximation quality δl(R).

Proof (1) Let R ∈ Rru be a fuzzy relation. We will show that δr(R) ≤
δr(R

⊙).
Put Ai → R = Ci for i ∈ {1, ..., n}. Since R is solvable, by Theorem 3.3

(5), Ci ≥ Bi and Ai(u) →
∨n

p=1
(Ap(u) ⊙ Cp(v)) = Ci(v) such that

R(u, v) ≥
∨

p=1

(Ap(u) ⊙ Cp(v)) ≥
∨

p=1

(Ap(u) ⊙Bp(v)) = R⊙(u, v).

Thus,
δr(R) =

∧n
i=1

∧

v∈V ((Ai → R)(v) → Bi(v))
≤

∧n
i=1

∧

v∈V ((Ai → R⊙)(v) → Bi(v))
= δr(R

⊙).

(2) Let R ∈ Rlu be a fuzzy relation. We will show that δl(R) ≤ δl(R
→).

Put R → Ai = Ci for i ∈ {1, ..., n}. Since R is solvable, by Theorem 3.5(3),
Ci ≥ Bi and

∧

p=1(Cp(v) → Ap(u)) → Ai(u) = Ci(v) such that

R(u, v) ≤
∧

p=1

(Cp(v) → Ap(u)) ≤
∧

p=1

(Bp(v) → Ap(u)) ≤ R→(u, v).

Thus,
δl(R) =

∧n
i=1

∧

v∈V ((R → Ai)(v) → Bi(v))
≤

∧n
i=1

∧

v∈V ((R→ → Ai)(v) → Bi(v))
= δl(R

→).
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Example 3.17 Let the structure (L = [0, 1],⊙,→, 0, 1) be as same in Ex-
ample 3.7. Let U = {u1, u2, u3} and V = {v1, v2} be sets.

(1) Put
A1 = (A1(u1), A1(u2), A1(u3)) = (0.5, 0.3, 0.9)

A2 = (A2(u1), A2(u2), A2(u3)) = (0.7, 0.2, 0.4)

B1 = (B1(v1), B1(v2)) = (0.3, 0.6)

B2 = (B2(v1), B2(v2)) = (0.7, 0.5)

0.5 → x1 ∧ 0.3 → x2 ∧ 0.9 → x3 = 0.3
0.7 → x1 ∧ 0.2 → x2 ∧ 0.4 → x3 = 0.7

(12)

Then (x1, x2, x3) = (R1(u1, v1), R1(u2, v1), R1(u3, v1)) = (0.4, 0.2, 0.3) is a solu-
tion of (12). Since h(b)i =

∨

2

p=1
(bp ⊙ api) for b = (B1(v1), B2(v1)) = (0.3, 0.7),

h(b) = (R⊙(u1, v1), R
⊙(u2, v1), R

⊙(u3, v1)) = (0.4, 0, 0.2) is the least solution
of (12) ;i.e. g(h(b)) = b.

0.5 → x1 ∧ 0.3 → x2 ∧ 0.9 → x3 = 0.6
0.7 → x1 ∧ 0.2 → x2 ∧ 0.4 → x3 = 0.5

(13)

Then (x1, x2, x3) = (R1(u1, v2), R1(u2, v2), R1(u3, v2)) = (0.2, 0.1, 0.5) is a solu-
tion of (10). Since h(b)i =

∨

2

p=1
(bp ⊙ api) for b = (B1(v2), B2(v2)) = (0.6, 0.5),

h(b) = (R⊙(u1, v2), R
⊙(u2, v2), R

⊙(u3, v2)) = (0.2, 0.1, 0.5) is the least solution
of (13) ;i.e. g(h(b)) = b.

For i ∈ {1, 2},

0.5 → R(u1, vi) ∧ 0.3 → R(u2, vi) ∧ 0.9 → R(u3, vi) = B1(vi)
0.7 → R(u1, vi) ∧ 0.2 → R(u2, vi) ∧ 0.4 → R(u3, vi) = B2(vi)

(14)

we obtain:

R = R1 =







0.4 0.2
0.2 0.1
0.3 0.5





 R = R⊙ =







0.4 0.2
0 0.1

0.2 0.5







(2)
x1 → 0.5 ∧ x2 → 0.3 ∧ x3 → 0.9 = 0.3
x1 → 0.7 ∧ x2 → 0.2 ∧ x3 → 0.4 = 0.7

(15)

Since g→(b)i =
∧

2

p=1
(bp → api) for b = (B1(v1), B2(v1)) = (0.3, 0.7), g→(b) =

(R→(u1, v1), R
→(u2, v1), R

→(u3, v1)) = (1, 0.5, 0.7) is not a solution of (15) ;i.e.
f→(g→(b)) > b.

x1 → 0.5 ∧ x2 → 0.3 ∧ x3 → 0.9 = 0.6
x1 → 0.7 ∧ x2 → 0.2 ∧ x3 → 0.4 = 0.5

(16)
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Then (x1, x2, x3) = (R1(u1, v2), R1(u2, v2), R1(u3, v2)) = (0.9, 0.7, 0.8) is a so-
lution of (16). Since g→(c)i =

∧

2

p=1
(cp → api) for c = (B1(v2), B2(v2)) =

(0.6, 0.5), g→(c) = (R→(u1, v2), R
→(u2, v2), R

→(u3, v2)) = (0.9, 0.7, 0.9) is the
greatest solution of (16) ;i.e. f→(g→(c)) = c.

For i ∈ {1, 2},

R(u1, vi) → 0.5 ∧ R(u2, vi) → 0.3 ∧R(u3, vi) → 0.9 = B1(vi)
R(u1, vi) → 0.7 ∧ R(u2, vi) → 0.2 ∧R(u3, vi) → 0.4 = B2(vi)

(17)

Put

R2 =







1 0.9
0.5 0.7
0.7 0.8





 R→ =







1 0.9
0.5 0.7
0.7 0.9







Then

δl(R2) = δl(R
→) =

2
∧

i=1

∧

v∈V

((R→ → Ai)(v) → Bi(v)) = 0.8.

References
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