Fuzzy preorder sets and extensional subobjects

Yong Chan Kim
Department of Mathematics, Gangneung-Wonju National University, Gangneung, Gangwondo 210-702, Korea
yck@gwnu.ac.kr

Abstract

In this paper, we investigate two categories of fuzzy preorder sets and extesional subobjects in complete residuated lattices.

Mathematics Subject Classification: 03E72, 03G10, 06A15, 06F07

Keywords:

Complete residuated lattices, Preorder sets, Extensional subobjects, Quasireflective subcategory

1 Introduction

Hájek [5] introduced a complete residuated lattice which is an algebraic structure for many valued logic. It is an important mathematical tool for algebraic structure $[1-6,10]$. Močkoř $[7-9]$ introduced two categories of fuzzy similar relations and extensional subobjects in an MV-algebras. In particular, quasireflective subcategories were investigated. Zhang $[6,10]$ introduced the category of preorder sets.

In this paper, we investigate two categories of fuzzy preorder sets and extensional subobjects in complete residuated lattices. In particular, we show that the category of extensional subobjects is a quasi-reflective subcategory of the category of preorder sets.

Definition $1.1[1,5]$ An algebra $(L, \wedge, \vee, \odot, \rightarrow, 0,1)$ is called a complete residuated lattice if it satisfies the following conditions:
(C1) $L=(L, \leq, \vee, \wedge, 1,0)$ is a complete lattice with the greatest element 1 and the least element 0 ;
(C2) $(L, \odot, 1)$ is a commutative monoid;
(C3) $x \odot y \leq z$ iff $x \leq y \rightarrow z$ for $x, y, z \in L$.

In this paper, we assume $\left(L, \wedge, \vee, \odot, \rightarrow,{ }^{*} 0,1\right)$ is a complete residuated lattice with the law of double negation;i.e. $x^{* *}=x$.

Lemma $1.2[1,5]$ For each $x, y, z, x_{i}, y_{i} \in L$, we have the following properties.
(1) If $y \leq z,(x \odot y) \leq(x \odot z), x \rightarrow y \leq x \rightarrow z$ and $z \rightarrow x \leq y \rightarrow x$.
(2) $x \rightarrow\left(\bigwedge_{i \in \Gamma} y_{i}\right)=\bigwedge_{i \in \Gamma}\left(x \rightarrow y_{i}\right)$.
(3) $\left(\bigvee_{i \in \Gamma} x_{i}\right) \rightarrow y=\bigwedge_{i \in \Gamma}\left(x_{i} \rightarrow y\right)$.
(4) $\bigwedge_{i \in \Gamma} y_{i}^{*}=\left(\bigvee_{i \in \Gamma} y_{i}\right)^{*}$ and $\bigvee_{i \in \Gamma} y_{i}^{*}=\left(\bigwedge_{i \in \Gamma} y_{i}\right)^{*}$.
(5) $(x \odot y) \rightarrow z=x \rightarrow(y \rightarrow z)=y \rightarrow(x \rightarrow z)$.
(6) $x \odot y=\left(x \rightarrow y^{*}\right)^{*}$ and $x \rightarrow y=y^{*} \rightarrow x^{*}$.
(7) $x \odot(x \rightarrow y) \leq y$ and $y \rightarrow z \leq x \odot y \rightarrow x \odot z$.
(8) $(x \rightarrow y) \odot(y \rightarrow z) \leq x \rightarrow z$.
(9) $x \leq y \rightarrow z$ iff $y \leq x \rightarrow z$.
(10) $y \rightarrow z \leq(x \rightarrow y) \rightarrow(x \rightarrow z)$ and $y \rightarrow z \leq(z \rightarrow x) \rightarrow(y \rightarrow x)$.
(11) $\left(\bigwedge_{i \in \Gamma} x_{i}\right) \rightarrow\left(\bigwedge_{i \in \Gamma} y_{i}\right) \geq \bigwedge_{i \in \Gamma}\left(x_{i} \rightarrow y_{i}\right)$.
(12) $\left(\bigvee_{i \in \Gamma} x_{i}\right) \rightarrow\left(\bigvee_{i \in \Gamma} y_{i}\right) \geq \bigwedge_{i \in \Gamma}\left(x_{i} \rightarrow y_{i}\right)$.

Definition 1.3 [1,5] Let X be a set. A function $e_{X}: X \times X \rightarrow L$ is called fuzzy preorder if it satisfies
(E1) reflexive if $e_{X}(x, x)=1$ for all $x \in X$,
(E2) transitive if $e_{X}(x, y) \odot e_{X}(y, z) \leq e_{X}(x, z)$, for all $x, y, z \in X$,
The pair $\left(X, e_{X}\right)$ is a fuzzy preorder set.
The category pROrd is the object (X, e_{X}) and a morphism from $\left(X, e_{X}\right)$ to $\left(Y, e_{Y}\right)$ with $f \in L^{X \times Y}$ and a morphism from $\left(Y, e_{Y}\right)$ to $\left(Z, e_{Z}\right)$ with $g \in L^{Y \times Z}$ satisfying the following conditions:
(1) $e_{X}(z, x) \odot f(x, y) \leq f(z, y), \forall x, z \in X, y \in Y$,
(2) $e_{Y}(y, w) \odot f(x, y) \leq f(x, w), \forall x \in X, y, w \in Y$,
(3) $g \circ f(x, z)=\bigvee_{y \in Y}(f(x, y) \circ g(y, z))$.

