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1 Introduction

Brink [5] introduced the notion of power structures. The properties of a struc-
ture is developed to its power structures [3-6,9]. Georgescu [6] generalized the
theory of power structures to the fuzzy setting on a continuous t-norm. Zhang
[9] extended it to the fuzzy setting on a complete residuated lattice.

In this paper, we investigate the properties of fuzzy preorder, fuzzy closure
and interior operators on fuzzy power structures with a complete residuated
lattice in a Zhang’s sense. Moreover, we study the relationships between fuzzy
preorder and fuzzy relations.

2 Preliminaries

Definition 2.1 [1-2, 7-11] A structure (L,∨,∧,⊙,→,⊥,⊤) is called a resid-

uated lattice if it satisfies the following conditions:
(R1) (L,∨,∧,⊤,⊥) is a bounded where ⊤ is the universal upper bound

and ⊥ denotes the universal lower bound;
(R2) (L,⊙,⊤) is a commutative monoid;
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(R3) it satisfies a residuation , i.e.

a⊙ b ≤ c iff a ≤ b → c.

We call that a residuated lattice has the law of double negation if a = (a∗)∗

where a∗ = a → ⊥.

Remark 2.2 [1-2, 7-11] (1) A left-continuous t-norm ([0, 1],≤,⊙) defined
by a → b =

∨

{c | a⊙ c ≤ b} is a residuated lattice
(2) An MV-algebra is a residuated lattice with the law of double negation.

In this paper, we assume (L,∧,∨,⊙,→,⊥,⊤) is a residuated lattice with
the law of double negation.

Lemma 2.3 [7-11] For each x, y, z, xi, yi ∈ L, we have the following prop-
erties.

(1) If y ≤ z, (x⊙ y) ≤ (x⊙ z), x → y ≤ x → z and z → x ≤ y → x.
(2) x⊙ y ≤ x ∧ y ≤ x ∨ y.

(3) x → (
∧

i∈Γ yi) =
∧

i∈Γ(x → yi) and (
∨

i∈Γ xi) → y =
∧

i∈Γ(xi → y).
(4) x → (

∨

i∈Γ yi) ≥
∨

i∈Γ(x → yi).
(5) (

∧

i∈Γ xi) → y ≥
∨

i∈Γ(xi → y).
(6) (x⊙ y) → z = x → (y → z) and (x⊙ y)∗ = x → y∗.
(7) x⊙ (x → y) ≤ y.
(8) (x → y) ⊙ (y → z) ≤ x → z.
(9) (x → z) ≤ (y ⊙ x) → (y ⊙ z).
(10) (x → y) ≤ (y → z) → (x → z).
(11) x → y = ⊤ iff x ≤ y.
(12) x → y = y∗ → x∗.
(13)

∧

i∈Γ x
∗
i = (

∨

i∈Γ xi)
∗ and

∨

i∈Γ x
∗
i = (

∧

i∈Γ xi)
∗.

Definition 2.4 [1-3], [6,9] Let X be a set. A function eX : X ×X → L is
called:

(P1) (reflexive) eX(x, x) = 1 for all x ∈ X ,
(P2) (transitive) eX(x, y) ⊙ eX(y, z) ≤ eX(x, z), for all x, y, z ∈ X .
Then eX is called a fuzzy preorder.
The pair (X, eX) is a fuzzy preorder set.

Example 2.5 (1) We define a function eL : L×L → L as eL(x, y) = x → y.
Then eL is a fuzzy preorder.

(2) We define a function eLX : LX × LX → L as

eLX (A,B) =
∧

x∈X

(A(x) → B(x)).

Then eLX is a fuzzy preorder on LX .
(3) Let (X, eX) be a fuzzy preordered set. Define e−1X (a, b) = eX(b, a). Then

(X, e−1X ) be a fuzzy preordered set.
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Definition 2.6 (1) A map G : LX → LY is an isotone map if for all
A,B ∈ LX , eLX (A,B) ≤ eLY (G(A), G(B)).

(2) A map G : LX → LY is an antitone map if for all A,B ∈ LX ,
eLX (A,B) ≤ eLY (G(B), G(A)).

