Mathematica Aeterna, Vol. 2, 2012, no. 8, 675-687

Fuzzy consequence operators

Yong Chan Kim
Department of Mathematics, Gangneung-Wonju National University, Gangneung, Gangwondo 210-702, Korea yck@gwnu.ac.kr

Abstract

We investigate the properties of fuzzy consequence operators in generalized residuated lattice. In particular, we investigate the relations between right (resp. left) \odot-preorders and fuzzy consequence operators.

Mathematics Subject Classification: 03E72, 54A40,54B10
Keywords: Generalized residuated lattice, right(left) \odot-preorder, right (left) \odot-transitive, fuzzy consequence operators

1 Introduction

Pavelka [8] introduced the concept of fuzzy consequence operator. Recently, it is developed in the approximate reasoning context with different fuzzy logics on residuated lattices [4,5]. On the other hand, Wille [10] introduced the structures on lattices which are important mathematical tools for data analysis and knowledge processing. MV-algebra was introduced by Chang [2] to provide algebraic models for many valued propositional logic. Recently, it is developed many directions (BL-algebra, residuated algebra) [$5,9,10]$. In particular, noncommutative structures play an important role in metric spaces, algebraic structures (groups, rings, quantales, pseudo-BL-algebras) $[3,6,7,9,10]$. Georgescu and Popescu [6] introduced generalized residuated lattice as a noncommutative structure.

In this paper, we investigate the properties of fuzzy consequence operators in generalized residuated lattice. In particular, we investigate the relations between right (resp. left) \odot-preorders and fuzzy consequence operators.

2 Preliminaries

Definition 2.1 [6] A structure $(L, \vee, \wedge, \odot, \rightarrow, \Rightarrow, \perp, \top)$ is called a generalized residuated lattice iff it satisfies the following properties:
(L1) $(L, \vee, \wedge, \perp, \top)$ is a bounded lattice where \perp is the bottom element and T is the top element;
(L2) (L, \odot, \top) is a monoid;
(L3) adjointness properties,i.e.

$$
x \leq y \rightarrow z \text { iff } x \odot y \leq z \text { iff } y \leq x \Rightarrow z
$$

Two maps ${ }^{0},{ }^{*}: L \rightarrow L$ defined by $a^{0}=a \rightarrow \perp$ and $a^{*}=a \Rightarrow \perp$ is called strong negations if $a^{0 *}=a$ and $a^{* 0}=a$. We define

$$
\top_{x}(y)=\left\{\begin{array}{ll}
\top, & \text { if } y=x, \\
\perp, & \text { otherwise } .
\end{array} \quad \top_{x}^{*}(y)=\top_{x}^{0}(y)= \begin{cases}\perp, & \text { if } y=x, \\
\top, & \text { otherwise }\end{cases}\right.
$$

In this paper, we assume that $\left(L, \vee, \wedge, \odot, \rightarrow, \Rightarrow,{ }^{*},{ }^{0}, \perp, \top\right)$ be a generalized residuated lattice with strong negations ${ }^{*}$ and ${ }^{0}$.