The category pOrd is the object $\left(X, e_{X}\right)$ and a morphism $f:\left(X, e_{X}\right) \rightarrow$ $\left(Y, e_{Y}\right)$ with $e_{X}(x, y) \leq e_{Y}(f(x), f(y))$.

Remark 1.4 We define a function $e_{L^{X}}: L^{X} \times L^{X} \rightarrow L$ as $e_{L^{X}}(A, B)=$ $\wedge_{x \in X}(A(x) \rightarrow B(x))$. Then $\left(L^{X}, e_{L^{X}}\right)$ is a fuzzy preorder set from Lemma 1.2 (8).

2 Fuzzy preorder sets and extensional subobjects

Theorem 2.1 Define $F:$ pOrd \rightarrow pRord as $F\left(X, e_{X}\right)=\left(X, e_{X}\right)$ and $F(f)(x, y)=e_{Y}(f(x), y)$ for a morphism $f:\left(X, e_{X}\right) \rightarrow\left(Y, e_{Y}\right)$ in pOrd. Then F is a functor.

Proof First, we show that pRord is a category. If $f: X \times Y \rightarrow L$ and $g: Y \times Z \rightarrow L$ is a morphism, then $g \circ f: X \times Z \rightarrow L$ is a morphism from the following statement (1) and (2).
(1) $e_{X}(w, x) \odot(g \circ f)(x, z)=e_{X}(w, x) \odot \bigvee_{y \in Y}(f(x, y) \odot g(y, z))=\bigvee_{y \in Y}\left(e_{X}(w, x) \odot\right.$ $f(x, y) \odot g(y, z) \leq \bigvee_{y \in Y}(f(w, y) \odot g(y, z))=(g \circ f)(w, z)$.
(2) $(g \circ f)(x, z) \odot e_{Z}(z, w)=\bigvee_{y \in Y}(f(x, y) \odot g(y, z)) \odot e_{Z}(z, w)=\bigvee_{y \in Y}(f(x, y) \odot$ $\left.g(y, z) \odot e_{Z}(z, w)\right) \leq \bigvee_{y \in Y}(f(x, y) \odot g(y, w))=(g \circ f)(x, w)$.

We will show that F is a functor. Then $F(f)$ is a morphism in pRord from:

$$
\begin{aligned}
e_{X}(z, x) \odot F(f)(x, y) & =e_{X}(z, x) \odot e_{Y}(f(x), y) \leq e_{Y}(f(z), f(x)) \odot e_{Y}(f(x), y) \\
& \leq e_{Y}(f(z), y)=F(f)(z, y), \\
F(f)(x, y) \odot e_{Y}(y, w) & =e_{Y}(f(x), y) \odot e_{Y}(y, w) \leq e_{Y}(f(x), w)=F(f)(x, w) .
\end{aligned}
$$

Moreover, $F(g \circ f)=F(g) \circ F(f)$ from:

$$
\begin{aligned}
F(g \circ f)(x, z) & =e_{Z}(g \circ f(x), z), \\
F(g) \circ F(f)(x, z) & =\bigvee_{y \in Y}(F(f)(x, y) \odot F(g)(y, z) \\
& =\bigvee_{y \in Y}\left(e_{Y}(f(x), y) \odot e_{Z}(g(y), z)\right. \\
& \leq \bigvee_{y \in Y}\left(e_{Z}(g(f(x)), g(y)) \odot e_{Z}(g(y), z)\right. \\
& \leq e_{Z}(g(f(x)), z), \\
F(g) \circ F(f)(x, z) & =\bigvee_{y \in Y}\left(e_{Y}(f(x), y) \odot e_{Z}(g(y), z)\right. \\
& \geq e_{Y}(f(x), f(x)) \odot e_{Z}(g(f(x)), z)=e_{Z}(g(f(x)), z) .
\end{aligned}
$$

Definition 2.2 [7-9] A map $s: X \rightarrow L$ is called an extensional subobject of $\left(X, e_{X}\right)$ in pOrd if $s(x) \odot e_{X}(x, y) \leq s(y)$.

A map $r: X \times L \rightarrow L$ is called an extensional subobject of $\left(X, e_{X}\right)$ in pRord if it satisfies
(1) $e_{X}(z, x) \odot r(x, a) \leq r(z, a), \forall x, z \in X, a \in L$,
(2) $r(x, a) \odot(a \rightarrow b) \leq r(x, b), \forall x \in X, a, b \in L$.

Remark 2.3 (1) If $s:\left(X, e_{X}\right) \rightarrow(L, \rightarrow)$ is a morphism in pOrd, then $e_{X}(x, y) \leq s(x) \rightarrow s(y)$. Hence $s: X \rightarrow L$ is an extensional subobject of (X, e_{X}) in pOrd
(2) If $r:\left(X, e_{X}\right) \rightarrow(L, \rightarrow)$ is a morphism in pROrd, then $r \in L^{X \times L}$ is an extensional subobject of (X, e_{X}) in pRord.

$$
E\left(X, e_{X}\right)=\left\{s: \text { is an extensional subobject of }\left(X, e_{X}\right) \text { in } \mathbf{p O r d}\right\}
$$ $R\left(X, e_{X}\right)=\left\{s:\right.$ is an extensional subobject of $\left(X, e_{X}\right)$ in pRord $\}$