Definition 2.7 A map C : LX → LX is called a fuzzy closure operator if
it satisfies the following conditions:

(C1) A ≤ C(A), for all A ∈ LX .
(C2) C(C(A)) = C(A), for all A ∈ LX .
(C3) C is an isotone map.
A map I : LX → LX is called a fuzzy interior operator if it satisfies the

following conditions:
(I1) I(A) ≤ A, for all A ∈ LX .
(I2) I(I(A)) = I(A), for all A ∈ LX .
(I3) I is an isotone map.

3 Fuzzy preorders on fuzzy power structures

Theorem 3.1 Let S : LX × LY → L be a fuzzy relation. Define s : LY →
LLX

and r : LX → LLY

as

s(B)(A) = S(A,B), r(A)(B) = S(A,B)

σ(S) : LY × LY → L and ρ(S) : LX × LX → L as

σ(S)(B1, B2) = e
LLY (s(B1), s(B2)) =

∧

C∈LX

(s(B1)(C) → s(B2)(C)),

ρ(S)(A1, A2) = e
LLX (r(A1), r(A2)) =

∧

C∈LX

(r(A1)(C) → r(A2)(C)).

Then; (1) σ(S) is a fuzzy preorder on LY .

(2) ρ(S) is a fuzzy preorder on LX .

(3) S is a fuzzy preorder iff S(A,B) = σ(S)(A,B) iff S(A,B) = ρ(S)(B,A).

Proof (1) Since σ(S)(B,B) = e
LLY (s(B), s(B)) = ⊤ and σ(S)(B1, B2) ⊙

σ(S)(B2, B3) =
∧

A∈LX (s(B1)(A) → s(B2)(A))⊙
∧

A∈LX (s(B2)(A) → s(B3)(A)) ≤
∧

A∈LX (s(B1)(A) → s(B3)(A)) = σ(R)(B1, B3) from Lemma 2.3(8), σ(R) is a
fuzzy preorder LY .

(2) It is similarly proved as in (1).
(3) Since S(A,B)⊙S(B,C) ≤ S(A,C) iff S(B,C) ≤ S(A,B) → S(A,C) iff

S(A,B) ≤ S(B,C) → S(A,C), then S is transitive iff S(B,C) ≤ e
LLY (s(B), s(C)) =

σ(S)(B,C) iff S(A,B) ≤ e
LLY (r(B), r(A)) = ρ(S)(B,A). Moreover, S(A,A) =

⊤ iff S(A,B) = s(A)(A) → s(B)(A) ≥ σ(S)(A,B) iff S(A,B) = r(B)(B) →
r(A)(B) ≥ ρ(S)(B,A). Thus, the results hold.
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Theorem 3.2 The following statements are equivalent:

(1) S is a fuzzy preorder.

(2) There exists a family {hi ∈ LLX

| i ∈ I} such that

S(A,B) =
∧

i∈I

(hi(A) → hi(B)).

(3) There exists a family {gj ∈ LLX

| j ∈ J} such that

S(A,B) =
∧

j∈J

(gj(B) → gj(A)).

Proof (1) ⇒ (2). Since S(A,B) ⊙ S(B,C) ≤ S(A,C) iff S(B,C) ≤
S(A,B) → S(A,C), then there exists a family {r(A) ∈ LLX

| r(A)(B) =
S(A,B), A ∈ LX} such that S(B,C) =

∧

A∈LX (r(A)(B) → r(A)(C)).
(1) ⇒ (3). Since S(A,B) ⊙ S(B,C) ≤ S(A,C) iff S(A,B) ≤ S(B,C) →

S(A,C), then there exists a family {s(C) ∈ LX | s(C)(B) = S(B,C), C ∈ LX}
such that S(A,C) =

∧

C∈LX (s(C)(B) → s(C)(A)).
(2) ⇒ (1) and (3) ⇒ (1) are easily proved.