Definition 2.2 Let X be a set. A function $R: X \times X \rightarrow L$ is called a right \odot-preorder on X if it satisfies the following conditions:
(R) (reflexive) $R(x, x)=\mathrm{T}$ for all $x \in X$,
(LT) (right transitive) $R(x, y) \odot R(y, z) \leq R(x, z)$, for all $x, y, z \in X$.
A function $R: X \times X \rightarrow L$ is called a left \odot-preorder on X if it satisfies (R) and the following condition:
(RT) (left transitive) $R(y, z) \odot R(x, y) \leq R(x, z)$, for all $x, y, z \in X$.
Definition 2.3 [5] An operator $C: L^{X} \rightarrow L^{X}$ is called a fuzzy consequence operator iff it satisfies the following conditions:
(C1) $A \leq C(A)$ for $A \in L^{X}$.
(C2) If $A \leq B$, then $C(A) \leq C(B) A \in L^{X}$.
(C3) $C(C(A))=C(A)$ for $A \in L^{X}$.
Lemma 2.4 For each $x, y, z, x_{i}, y_{i} \in L$, the following properties hold.
(1) \odot is isotone in both arguments.
(2) \rightarrow and \Rightarrow are antitone in the first and isotone in the second argument.
(3) $x \rightarrow y=\top$ iff $x \leq y$ iff $x \Rightarrow y=\mathrm{\top}$.
(4) $x \rightarrow \mathrm{\top}=x \Rightarrow \top=\top$ and $\top \rightarrow x=\top \Rightarrow x=x$.
(5) $x \odot y \leq x \wedge y$.
(6) $x \odot\left(\bigvee_{i \in \Gamma} y_{i}\right)=\bigvee_{i \in \Gamma}\left(x \odot y_{i}\right)$ and $\left(\bigvee_{i \in \Gamma} x_{i}\right) \odot y=\bigvee_{i \in \Gamma}\left(x_{i} \odot y\right)$.
(7) $x \rightarrow\left(\bigwedge_{i \in \Gamma} y_{i}\right)=\bigwedge_{i \in \Gamma}\left(x \rightarrow y_{i}\right)$ and $\left(\bigvee_{i \in \Gamma} x_{i}\right) \rightarrow y=\bigwedge_{i \in \Gamma}\left(x_{i} \rightarrow y\right)$.
(8) $x \Rightarrow\left(\bigwedge_{i \in \Gamma} y_{i}\right)=\bigwedge_{i \in \Gamma}\left(x \Rightarrow y_{i}\right)$ and $\left(\bigvee_{i \in \Gamma} x_{i}\right) \Rightarrow y=\bigwedge_{i \in \Gamma}\left(x_{i} \Rightarrow y\right)$.
(9) $x \odot(x \Rightarrow y) \leq y$ and $(x \rightarrow y) \odot x \leq y$.
(10) $(x \Rightarrow y) \odot(y \Rightarrow z) \leq(x \Rightarrow z)$ and $(y \rightarrow z) \odot(x \rightarrow y) \leq(x \rightarrow z)$.
(11) $x \Rightarrow y \leq(y \Rightarrow z) \rightarrow(x \Rightarrow z)$ and $x \rightarrow y \leq(y \rightarrow z) \Rightarrow(x \rightarrow z)$
(12) $\bigwedge_{i \in \Gamma} x_{i}^{*}=\left(\bigvee_{i \in \Gamma} x_{i}\right)^{*}$ and $\bigvee_{i \in \Gamma} x_{i}^{*}=\left(\bigwedge_{i \in \Gamma} x_{i}\right)^{*}$.
(13) $\bigwedge_{i \in \Gamma} x_{i}^{0}=\left(\bigvee_{i \in \Gamma} x_{i}\right)^{0}$ and $\bigvee_{i \in \Gamma} x_{i}^{0}=\left(\bigwedge_{i \in \Gamma} x_{i}\right)^{0}$.
(14) $(x \odot y) \rightarrow z=x \rightarrow(y \rightarrow z)$ and $(x \odot y)^{0}=x \rightarrow y^{0}$.
(15) $(x \odot y) \Rightarrow z=y \Rightarrow(x \Rightarrow z)$ and $(x \odot y)^{*}=y \Rightarrow x^{*}$.
(16) $x \rightarrow(y \Rightarrow z)=y \Rightarrow(x \rightarrow z)$ and $x \Rightarrow(y \rightarrow z)=y \rightarrow(x \Rightarrow z)$.

Proof. (1)-(13) are proved in $[6,9]$.
(14) Since $((x \odot y) \rightarrow z) \odot(x \odot y) \leq z$, we have $(x \odot y) \rightarrow z \leq x \rightarrow(y \rightarrow z)$. Since $(x \rightarrow(y \rightarrow z)) \odot(x \odot y) \leq(y \rightarrow z) \odot y \leq z$, we have $x \rightarrow(y \rightarrow z) \leq$ $(x \odot y) \rightarrow z$.
(16) Since $(y \odot(x \rightarrow(y \Rightarrow z))) \odot x=y \odot((x \rightarrow(y \Rightarrow z)) \odot x) \leq y \odot(y \Rightarrow$ $z) \leq z$, then $x \rightarrow(y \Rightarrow z) \leq y \Rightarrow(x \rightarrow z)$.

Since $y \odot((y \Rightarrow(x \rightarrow z)) \odot x)=(y \odot(y \Rightarrow(x \rightarrow z))) \odot x=(x \rightarrow$ $z) \odot x \leq z$, then $y \Rightarrow(x \rightarrow z) \leq x \rightarrow(y \Rightarrow z)$.
(15) and other cases are similarly proved.