Theorem 2.4 There exists a map $F: E\left(X, e_{X}\right) \rightarrow R\left(X, e_{X}\right)$ with $F(s) \in$ pRord. Moreover, $F:\left(E\left(X, e_{X}\right), e_{L^{X}}\right) \rightarrow\left(F\left(E\left(X, e_{X}\right)\right), e_{F(X)}\right)$ is an orderisomorphism where $e_{F(X)}: F\left(E\left(X, e_{X}\right)\right) \times F\left(E\left(X, e_{X}\right)\right) \rightarrow L$ as

$$
e_{F(X)}(F(s), F(t))=\bigwedge_{(x, a) \in F\left(E\left(X, e_{X}\right)\right)}\left(F(s)^{-1}(x, a) \rightarrow F(t)^{-1}(x, a)\right) .
$$

Proof For $s \in E\left(X, e_{X}\right)$, put $F(s)(x, y)=s(x) \rightarrow y$. Since $s(x) \odot$ $e_{X}(x, z) \leq s(z), F(s)$ is an extensional subobject in pRord from

$$
\begin{aligned}
e_{X}(z, x) \odot F(s)(x, y) & =e_{X}(z, x) \odot(s(x) \rightarrow y) \\
& \leq(s(z) \rightarrow y)=F(s)(z, y), \\
F(s)(x, y) \odot e_{Y}(y, w) & =(s(x) \rightarrow y) \odot(y \rightarrow w) \\
& \leq s(x) \rightarrow y=F(s)(x, w) . \\
e_{F(X)}(F(s), F(t)) & =\bigwedge_{(x, a) \in X \times L}\left(F(s)^{-1}(x, a) \rightarrow F(t)^{-1}(x, a)\right) \\
& =\bigwedge_{(x, a) \in X \times L}((a \rightarrow s(x)) \rightarrow(a \rightarrow t(x))) \\
& \leq \bigwedge_{x \in X}((s(x) \rightarrow s(x)) \rightarrow(s(x) \rightarrow t(x))) \\
& =\bigwedge_{x \in X}(s(x) \rightarrow t(x))=e_{L^{x}}(s, t) .
\end{aligned}
$$

Since $(a \rightarrow s(x)) \rightarrow(a \rightarrow t(x)) \geq s(x) \rightarrow t(x)$ from Lemma 1.2 (10), we have

$$
\begin{aligned}
e_{F(X)}(F(s), F(t)) & =\bigwedge_{(x, a) \in X \times L}((a \rightarrow s(x)) \rightarrow(a \rightarrow t(x))) \\
& \geq \bigwedge_{x \in X}(s(x) \rightarrow t(x))=e_{L^{X}}(s, t) .
\end{aligned}
$$

Hence $F:\left(E\left(X, e_{X}\right), e_{L^{X}}\right) \rightarrow\left(F\left(E\left(X, e_{X}\right)\right), e_{F(X)}\right)$ is an order-isomorphism, that is, F is bijective and $e_{F(X)}(F(s), F(t))=e_{L^{X}}(s, t)$.

Definition 2.5 [8] A category \mathbf{L} is called a quasi-reflective subcategory in \mathbf{K} if there exists a functor $G: \mathbf{K} \rightarrow \mathbf{L}$ such that for any object $a \in \mathbf{K}$, there is a morphism $u_{a}: a \rightarrow G(a)$ such that for any $b \in \mathbf{L}$ and $f: a \rightarrow b$ in \mathbf{K}, there exists a morphism $\bar{f}: G(a) \rightarrow b$ such that $f=\bar{f} \circ u_{a}$.

The category Ext is the object $\left(E\left(X, e_{X}\right), e_{L^{X}}\right)$ and a morphism $\alpha:\left(E\left(X, e_{X}\right), e_{L^{X}}\right) \rightarrow$ $\left(E\left(Y, e_{X}\right), e_{L^{Y}}\right)$ with $e_{L^{X}}(s, t) \leq e_{L^{Y}}(\alpha(s), \alpha(t))$.

Theorem 2.6 There exists a functor $D:$ pOrd \rightarrow Ext. Moreover, Ext is a quasi-reflective subcategory in pOrd.

Proof Let $\left(X, e_{X}\right)$ be an object of pOrd and $f:\left(X, e_{X}\right) \rightarrow\left(Y, e_{Y}\right)$ be a morphism in pOrd. Define a functor $D:$ pOrd \rightarrow Ext as follows

$$
D\left(X, e_{X}\right)=\left(E\left(X, e_{X}\right), e_{L^{x}}\right)
$$

$$
D(f)(s)(y)=\bigvee_{x \in X}\left(s(x) \odot e_{Y}(f(x), y)\right), s \in E\left(X, e_{X}\right)
$$