Definition 3.3 Let R ∈ LX×X be a fuzzy relation. For each A,B ∈ LX ,
we define the following maps:

(1) R⊙, (R−1)⊙ : LX → LX as:

R⊙(A)(y) =
∨

x∈X

(R(x, y) ⊙ A(x)), (R−1)⊙(B)(x) =
∨

y∈Y

(R(x, y) ⊙ B(y));

(2) S⊙, (S−1)⊙ : LX × LX → L as:

S⊙(A,B) = eLX (A, (R−1)⊙(B)), (S−1)⊙(A,B) = eLX (B,R⊙(A));

(3) R→, R← : LX → LX as:

R→(A)(y) =
∧

x∈X

(R(x, y) → A(x)), R←(B)(x) =
∧

x∈X

(R(x, y) → B(y));

(4) S→, S← : LX × LX → L as:

S→(A,B) = eLX (R→(A), B), S←(A,B) = eLX (R←(B), A).

Theorem 3.4 Let R ∈ LX×X be a fuzzy relation. For each A,B ∈ LX , the

following properties hold.

(1)
eLX (A,B) = e

LLX (eLX (−, A), eLX (−, B))
= e

LLX (eLX (B,−), eLX (A,−)).
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(2) σ(S⊙)(A,B) = eLX ((R−1)⊙(A), (R−1)⊙(B)).

(3) ρ((S−1)⊙)(A,B) = eLX (R⊙(A), R⊙(B)).

(4) eLX (A,B) ≤ eLX ((R−1)⊙(A), (R−1)⊙(B)) = σ(S⊙)(A,B).

(5) eLX (B,A) ≤ σ((S−1)⊙)(A,B) and eLX (B,A) ≤ ρ(S⊙)(A,B).

(6) eLX (A,B) ≤ eLX (R⊙(A), R⊙(B)) = ρ((S−1)⊙)(A,B).

Proof (1) Define s : LY → LLX

and r : LX → LLY

as

s(B)(A) = eLX (−, B)(A) = S(A,B),

r(A)(B) = S(A,B) = eLX (A,−)(B) = eLX (A,B)

Put S = eLX . Then S = eLX is a fuzzy preorder on LX . From Theorem 3.1
(3),

eLX (A,B) = σ(eLX )(A,B) = e
LLX (s(A), s(B))

= e
LLX (eLX (−, A), eLX (−, B))

= ρ(eLX )(B,A) = e
LLX (r(B), r(A))

= e
LLX (eLX (B,−), eLX (A,−)).

(2) For s : LX → LLX

with s(B)(C) = S⊙(C,B), we have

σ(S⊙)(A,B) = e
LLX (s(A), s(B))

=
∧

C∈LX (S⊙(C,A) → S⊙(C,B))
= e

LLX (eLX (−, (R−1)⊙(A)), eLX (−, (R−1)⊙(B)))
= eLX ((R−1)⊙(A), (R−1)⊙(B)) (by (1)).

(3) For r : LX → LLX

with r(A)(C) = (S−1)⊙(A,C), we have

ρ(S⊙)(A,B) = e
LLX (r(A), r(B))

=
∧

C∈LX ((S−1)⊙(A,C) → (S−1)⊙(B,C))
= e

LLX (eLX (−, R⊙(A)), eLX (−, R⊙(B)))
= eLX (R⊙(A), R⊙(B)) (by (1)).

(4) Since (R−1)⊙(A)(x) ⊙ eLX (A,B) ≤
∨

y∈X(R(x, y) ⊙ A(y) ⊙ (A(y) →
B(y)) ≤

∨

y∈X(R(x, y)⊙B(y)), we have eLX (A,B) ≤ eLX ((R−1)⊙(A), (R−1)⊙(B)) =
σ(S⊙)(A,B).

(5)

σ((S−1)⊙)(A,B) =
∧

C∈LX ((S−1)⊙(C,A) → (S−1)⊙(C,B))
= e

LLX (eLX (A,R⊙(C)), eLX(B,R⊙(C)))
≥ e

LLX (eLX (A,D), eLX (B,D))
= eLX (B,A) (by (1)).
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For r : LX → LLX

with r(A)(C) = S⊙(A,C), we have

ρ(S⊙)(A,B) = e
LLX (r(A), r(B))

=
∧

C∈LX (S⊙(A,C) → S⊙(B,C))
=

∧

C∈LX (eLX (A, (R−1)⊙(C)) → eLX (B, (R−1)⊙(C)))
≥

∧

D∈LX (eLX (A,D) → eLX (B,D))
= eLX (B,A) (by (1)).

(6) It is similarly proved as in (4).