3 Fuzzy consequence operators

Definition 3.1 Let $R \in L^{X \times X}$ be a fuzzy relation. Define mappings $I^{R}, I_{R}, C^{R}, C_{R}: L^{X} \rightarrow L^{X}$ as follows:

$$
\begin{gathered}
I_{R}(A)(x)=\bigwedge_{y}(R(x, y) \Rightarrow A(y)) I^{R}(A)(x)=\bigwedge_{y}(R(x, y) \rightarrow A(y)) . \\
C_{R}(A)(x)=\bigvee_{y}(A(y) \odot R(y, x)) C^{R}(x)=\bigvee_{y}(R(y, x) \odot A(y)) .
\end{gathered}
$$

Definition 3.2 (1) An operator $C: L^{X} \rightarrow L^{X}$ is called right \odot-coherent if

$$
A(y) \odot C\left(\top_{y}\right)(x) \leq C(A)(x)
$$

(2) An operator $C: L^{X} \rightarrow L^{X}$ is called left \odot-coherent if

$$
C\left(\top_{y}\right)(x) \odot A(y) \leq C(A)(x) .
$$

Lemma 3.3 Let $R \in L^{X \times X}$ be a fuzzy relation. Define

$$
R \circ R(x, z)=\bigvee_{y}(R(x, y) \odot R(y, z)), \quad R^{-1}(x, y)=R(y, x)
$$

(1) If R be a right \odot-preorder, then R^{-1} be a left \odot-preorder.
(2) R is a right \odot-preorder on X iff $R \circ R=R$ and $R(x, x)=\top$.
(3) R is a left \odot-preorder on X iff $R^{-1} \circ R^{-1}=R^{-1}$ and $R(x, x)=\mathrm{T}$.

Proof (1), (2) and (3) are easily proved from:

$$
\begin{aligned}
R(x, z) & =R(x, x) \odot R(x, z) \leq R \circ R(x, z)=\bigvee_{y}(R(x, y) \odot R(y, z)) \\
& \leq R(x, z) \\
R^{-1}(x, z) & =R^{-1}(x, x) \odot R^{-1}(x, z) \leq R^{-1} \circ R^{-1}(x, z) \\
& =\bigvee_{y}\left(R^{-1}(x, y) \odot R^{-1}(y, z)\right)=\bigvee_{y}(R(y, x) \odot R(z, y)) \\
& \leq R(z, x)=R^{-1}(x, z) .
\end{aligned}
$$

Theorem 3.4 $I_{R}\left(A^{*}\right)=\left(C_{R^{-1}}(A)\right)^{*}$ and $I^{R}\left(A^{0}\right)=\left(C^{R^{-1}}(A)\right)^{0}$.
Proof (1)

$$
\begin{aligned}
& I_{R}\left(A^{*}\right)(x)=\wedge_{y}\left(R(x, y) \Rightarrow A^{*}(y)\right) \\
& =\left(\bigvee_{y}(A(y) \odot R(x, y))^{*}=\left(C_{R^{-1}}(A)\right)^{*} .\right.
\end{aligned}
$$

$$
\begin{align*}
& I^{R}\left(A^{0}\right)(x)=\wedge_{y}\left(R(x, y) \rightarrow A^{0}(y)\right) \tag{2}\\
& =\left(\bigvee_{y}(R(x, y) \odot A(y))^{0}=\left(C^{R^{-1}}(A)\right)^{0} .\right.
\end{align*}
$$

Theorem 3.5 (1) Let $C: L^{X} \rightarrow L^{X}$ be a right \odot-coherent fuzzy consequence operator and R_{C} defined by

$$
R_{C}(x, y)=C\left(\top_{x}\right)(y)
$$

Then R_{C} is a right \odot-preorder on X and $C_{R_{C}}(A) \leq C(A)$ for all $A \in L^{X}$ with $C_{R_{C}}\left(\top_{x}\right)(y)=R_{C}(x, y)=C\left(\top_{x}\right)(y)$.
(2) Let $C: L^{X} \rightarrow L^{X}$ be a left \odot-coherent fuzzy consequence operator and R_{C} defined by

$$
R_{C}(x, y)=C\left(\top_{x}\right)(y)
$$

Then R_{C} is a left \odot-preorder on X and $C_{R_{C}}(A) \leq C(A)$ for all $A \in L^{X}$ with $C_{R_{C}}\left(\top_{x}\right)(y)=R_{C}(x, y)=C\left(\top_{x}\right)(y)$.