Since $D(f)(s)(y) \odot e_{Y}(y, w)=\bigvee_{x \in X}\left(s(x) \odot e_{Y}(f(x), y)\right) \odot e_{Y}(y, w) \leq \bigvee_{x \in X}(s(x) \odot$ $\left.e_{Y}(f(x), w)\right)=D(f)(s)(w)$, then $D(f)(s) \in E\left(Y, e_{Y}\right)$. Moreover, if $g:\left(Y, e_{Y}\right) \rightarrow$ (Z, e_{Z}) is a morphism in pOrd, then

$$
\begin{aligned}
D(g \circ f)(s)(z) & =\bigvee_{x \in X}\left(s(x) \odot e_{Z}(f(x), z)\right), s \in E\left(X, e_{X}\right) \\
(D(g) \circ D(f))(s)(z) & =\bigvee_{y \in Y}\left(D(f)(s)(y) \odot e_{Z}(g(y), z)\right) \\
& =\bigvee_{y \in Y}\left(\bigvee_{x \in X}\left(s(x) \odot e_{Y}(f(x), y)\right) \odot e_{Z}(g(y), z)\right) \\
& \leq \bigvee_{y \in Y}\left(\bigvee_{x \in X}\left(s(x) \odot e_{Z}(g(f(x)), g(y))\right) \odot e_{Z}(g(y), z)\right) \\
& \leq \bigvee_{x \in X}\left(s(x) \odot e_{Z}(g(f(x)), z)\right) \\
(D(g) \circ D(f))(s)(z) & =\bigvee_{y \in Y}\left(\bigvee_{x \in X}\left(s(x) \odot e_{Y}(f(x), y)\right) \odot e_{Z}(g(y), z)\right) \\
& \left.\geq \bigvee_{x \in X}\left(s(x) \odot e_{Y}(f(x), f(x))\right) \odot e_{Z}(g(f(x)), z)\right) \\
& =\bigvee_{x \in X}\left(s(x) \odot e_{Z}(g(f(x)), z)\right)
\end{aligned}
$$

Hence $D(g \circ f)=D(g) \circ D(f)$. We have $e_{L^{Y}}(D(f)(s), D(f)(t)) \geq e_{L^{x}}(s, t)$ from:

$$
\begin{aligned}
& \bigvee_{x \in X}\left(s(x) \odot e_{Z}(f(x), z)\right) \rightarrow \bigvee_{x \in X}\left(t(x) \odot e_{Z}(f(x), z)\right) \\
& \geq \bigwedge_{x \in X}\left(\left(s(x) \odot e_{Z}(f(x), z)\right) \rightarrow(t x) \odot e_{Z}(f(x), z)\right)(\text { by Lemma } 1.2(12)) \\
& \geq \bigwedge_{x \in X}(s(x) \rightarrow t(x))(\text { by Lemma } 1.2(7)) .
\end{aligned}
$$

Thus, D is a functor. Define $\delta:\left(X, e_{X}^{-1}\right) \rightarrow\left(E\left(X, e_{X}\right), e_{L^{X}}\right)$ as $\delta(x)=\left(e_{X}\right)_{x}$. Then $\delta(x)=\left(e_{X}\right)_{x} \in E\left(X, e_{X}\right)$ is well defined because $\left(e_{X}\right)_{x}(y) \odot e_{X}(y, w) \leq$ $\left(e_{X}\right)_{x}(w)$ and δ is an order-isomorphism from:

$$
\begin{aligned}
e_{L^{X}}(\delta(x), \delta(y)) & =e_{L^{X}}\left(\left(e_{X}\right)_{x},\left(e_{X}\right)_{y}\right) \\
& =\bigwedge_{z \in X}\left(\left(e_{X}\right)_{x}(z) \rightarrow\left(e_{X}\right)_{y}(z)\right) \\
& =\bigwedge_{z \in X}\left(e_{X}(x, z) \rightarrow e_{X}(y, z)\right) \\
& =e_{X}(y, x)=e_{X}^{-1}(x, y)
\end{aligned}
$$

Let $f:\left(X, e_{X}^{-1}\right) \rightarrow\left(E\left(Y, e_{Y}\right), e_{L^{x}}\right)$ be a morphism in pOrd;i.e. $e_{L^{x}}(f(x), f(y)) \geq$ $e_{X}^{-1}(x, y)=e_{X}(y, x)$.

We define $\bar{f}(s)(b)=\bigvee_{x \in X}\left(f(x)(b) \odot e_{L^{X}}(\delta(x), s)\right.$. Since $f(x) \in E\left(Y, e_{Y}\right)$, we have $\bar{f}(s) \in E\left(Y, e_{Y}\right)$ from:

$$
\begin{aligned}
\bar{f}(s)(b) \odot e_{Y}(b, c) & =\bigvee_{x \in X}\left(f(x)(b) \odot e_{L^{X}}\left(\left(e_{X}\right)_{x}, s\right) \odot e_{Y}(b, c)\right. \\
& \leq \bigvee_{x \in X}\left(f(x)(c) \odot e_{L^{X}}\left(\left(e_{X}\right)_{x}, s\right)=\bar{f}(s)(c)\right.
\end{aligned}
$$