Theorem 3.5 Let R ∈ LX×X be a fuzzy relation. For each A,B ∈ LX , the

following properties hold.

(1) σ(S←)(A,B) = eLX (R←(B), R←(A)).
(2) ρ(S→)(A,B) = eLX (R→(B), R→(A)).
(3) eLX (A,B) ≤ eLX (R→(A), R→(B)) = ρ(S→)(B,A).
(4) eLX (A,B) ≤ eLX (R←(A), R←(B)) = σ(S←)(B,A).
(5) eLX (A,B) ≤ σ(S→)(A,B) and eLX (A,B) ≤ ρ(S←)(A,B).
(6) (R→(A))∗ = R⊙(A∗) and (R←(A))∗ = (R−1)⊙(A∗).
(7) S→(A,B) = (S−1)⊙(A∗, B∗) and S←(A,B) = S⊙(A∗, B∗).
(8) σ(S←)(A,B) = σ(S⊙)(A∗, B∗) and ρ(S→)(A,B) = ρ((S−1)⊙)(A∗, B∗).

Proof (1) For s : LX → LLX

with s(B)(C) = S←(C,B), we have

σ(S←)(A,B) = e
LLX (s(A), s(B))

=
∧

C∈LX (S←(C,A) → S←(C,B))
= e

LLX (eLX (R←(A),−), eLX (R←(B),−))
= eLX (R←(B), R←(A)) (by Theorem 3.4(1)).

(2) For r : LX → LLX

with r(A)(C) = S→(A,C), we have

ρ(S→)(A,B) = e
LLX (r(A), r(B))

=
∧

C∈LX (S→(A,C) → S→(B,C))
= e

LLX (eLX (R→(A),−), eLX (R→(B),−))
= eLX (R→(B), R→(A)) (by Theorem 3.4(1)).

(3) Since (R(x, y) → A(x)) ⊙ (A(x) → B(x)) ≤ R(x, y) → B(x) iff
A(x) → B(x) ≤ (R(x, y) → A(x)) → (R(x, y) → B(x)), then eLX (A,B) ≤
eLX (R→(A), R→(B)).

(4) It is similarly proved as in (3).
(5) For s : LX → LLX

with s(B)(C) = S→(C,B), we have

σ(S→)(A,B) = e
LLX (s(A), s(B))

=
∧

C∈LX (S→(C,A) → S→(C,B))
=

∧

C∈LX eLX (R→(C), A) → eLX (R→(C), B)
≥ e

LLX (eLX (−, A), eLX (−, B))
= eLX (A,B) (by Theorem 3.4(1)).
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For r : LX → LLX

with r(A)(C) = S←(A,C), we have

ρ(S←)(A,B) = e
LLX (r(A), r(B))

=
∧

C∈LX (S←(A,C) → S←(B,C))
=

∧

C∈LX eLX (R←(C), A) → eLX (R←(C), B)
≥ e

LLX (eLX (−, A), eLX (−, B))
= eLX (A,B) (by Theorem 3.4(1)).

(6) From Lemma 2.3(6), we have

(R→(A)(y))∗ =
(

∧

x∈X(R(x, y) → A(x))
)∗

=
∨

x∈X(R(x, y) ⊙ A∗(x)) = R⊙(A∗)(y).

Similarly, (R←(A))∗ = (R−1)⊙(A∗).
(7)

S→(A,B) = eLX (R→(A), B) = eLX (B∗, (R→(A))∗)
= eLX (B∗, R⊙(A∗)) = (S−1)⊙(A∗, B∗).

S←(A,B) = eLX (R←(B), A) = eLX (A∗, (R←(B))∗)
= eLX (A∗, (R−1)⊙(B∗)) = S⊙(A∗, B∗).

(8)

σ(S←)(A,B) = eLX (R←(B), R←(A)) = eLX ((R←(A))∗, (R←(B))∗)
= eLX ((R−1)⊙(A∗), (R−1)⊙(B∗)) = σ(S⊙)(A∗, B∗).

ρ(S→)(A,B)(A,B) = eLX (R→(B), R→(A)) = eLX ((R→(A))∗, (R→(B))∗)
= eLX (R⊙(A∗), R⊙(B∗)) = ρ((S−1)⊙)(A∗, B∗).