Proof (1) Since $C: L^{X} \rightarrow L^{X}$ is right \odot-coherent, $C\left(\top_{x}\right)(y) \odot C\left(\top_{y}\right)(z) \leq$ $C\left(C\left(\top_{x}\right)\right)(z)$. Thus, R_{C} is a right \odot-preorder on X from: $R_{C}(x, x)=C\left(\top_{x}\right)(x) \geq$ $\mathrm{T}_{x}(x)=\mathrm{T}$ and

$$
\begin{aligned}
& R_{C}(x, y) \odot R_{C}(y, z)=C\left(\top_{x}\right)(y) \odot C\left(\top_{y}\right)(z) \\
& \leq C\left(C\left(\top_{x}\right)\right)(z)=C\left(\top_{x}\right)(z)=R_{C}(x, z) . \\
& C_{R_{C}}(A)(x)=\bigvee_{y}\left(A(y) \odot R_{C}(y, x)\right) \\
& =\bigvee_{y}\left(A(y) \odot C\left(\top_{y}\right)(x)\right) \leq C(A)(x) .
\end{aligned}
$$

Moreover, $C_{R_{C}}\left(\top_{x}\right)(y)=R_{C}(x, y)=C\left(\top_{x}\right)(y)$.
(2) Since $C: L^{X} \rightarrow L^{X}$ is left \odot-coherent, $C\left(\top_{y}\right)(z) \odot C\left(\top_{x}\right)(y) \leq$ $C\left(C\left(\top_{x}\right)\right)(z)$. Thus, R_{C} is a left \odot-preorder on X from:

$$
\begin{aligned}
& R_{C}(y, z) \odot R_{C}(x, y)=C\left(\top_{y}\right)(z) \odot C\left(\top_{x}\right)(y) \\
& \leq C\left(C\left(\top_{x}\right)\right)(z)=C\left(\top_{x}\right)(z)=R_{C}(x, z) .
\end{aligned}
$$

Other cases are proved as a similar method in (1).

Theorem 3.6 Let $R \in L^{X \times X}$ be a fuzzy relation.
(1) C_{R} is a right \odot-coherent operator. Moreover, R is a right \odot-preorder iff C_{R} is a fuzzy consequence operator with $R_{C_{R}}=R$.
(2) C^{R} is a left \odot-coherent operator. Moreover, R is a left \odot-preorder iff C^{R} is a fuzzy consequence operator with $R_{C^{R}}=R$.

Proof (1) Since $C_{R}\left(\top_{x}\right)(y)=\bigvee_{z}\left(\top_{x}(z) \odot R(z, y)\right)=R(x, y)$, we have

$$
\begin{aligned}
C_{R}(A)(x) & =\bigvee_{y}(A(y) \odot R(y, x))=\bigvee_{y}\left(A(y) \odot C_{R}\left(\top_{y}\right)(x)\right) \\
& \geq A(y) \odot C_{R}\left(\top_{y}\right)(x) .
\end{aligned}
$$

Thus C_{R} is a right \odot-coherent operator. Let R be a right \odot-preorder. Then C_{R} is a fuzzy consequence operator from:

$$
\begin{aligned}
C_{R}(A)(x) & =\bigvee_{y}(A(y) \odot R(y, x)) \geq A(x) \odot R(x, x)=A(x) . \\
C_{R}\left(C_{R}(A)\right)(x) & =\bigvee_{y}\left(C_{R}(A)(y) \odot R(y, x)\right) \\
& =\bigvee_{y}\left(\bigvee_{w}(A(w) \odot R(w, y)) \odot R(y, x)\right) \\
& \leq \bigvee_{w}(A(w) \odot R(w, x))=C_{R}(A)(x) .
\end{aligned}
$$