Since $e_{L^{X}}\left(\left(e_{X}\right)_{x}, s\right) \rightarrow e_{L^{x}}\left(\left(e_{X}\right)_{x}, t\right) \geq \bigwedge_{y \in X}\left(\left(\left(e_{X}\right)_{x}(y) \rightarrow s(y)\right) \rightarrow\left(\left(e_{X}\right)_{x}(y) \rightarrow\right.\right.$ $t(y))) \geq \wedge_{y \in X}(s(y) \rightarrow t(y))$, we have

$$
\begin{aligned}
& \bar{f}(s)(b) \rightarrow \bar{f}(t)(b) \\
& =\left(\bigvee _ { x \in X } (f (x) (b) \odot e _ { L ^ { X } } ((e _ { X }) _ { x } , s)) \rightarrow \left(\bigvee_{x \in X}\left(f(x)(b) \odot e_{L^{X}}\left(\left(e_{X}\right)_{x}, t\right)\right)\right.\right. \\
& \geq \bigwedge_{x \in X}\left(f(x)(b) \odot e_{L^{x}}\left(\left(e_{X}\right)_{x}, s\right) \rightarrow\left(f(x)(b) \odot e_{L^{x}}\left(\left(e_{X}\right)_{x}, t\right)\right)\right. \\
& \geq \bigwedge_{x \in X}(s(x) \rightarrow t(x))=e_{L^{x}}(s, t),
\end{aligned}
$$

Then $e_{L^{Y}}(\bar{f}(s), \bar{f}(t))=\bigwedge_{b \in Y}(\bar{f}(s)(b) \rightarrow \bar{f}(t)(b)) \geq e_{L^{X}}(s, t)$. We have $\bar{f}(\delta(a))(b)=$ $\bar{f}\left(\left(e_{X}\right)_{a}\right)(b)=f(a)(b)$ because

$$
\begin{aligned}
\bar{f}\left(\left(e_{X}\right)_{a}\right)(b) & =\bigvee_{x \in X}\left(f(x)(b) \odot e_{L^{X}}\left(\left(e_{X}\right)_{x},\left(e_{X}\right)_{a}\right)\right. \\
& =\bigvee_{x \in X}\left(f(x)(b) \odot e_{X}(a, x)\right) \leq \bigvee_{x \in X}\left(f(x)(b) \odot e_{L^{Y}}(f(x), f(a))\right) \\
& =\bigvee_{x \in X}\left(f(x)(b) \odot \bigwedge_{y \in Y}(f(x)(y) \rightarrow f(a)(y))\right) \\
& \leq f(a)(b) . \\
\bar{f}\left(\left(e_{X}\right)_{a}\right)(b) & =\bigvee_{x \in X}\left(f(x)(b) \odot e_{L^{X}}\left(\left(e_{X}\right)_{x},\left(e_{X}\right)_{a}\right)\right. \\
& =\bigvee_{x \in X}\left(f(x)(b) \odot e_{X}(a, x)\right) \geq f(a)(b) .
\end{aligned}
$$

Hence $\bar{f}:\left(E\left(X, e_{X}\right), e_{L^{X}}\right) \rightarrow\left(E\left(Y, e_{Y}\right), e_{L^{Y}}\right)$ such that $f=\bar{f} \circ \delta$.
Then \bar{f} is the smallest morphism such that $f(a)(b)=\bar{f}\left(\left(e_{X}\right)_{a}\right)(b)$;i.e, if $f(a)(b)=g\left(\left(e_{X}\right)_{a}\right)(b)$, then $\bar{f} \leq g$.

$$
\begin{aligned}
\bar{f}(s)(b) & =\bigvee_{x \in X}\left(f(x)(b) \odot e_{L^{X}}\left(\left(e_{X}\right)_{x}, s\right)\right. \\
& \leq \bigvee_{x \in X}\left(f(x)(b) \odot e_{L^{Y}}\left(g\left(\left(e_{X}\right)_{x}\right), g(s)\right)\right. \\
& =\bigvee_{x \in X}\left(f(x)(b) \odot e_{L^{Y}}(f(x), g(s))\right) \\
& =\bigvee_{x \in X}\left(f(x)(b) \odot \bigwedge_{y \in Y}(f(x)(y) \rightarrow g(s)(y))\right) \\
& =\bigvee_{x \in X}(f(x)(b) \odot(f(x)(b) \rightarrow g(s)(b))) \\
& \leq g(s)(b) .
\end{aligned}
$$

We define a fuzzy preorder $d_{E(X)}: E\left(X, e_{X}\right) \times E\left(X, e_{X}\right) \rightarrow L$ as

$$
d_{E(X)}(s, t)= \begin{cases}\bigvee_{x \in X}(s(x) \odot t(x)) & \text { if } s \neq t \\ 1 & \text { if } s=t\end{cases}
$$

The category dExt is the object $\left(E\left(X, e_{X}\right), d_{E(X)}\right)$ and a morphism $\alpha:\left(E\left(X, e_{X}\right), d_{E(X)}\right) \rightarrow\left(E\left(Y, e_{Y}\right), d_{E(Y)}\right)$ with $d_{E(X)}(s, t) \leq d_{E(Y)}(\alpha(s), \alpha(t))$.

Theorem 2.7 There exists a functor $G:$ pOrd \rightarrow dExt. Moreover, dExt is a quasi-reflective subcategory in pOrd.

Proof Let $\left(X, e_{X}\right)$ be an object of pOrd and $f:\left(X, e_{X}\right) \rightarrow\left(Y, e_{Y}\right)$ be a morphism in pOrd. Define a functor $G:$ pOrd $\rightarrow \mathbf{d E x t}$ as follows

$$
\begin{gathered}
G\left(X, e_{X}\right)=\left(E\left(X, e_{X}\right), d_{E(X)}\right) \\
G(f)(s)(y)=\bigvee_{x \in X}\left(s(x) \odot e_{Y}(f(x), y)\right), s \in E\left(X, e_{X}\right) .
\end{gathered}
$$

$G(f)(s)(y) \odot e_{Y}(y, w)=\bigvee_{x \in X}\left(s(x) \odot e_{Y}(f(x), y)\right) \odot e_{Y}(y, w) \leq \bigvee_{x \in X}(s(x) \odot$ $\left.e_{Y}(f(x), w)\right)=G(f)(s)(w)$. Hence $G(f)(s) \in E\left(Y, e_{Y}\right)$.