The following two theorems are proved in [9].

Theorem 3.6 [9] Let R ∈ LX×X be a fuzzy relation. Then the following

conditions are equivalent:

(1) R is a fuzzy preorder on X.

(2) R⊙ is a closure operator.

(3) (R−1)⊙ is a closure operator.

Theorem 3.7 [9] Let R ∈ LX×X be a fuzzy relation. Then the following

conditions are equivalent:

(1) R is a fuzzy preorder on X.

(2) (S−1)⊙(A,B) = eLX (R⊙(B), R⊙(A)) = ρ((S−1)⊙)(B,A).
(3) S⊙(A,B) = eLX ((R−1)⊙(A), (R−1)⊙(B)) = σ(R⊙)(A,B).
(4) (S−1)⊙ is a fuzzy preorder on LX .

(5) S⊙ is a fuzzy preorder on LX .
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Theorem 3.8 Let R ∈ LX×X be a fuzzy relation. Then the following con-

ditions are equivalent:

(1) R is a fuzzy preorder on X.

(2) R→ is an interior operator.

(3) R← is an interior operator.

Proof (1) ⇒ (2). (I1) Since R(y, y) = ⊤, R→(A)(y) =
∧

x(R(x, y) →
A(x)) ≤ R(y, y) → A(y) = A(y).

(I2) R→(R→(A))(z) =
∧

y∈X(R(y, z) → R→(A)(y)) =
∧

y∈X(R(y, z) →
∧

x∈X(R(x, y) → A(x))) =
∧

x∈X(
∨

y∈X(R(x, y)⊙R(y, z)) → A(x)) =
∧

x∈X(R(x, z) →
A(x)) = R→(A)(z).

(I3) Since R→(A)(y) ⊙ eLX (A,B) ≤ (R(x, y) → A(x)) ⊙ (A(x) → B(x)) ≤
R(x, y) → B(x), then eLX (A,B) ≤ eLX (R→(A), R→(B)).

(2) ⇒ (1). We have R→(χc
{x})(y) = R∗(x, y). Since R∗(x, x) = R→(χc

{x})(x) ≤
χc
{x}(x) = ⊥, R(x, x) = ⊤.
R→(R→(χc

{x}))(z) =
∧

y∈X(R(y, z) → R→(χc
{x})(y)) =

∧

y∈X(R(y, z) →
R∗(x, y)) = (

∨

y∈X R(x, y)⊙R(y, z))∗ = R→(χc
{x})(z) = R∗(x, z). Thus,

∨

y∈X R(x, y)⊙
R(y, z) = R(x, z).

(1) ⇒ (3). Since eLX (A,B) ⊙ R←(A)(y) ≤ (A(y) → B(y)) ⊙ (R(x, y) →
A(y)) ≤ R(x, y) → B(y), we have eLX (A,B) ≤ eLX (R←(A), R←(B)). Other
cases are similarly proved as in (1).

(3) ⇒ (1). We have R←(χc
{y})(x) = R∗(x, y). Since R∗(x, x) = R←(χc

{x})(x) ≤
χc
{x}(x) = ⊥, then R(x, x) = ⊤. Moreover, R←(R←(χc

{z}))(x) =
∧

y∈X(R(x, y) →
R←(χc

{z})(y)) =
∧

y∈X(R(x, y) → R∗(y, z)) = (
∨

y∈X R(x, y) ⊙ R(y, z))∗ =
R→(χc

{z})(x) = R∗(x, z). Thus, R is transitive.

Theorem 3.9 Let R ∈ LX×X be a fuzzy relation. Then the following con-

ditions are equivalent:

(1) R is a fuzzy preorder on X.

(2) S→(A,B) = eLX (R→(A), R→(B)) = (ρ(S→))(B,A).
(3) S←(A,B) = eLX (R←(B), R←(A)) = (σ(S←))(A,B).
(4) S→ is a fuzzy preorder on LX .

(5) S← is a fuzzy preorder on LX .