Moreover, $R_{C_{R}}(x, y)=C_{R}\left(\top_{x}\right)(y)=\bigvee_{z}\left(\top_{x}(z) \odot R(z, y)\right)=R(x, y)$.
Conversely, since C_{R} is a right \odot-coherent fuzzy consequence operator operator, by Theorem 3.5(1), $R_{C_{R}}=R$ is a right \odot-preorder.
(2) Since $C^{R}\left(\top_{x}\right)(y)=\bigvee_{z}\left(R(z, y) \odot \top_{x}(z)\right)=R(x, y)$, we have
$C^{R}(A)(x)=\bigvee_{y}(R(y, x) \odot A(y))=\bigvee_{y}\left(C_{R}\left(\top_{y}\right)(x) \odot A(y)\right) \geq C_{R}\left(\top_{y}\right)(x) \odot A(y)$.
Hence C^{R} is a left \odot-coherent operator. Other cases are proved as a similar method in (1).

Theorem 3.7 (1) If $C: L^{X} \rightarrow L^{X}$ is an operator with $C(A) \leq C(B)$ for $A \leq B$ and $\alpha \odot C(A) \leq C(\alpha \odot A)$ for $\alpha \in L$, then C is a right \odot-coherent operator.
(2) If $C: L^{X} \rightarrow L^{X}$ is an operator with $C(A) \leq C(B)$ for $A \leq B$ and $C(A) \odot \alpha \leq C(A \odot \alpha)$ for $\alpha \in L$, then C is a left \odot-coherent operator.

Proof (1) Since $A=\bigvee_{x}\left(A(y) \odot \mathrm{T}_{y}\right)$, we have

$$
\begin{aligned}
C(A)(x) & =C\left(\bigvee_{y}\left(A(y) \odot \top_{y}\right)\right)(x) \geq \bigvee_{y} C\left(A(y) \odot \top_{y}\right)(x) \\
& \geq \bigvee_{y}\left(A(y) \odot C\left(\top_{y}\right)(x)\right) .
\end{aligned}
$$

Thus C is a right \odot-coherent operator.
(2) Since $A=\bigvee_{x}\left(\top_{y} \odot A(y)\right)$, we have

$$
\begin{aligned}
C(A)(x) & =C\left(\bigvee_{y}\left(\top_{y} \odot A(y)\right)\right)(x) \geq \bigvee_{y} C\left(\top_{y} \odot A(y)\right)(x) \\
& \geq \bigvee_{y}\left(C\left(\top_{y}\right)(x) \odot A(y)\right) .
\end{aligned}
$$

Thus C is a left \odot-coherent operator.

Theorem 3.8 Let $R \in L^{X \times X}$ be a fuzzy relation. Define $\phi_{R}: L^{X} \rightarrow L^{X}$ as

$$
\phi_{R}(A)(x)=I_{R}\left(C^{R}(A)\right)(x)=\bigwedge_{w}\left(R(x, w) \Rightarrow \bigvee_{y}(R(y, w) \odot A(y))\right) .
$$

Then the following properties:
(1) ϕ_{R} is a left \odot-coherent operator.
(2) If R is a left \odot-preorder, then ϕ_{R} is a fuzzy consequence operator with a left $\odot-$ preorder as follows

$$
R_{\phi_{R}}(y, x)=\phi_{R}\left(\top_{y}\right)(x)=\bigwedge_{w}(R(x, w) \Rightarrow R(y, w)) .
$$

(3) R is a reflexive relation iff $R_{\phi_{R}} \leq R$ or $\phi_{R} \leq C^{R}$.
(4) R is a left \odot-preorder iff $R_{\phi_{R}}=R$ or $\phi_{R}=C^{R}$.

Proof (1) ϕ_{R} is a left \odot-coherent operator from:

$$
\begin{aligned}
\phi_{R}\left(\top_{y}\right)(x) \odot A(y) & =\bigwedge_{w}\left(R(x, w) \Rightarrow \bigvee_{y}\left(R(y, w) \odot \top_{y}(y)\right)\right) \odot A(y) \\
& \left.=\bigwedge_{w}(R(x, w) \Rightarrow R(y, w))\right) \odot A(y) \\
& \leq \bigwedge_{w}(R(x, w) \Rightarrow R(y, w) \odot A(y)) \\
& \leq \bigwedge_{w}\left(R(x, w) \Rightarrow C^{R}(A)(w)\right) \\
& =\phi_{R}(A)(x)
\end{aligned}
$$