Define $\delta:\left(X, e_{X}^{-1}\right) \rightarrow\left(E\left(X, e_{X}\right), d_{E(X)}\right)$ as $\delta(x)=\left(e_{X}\right)_{x}$. Then $\delta(x)=$ $\left(e_{X}\right)_{x} \in E\left(X, e_{X}\right)$ because $\left(e_{X}\right)_{x}(y) \odot e_{X}(y, w) \leq\left(e_{X}\right)_{x}(w)$ and

$$
\begin{aligned}
d_{E(X)}(\delta(x), \delta(y)) & =d_{E(X)}\left(\left(e_{X}\right)_{x},\left(e_{X}\right)_{y}\right)=\bigvee_{z \in X}\left(\left(e_{X}\right)_{x}(z) \odot\left(e_{X}\right)_{y}(z)\right) \\
& =\bigvee_{z \in X}\left(e_{X}(x, z) \odot e_{X}(y, z)\right) \geq e_{X}(y, x)=e_{X}^{-1}(x, y) .
\end{aligned}
$$

Hence $\delta(x)$ is a morphism in pOrd. Moreover, $G(f)$ is a morphism in dExt from

$$
\begin{aligned}
& d_{E(X)}(G(f)(s), G(f)(t)) \\
& =\bigvee_{y \in Y}(G(f)(s)(y) \odot G(f)(t)(y)) \\
& =\bigvee_{y \in Y}\left(\bigvee_{x \in X}\left(s(x) \odot e_{Y}(f(x), y)\right) \odot \bigvee_{x \in X}\left(t(x) \odot e_{Y}(f(x), y)\right)\right) \\
& \geq \bigvee_{x \in X}\left(s(x) \odot e_{Y}(f(x), f(x))\right) \odot \bigvee_{x \in X}\left(t(x) \odot e_{Y}(f(x), f(x))\right) \\
& \geq \bigvee_{x \in X}(s(x) \odot t(x))=d_{E(X)}(s, t)
\end{aligned}
$$

Let $f:\left(X, e_{X}^{-1}\right) \rightarrow\left(E\left(Y, e_{Y}\right), d_{E(Y)}\right)$ be a morphism in pOrd, that is, $d_{E(Y)}(f(x), f(y)) \geq e_{X}^{-1}(x, y)$. We define $\bar{f}(s)(b)=\bigvee_{x \in X}\left(f(x)(b) \odot d_{E(X)}\left(\left(e_{X}\right)_{x}, s\right)\right.$. Then $\bar{f}(s)(b) \geq \bigvee_{x \in X}(f(x)(b) \odot s(x)$. Since $f(x) \in E(Y)$, we have

$$
\begin{aligned}
\bar{f}(s)(b) \odot e_{Y}(b, c) & =\bigvee_{x \in X}\left(f(x)(b) \odot d_{E(X)}\left(\left(e_{X}\right)_{x}, s\right) \odot e_{Y}(b, c)\right. \\
& =\bigvee_{x \in X}\left(f(x)(c) \odot d_{E(X)}\left(\left(e_{X}\right)_{x}, s\right)=\bar{f}(s)(c) .\right.
\end{aligned}
$$

Moreover, $\bar{f}:\left(E\left(X, e_{X}\right), d_{E(X)}\right) \rightarrow\left(E\left(Y, e_{Y}\right), d_{E(Y)}\right)$ is a morphism in dExt from

$$
\left.\left.\begin{array}{l}
\quad d_{E(Y)}(\bar{f}(s), \bar{f}(t)) \\
=\bigvee_{b \in Y}(\bar{f}(s)(b) \odot \bar{f}(t)(b)) \\
\geq \bigvee_{b \in Y} \bigvee_{x, z \in X}\left(\bigvee_{x \in X}(f(x)(b) \odot f(z)(b)) \odot(s(x) \odot t(z))\right) \\
\geq \bigvee_{x, z \in X}\left(d_{E(Y)}(f(x), f(z)) \odot(s(x) \odot t(z))\right) \\
\geq \bigvee_{x, z \in X}\left(e_{X}(z, x) \odot(s(x) \odot t(z))\right) \\
\geq \bigvee_{x \in X}(s(x) \odot t(x))=d_{E(X)}(s, t) . \\
\bar{f}\left(\left(e_{X}\right)_{a}\right)(b) \\
\bar{f}\left(\left(e_{X}\right)_{a}\right)(b) \\
\\
\\
\\
\\
\\
\leq \bigvee_{x \in X}\left(f(x)(b) \odot\left(e_{X}\right)_{a}(x) \geq f(a)(b) .\right. \\
\\
\leq \bigvee_{x \in X}\left(f(x)(b) \odot\left(e_{X}\right)_{a}(x)\right. \\
\\
\leq \bigvee_{x \in X}\left(f(x)(b) \odot d_{E(Y)}(f(x)(b) \odot f(a))\right. \\
L_{L^{Y}}(f(x), f(a))\left(d_{E(Y)} \leq e_{L^{Y}}\right) \\
\\
\end{array}\right)(x)(b) \rightarrow f(a)(b)\right) \leq f(a)(b) .
$$

Hence there exists $\bar{f}:\left(E\left(X, e_{X}\right), d_{E(X)}\right) \rightarrow\left(E\left(Y, e_{Y}\right), d_{E(Y)}\right)$ such that $f=$ $\bar{f} \circ \delta$.