Proof (1) ⇒ (2). We have S→(A,B) = eLX (R→(A), R→(B)) from

eLX (R→(A), R→(B))
= eLX (R→(A), R→(B)) ⊙ eLX (R→(B), B)
≤ eLX (R→(A), B) = S→(A,B)
≤ eLX (R→(R→(A)), R→(B))
= eLX (R→(A), R→(B))

(2) ⇒ (4).
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S→(A,B) ⊙ S→(B,C)
= eLX (R→(A), R→(B)) ⊙ eLX (R→(B), R→(C))
≤ eLX (R→(A), R→(C)) = S→(A,C).

Hence S→ is a fuzzy preorder on LX .
(4) ⇒ (1). Since R→(χc

{x})(y) = R∗(x, y) and S→(χc
{x}, χ

c
{y}) = eLX (R→(χc

{x}), χ
c
{y}) =

R∗∗(x, y) = R(x, y),

R(x, y) ⊙ R(y, z) = S→(χc
{x}, χ

c
{y}) ⊙ S→(χc

{x}, χ
c
{y})

≤ S→(χc
{x}, χ

c
{z}) = R(x, z).

(1) ⇒ (3).

eLX (R←(B), R←(A))
= eLX (R←(A), A) ⊙ eLX (R←(B), R←(A))
≤ eLX (R←(B), A) = S←(A,B)
≤ eLX (R←(R←(B)), R←(A))
= eLX (R←(B), R←(A)).

(3) ⇒ (5).

S←(A,B) ⊙ S←(B,C)
= eLX (R←(B), R←(A)) ⊙ eLX (R←(C), R←(B))
≤ eLX (R←(C), R←(A)) = S←(A,C).

Hence S← is a fuzzy preorder on LX .
(5) ⇒ (1).
Since R←(χc

{y})(x) = R∗(x, y) and S←(χc
{x}, χ

c
{y}) = eLX (R←(χc

{y}), χ
c
{x}) =

R∗∗(x, y) = R(x, y),

R(x, y) ⊙ R(y, z) = S←(χc
{x}, χ

c
{y}) ⊙ S←(χc

{y}, χ
c
{z})

≤ S←(χc
{x}, χ

c
{z}) = R(x, z).

Example 3.10 Define a binary operation ⊙ (called  Lukasiewicz conjection)
on L = [0, 1] by

x⊙ y = max{0, x + y − 1}, x → y = min{1 − x + y, 1}.

Then ([0, 1],∨,∧,⊙,→) is a complete residuated lattice with the law of a
double negation.

Let X = {a, b, c} be a set with a fuzzy preorder R as

R =











a b c

a 1.0 0.8 0.8
b 0.6 1.0 1.0
c 0.5 0.6 1.0










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Let A = (A(a), A(b), A(c))t = (0.8, 0.3, 0, 6)t, B = (B(a), B(b), B(c))t =
(0.7, 0.5, 0, 9)t be given.

R⊙(A) = (08, 0.6, 0.6)t, R⊙(B) = (0.7, 0.5, 0.9)t.

(R−1)⊙(A) = (08, 0.6, 0.6)t, (R−1)⊙(B) = (0.7, 0.9, 0.9)t.

eLX (A,B) = 0.9, eLX (B,A) = 0.7.

eLX (R⊙(A), R⊙(B)) = 0.9, eLX (R⊙(B), R⊙(A)) = 0.7.

eLX ((R−1)⊙(A), (R−1)⊙(B)) = 0.9, eLX ((R−1)⊙(B), (R−1)⊙(A)) = 0.7.

S⊙(A,B) = 0.9, S⊙(B,A) = 0.7.

(S−1)⊙(A,B) = 0.7, (S−1)⊙(B,A) = 0.9.

R→(A) = (07, 0.3, 0.3)t, R→(B) = (0.7, 0.5, 0..5)t.

R←(A) = (05, 0.3, 0.6)t, R←(B) = (0.7, 0.5, 0.9)t.

eLX (R→(A), R→(B)) = 1, eLX (R→(B), R→(A)) = 0.8.

eLX (R←(A), R←(B)) = 1, eLX (R←(B), R←(A)) = 0.7.

S→(A,B) = 1, S→(B,A) = 0.8.

S←(A,B) = 0.7, S←(B,A) = 1.
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[1] R. Bělohlávek, Fuzzy relational Systems, Kluwer Publishers, New York
(2002).
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