(2)

$$
\begin{aligned}
\phi_{R}(A)(x) & =I_{R}\left(C^{R}(A)\right)(x) \\
& =\bigwedge_{w}\left(R(x, w) \Rightarrow \bigvee_{y}(R(y, w) \odot A(y))\right) \\
& =\bigwedge_{w}(R(x, w) \Rightarrow(R(x, w) \odot A(x))) \geq A(x) .
\end{aligned}
$$

Thus, $\phi_{R}\left(\phi_{R}(A)\right) \geq \phi_{R}(A)$, for all $A \in L^{X}$. Since R is left \odot - preorder, $I_{R}(A) \leq A \leq C_{R}(A)$ and $I_{R}\left(C^{R}(A)\right) \leq C^{R}(A)$ implies $C^{R}\left(I_{R}\left(C^{R}(A)\right)\right) \leq$ $C^{R}\left(C^{R}(A)\right)=C^{R}(A)$. Thus $\phi_{R}\left(\phi_{R}(A)\right)=\phi_{R}(A)$. Moreover,

$$
R_{\phi_{R}}(y, x)=\phi_{R}\left(\top_{y}\right)(x)=\bigwedge_{w}(R(x, w) \Rightarrow R(y, w))
$$

(3) Since R is reflexive, $R_{\phi_{R}} \leq R$ and $\phi_{R} \leq C^{R}$ from

$$
\begin{aligned}
R_{\phi_{R}}(y, x) & =\phi_{R}\left(\top_{y}\right)(x)=\bigwedge_{w}(R(x, w) \Rightarrow R(y, w)) \\
& \leq R(x, x) \Rightarrow R(y, x)=R(y, x) \\
\phi_{R}(A)(x) & =I_{R}\left(C^{R}(A)\right)(x)=\bigwedge_{w}\left(R(x, w) \Rightarrow \bigvee_{y}(R(y, w) \odot A(y))\right) \\
& \leq R(x, x) \Rightarrow \bigvee_{y}(R(y, x) \odot A(y))=C^{R}(A)(x) .
\end{aligned}
$$

Conversely,

$$
\begin{aligned}
R_{\phi_{R}}(x, x) & =\phi_{R}\left(\top_{x}\right)(x)=\wedge_{w}(R(x, w) \Rightarrow R(x, w))=\top \\
& \leq C^{R}\left(\top_{x}\right)(x)=R(x, x) .
\end{aligned}
$$

(4) Since $R(x, w) \odot R(y, x) \leq R(y, w)$ iff $R(y, x) \leq R(x, w) \Rightarrow R(y, w)$, we have $R \leq R_{\phi_{R}}$. Hence $R=R_{\phi_{R}}$.

Since R is left \odot-transitive, we have

$$
\begin{aligned}
& R(w, y) \odot R(x, w) \odot A(x) \leq R(x, y) \odot A(x) \\
& R(x, w) \odot A(x) \leq R(w, y) \Rightarrow R(x, y) \odot A(x)
\end{aligned}
$$

Thus, $C^{R}(A) \leq \phi_{R}(A)$.
Conversely,

$$
R_{\phi_{R}}(y, x)=\phi_{R}\left(\top_{y}\right)(x)=\bigwedge_{w}(R(x, w) \Rightarrow R(y, w)) \geq R(y, x)=C^{R}\left(\top_{y}\right)(x) .
$$

Thus $R(x, w) \odot R(y, x) \leq R(y, w)$ for all $x, y, w \in X$;i.e. R is left \odot-transitive.

Theorem 3.9 Let $R \in L^{X \times X}$ be a fuzzy relation. Define $\phi^{R}: L^{X} \rightarrow L^{X}$ as

$$
\phi^{R}(A)(x)=I^{R}\left(C_{R}(A)\right)(x)=\bigwedge_{w}\left(R(x, w) \rightarrow \bigvee_{y}(A(y) \odot R(y, w))\right) .
$$

Then the following properties:
(1) ϕ^{R} is a right \odot-coherent operator.
(2) If R is a right \odot-preorder, then ϕ^{R} is a fuzzy consequence operator with a right \odot-preorder $R_{\phi^{R}}$ as follows

$$
R_{\phi^{R}}(y, x)=\phi^{R}\left(\top_{y}\right)(x)=\bigwedge_{w}(R(x, w) \rightarrow R(y, w)) .
$$

(3) R is a reflexive relation iff $R_{\phi^{R}} \leq R$ or $\phi^{R} \leq C_{R}$.
(4) R is a right \odot-preorder iff $R_{\phi^{R}}=R$ or $\phi^{R}=C_{R}$.