The category dRExt is the object $E\left(X, e_{X}\right)$ and a morphism $f:\left(E\left(X, e_{X}\right), d_{E(X)}\right) \rightarrow$ $\left(E\left(Y, e_{Y}\right), d_{E(Y)}\right)$ with $f \in L^{E\left(X, e_{X}\right) \times E\left(Y, e_{Y}\right)}$ satisfying the following conditions:
(1) $d_{E(X)}\left(s_{1}, s\right) \odot f(s, t) \leq f\left(s_{1}, t\right), \forall s, s_{1} \in E\left(X, e_{X}\right), t \in E\left(Y, e_{Y}\right)$,
(2) $d_{E(Y)}\left(t, t_{1}\right) \odot f(s, t) \leq f\left(s, t_{1}\right), \forall s \in E\left(X, e_{X}\right), t, t_{1} \in E\left(Y, e_{Y}\right)$.

Theorem 2.8 There exists a functor $H:$ pRord \rightarrow dRExt. Moreover, dRExt is a quasi-reflective subcategory in pRord.

Proof Let $\left(X, e_{X}\right)$ be an object of pRord and $f:\left(X, e_{X}\right) \rightarrow\left(Y, e_{Y}\right)$ be a morphism in pRord. Let $e_{X}:\left(X, e_{X}^{-1}\right) \rightarrow\left(E\left(X, e_{X}\right), d_{E(X)}\right)$ be a morphism in pOrd.

$$
\begin{aligned}
d_{E(X)}\left(\left(e_{X}\right)_{x},\left(e_{X}\right)_{y}\right) & =\bigvee_{z \in X}\left(\left(e_{X}\right)_{x}(z) \odot\left(e_{X}\right)_{y}(z)\right) \\
& =\bigvee_{z \in X}\left(e_{X}(x, z) \odot e_{X}(y, z)\right) \\
& \geq e_{X}(y, x)=e_{X}^{-1}(x, y) .
\end{aligned}
$$

Then $F:\left(X, e_{X}\right) \times E\left(X, e_{X}\right) \rightarrow L$ defined as $F(x, s)=d_{E(X)}\left(\left(e_{X}\right)_{x}, s\right)$ is a morphism in pRord because

$$
\begin{aligned}
e_{X}(z, x) \odot F(x, s) & =e_{X}(z, x) \odot d_{E(X)}\left(\left(e_{X}\right)_{x}, s\right) \\
& =e_{X}(z, x) \odot \bigvee_{w \in X}\left(\left(e_{X}\right)_{x}(w) \odot s(w)\right) \\
& \leq \bigvee_{w \in X}\left(e_{X}(z, w) \odot s(w)\right)=F(z, s) \\
F(x, s) \odot d_{E(X)}(s, t) & =d_{E(X)}\left(\left(e_{X}\right)_{x}, s\right) \odot d_{E(X)}(s, t) \\
& \leq d_{E(X)}\left(\left(e_{X}\right)_{x}, t\right)=F(x, t) .
\end{aligned}
$$

Define a functor $H:$ pRord $\rightarrow \mathbf{d R E x t}$ as follows

$$
\begin{gathered}
H\left(X, e_{X}\right)=\left(E\left(X, e_{X}\right), d_{E(X)}\right) \\
H(f)(s, t)=\bigvee_{x \in X} \bigvee_{y \in Y}(f(x, y) \odot F(y, t) \odot F(x, s)), s \in E\left(X, e_{X}\right), t \in E\left(Y, e_{Y}\right)
\end{gathered}
$$

Then $H(f)$ is a morphism in dRExt from:

$$
\begin{aligned}
& d_{E(X)}\left(s_{1}, s\right) \odot H(f)(s, t) \\
& =d_{E(X)}\left(s_{1}, s\right) \odot \bigvee_{x \in X} \bigvee_{y \in Y}(f(x, y) \odot F(y, t) \odot F(x, s)) \\
& \leq \bigvee_{x \in X} \bigvee_{y \in Y}\left(f(x, y) \odot F(y, t) \odot F\left(x, s_{1}\right)\right) \\
& =H(f)\left(s_{1}, t\right), \\
& H(f)(s, t) \odot d_{E(Y)}\left(t, t_{1}\right) \\
& =\bigvee_{x \in X} \bigvee_{y \in Y}(f(x, y) \odot F(y, t) \odot F(x, s)) \odot d_{E(Y)}\left(t, t_{1}\right) \\
& \leq \bigvee_{x \in X} \bigvee_{y \in Y}\left(f(x, y) \odot F\left(y, t_{1}\right) \odot F(x, s)\right) \\
& =H(f)\left(s, t_{1}\right) .
\end{aligned}
$$

Let $f: X \times E\left(Y, e_{Y}\right) \rightarrow L$ be a morphism in pRord. We define $\bar{f}(s, t)=$ $\bigvee_{x \in X}(f(x, t) \odot F(x, s))$. Since $f(x, b) \odot e_{Y}(b, c) \leq f(x, c)$, we have

$$
\begin{aligned}
\bar{f}(s, b) \odot e_{Y}(b, c) & =\bigvee_{x \in X}\left(f(x, b) \odot F(x, s) \odot e_{Y}(b, c)\right. \\
& \leq \bigvee_{x \in X}\left(f(x, c) \odot d_{E(X)}(x, s)=\bar{f}(s, c) .\right.
\end{aligned}
$$

Since $d_{E(Y)}\left(t, t_{1}\right) \odot f(x, t) \leq f\left(x, t_{1}\right)$, we have

$$
\begin{aligned}
d_{E(Y)}\left(t, t_{1}\right) \odot \bar{f}(s, t) & =d_{E(Y)}\left(t, t_{1}\right) \odot \bigvee_{x \in X}(f(x, t) \odot F(x, s)) \\
& =\bigvee_{x \in X}\left(\left(f\left(x, t_{1}\right) \odot F(x, s)\right)=\bar{f}\left(s, t_{1}\right)\right.
\end{aligned}
$$

$$
\begin{aligned}
&(\bar{f} \circ F)(a, t)=\bigvee_{s \in E\left(X, e_{X}\right)}(F(a, s) \odot \bar{f}(s, t) \\
&=\bigvee_{\left.s \in L^{\left(X, e_{X}\right.}\right)}\left(F(a, s) \odot \bigvee_{x \in X}(f(x, t) \odot F(x, s))\right. \\
& \geq F\left(a,\left(e_{X}\right)_{a}\right) \odot \bigvee_{x \in X}\left(f(x, t) \odot F\left(x,\left(e_{X}\right)_{a}\right)\right) \\
&=\bigvee_{x \in X}\left(f(x, t) \odot F\left(x,\left(e_{X}\right)_{a}\right)\right) \geq f(a, t), \\
&(\bar{f} \circ F)(a, t) \\
&=\bigvee_{s \in L^{\left(X, e_{X}\right)}}(F(a, s) \odot \bar{f}(s, t) \\
&=\bigvee_{\left.s \in L^{\left(X, e_{X}\right.}\right)} \bigvee_{x \in X}\left(d_{E(X)}\left(\left(e_{X}\right)_{a}, s\right) \odot d_{E(X)}\left(\left(e_{X}\right)_{x}, s\right) \odot f(x, t)\right. \\
& \leq \bigvee_{s \in E\left(X, e_{X}\right)} \bigvee_{x \in X}\left(d_{E(X)}\left(\left(e_{X}\right)_{x},\left(e_{X}\right)_{a}\right) \odot f(x, t)\right. \\
& \leq \bigvee_{s \in E\left(X, e_{X}\right)} \bigvee_{x \in X}\left(e_{L X}\left(\left(e_{X}\right)_{x},\left(e_{X}\right)_{a}\right) \odot f(x, t)\right. \\
& \leq \bigvee_{x \in X}\left(e_{X}(a, x) \odot f(x, t)\right) \leq f(a, t) .
\end{aligned}
$$

Hence there exist a morphism $\bar{f}: E\left(X, e_{X}\right) \times E\left(Y, e_{Y}\right) \rightarrow L$ such that $f=\bar{f} \circ F$.
Moreover, for each $(F \circ f): X \times Y \rightarrow L$, there exists $\overline{F \circ f}: E\left(X, e_{X}\right) \times$ $E\left(Y, e_{Y}\right) \rightarrow L$ such that $H(f)=\overline{F \circ f}$ from:

$$
\begin{aligned}
H(f)(s, t) & =\bigvee_{x \in X} \bigvee_{y \in Y}(f(x, y) \odot F(y, t) \odot F(x, s)) \\
& \left.=\bigvee_{x \in X}(F \circ f)(x, t) \odot F(x, s)\right)=\overline{F \circ f}(s, t) .
\end{aligned}
$$

References

[1] R. Bělohlávek, Fuzzy Relational Systems, Kluwer Academic Publishers, New York (2002).
[2] R. Bělohlávek, Concept lattices and order in fuzzy logic, Ann. Pure Appl. Logic, 128, (2004), pp.277-298.
[3] R. Bělohlávek, Lattices of fixed points of Galois connections, Math. Logic Quart., 47 (2001), pp. 111-116.
[4] J.G. Garcia, I.M. Perez, M.A. Vicente, D. Zhang, Fuzzy Galois connections categorically, Math. Log. Quart., 56(2), (2010), pp. 131-147.
[5] P. Hájek, Metamathematices of Fuzzy Logic,Kluwer Academic Publishers, Dordrecht (1998).
[6] H. Lai, D. Zhang, Complete and directed complete Ω categories, Theoretical Computer Science, 388, (2007), pp. 1-25.
[7] J. Močkoř, Complete subobjects of fuzzy sets over MV-algebras, Czech. Math. J., 129,(2004), pp. 379-392.
[8] J. Močkoř, Extensional subobjects in categories of Ω-fuzzy sets, Czech. Math. J., 132,(2007), pp. 631-645.
[9] J. Močkoř, Fuzzy logic models in a category of fuzzy relations,Soft Comput., 13,(2009), pp. 591-596.
[10] H. Zhao, D. Zhang, Many valued lattices and their representations, Fuzzy Sets and Systems, 159, (2008), pp. 81-94.