Proof (1) Since $(b \odot(a \rightarrow c)) \odot a=b \odot((a \rightarrow c) \odot a) \leq b \odot c$, we have $b \odot(a \rightarrow c) \leq a \rightarrow b \odot c$.

$$
\begin{aligned}
& \phi^{R}(A)(x)=I^{R}\left(C_{R}(A)\right)(x)=\bigwedge_{w}\left(R(x, w) \rightarrow \bigvee_{y}(A(y) \odot R(y, w))\right) . \\
& \phi^{R}(\alpha \odot A)(x)=I^{R}\left(C_{R}(\alpha \odot A)\right)(x) \\
&=\bigwedge_{w}\left(R(x, w) \rightarrow \bigvee_{y}(\alpha \odot A(y) \odot R(y, w))\right) \\
&=\bigwedge_{w} \bigvee_{y}(R(x, w) \rightarrow(\alpha \odot A(y) \odot R(y, w))) \\
& \geq \bigwedge_{w} \bigvee_{y}(\alpha \odot(R(x, w) \rightarrow(A(y) \odot R(y, w)))) \\
& \geq \bigwedge_{w}\left(\alpha \odot \bigvee_{y}(R(x, w) \rightarrow(A(y) \odot R(y, w)))\right) \\
& \geq \alpha \odot \bigwedge_{w}\left(R(x, w) \rightarrow \bigvee_{y}(A(y) \odot R(y, w))\right) \\
&=\alpha \odot \phi^{R}(A)(x) .
\end{aligned}
$$

(2)

$$
\begin{aligned}
\phi^{R}(A)(x) & =I^{R}\left(C_{R}(A)\right)(x)=\bigwedge_{w}\left(R(x, w) \rightarrow \bigvee_{y}(A(y) \odot R(y, w))\right) \\
& \geq \bigwedge_{w}(R(x, w) \rightarrow(A(x) \odot R(x, w))) \geq A(x)
\end{aligned}
$$

Thus, $\phi_{R}\left(\phi_{R}(A)\right) \geq \phi_{R}(A)$, for all $A \in L^{X}$. Since R is a right $\odot-$ preorder, $I^{R}(A) \leq A \leq C_{R}(A)$ and $I^{R}\left(C_{R}(A)\right) \leq C_{R}(A)$ implies $C_{R}\left(I^{R}\left(C_{R}(A)\right)\right) \leq$ $C_{R}\left(C_{R}(A)\right)=C_{R}(A)$. Thus $\phi^{R}\left(\phi^{R}(A)\right)=\phi^{R}(A)$. Moreover,

$$
R_{\phi^{R}}(y, x)=\phi^{R}\left(\top_{y}\right)(x)=\bigwedge_{w}(R(x, w) \rightarrow R(y, w)) .
$$

(3) Since R is reflexive, $R_{\phi^{R}} \leq R$ and $\phi^{R} \leq C_{R}$ from

$$
\begin{aligned}
R_{\phi^{R}}(y, x) & =\phi^{R}\left(\top_{y}\right)(x)=\bigwedge_{w}(R(x, w) \rightarrow R(y, w)) \\
& \leq R(x, x) \rightarrow R(y, x)=R(y, x) \\
\phi^{R}(A)(x) & =I^{R}\left(C_{R}(A)\right)(x)=\bigwedge_{w}\left(R(x, w) \rightarrow \bigvee_{y}(A(y) \odot R(y, w))\right) \\
& \leq R(x, x) \rightarrow \bigvee_{y}(A(y) \odot R(y, x))=C_{R}(A)(x) .
\end{aligned}
$$

Conversely,

$$
\begin{aligned}
R_{\phi^{R}}(x, x) & =\phi^{R}\left(\top_{x}\right)(x)=\bigwedge_{w}(R(x, w) \rightarrow R(x, w))=\top \\
& \leq C_{R}\left(\top_{x}\right)(x)=R(x, x) .
\end{aligned}
$$

(4) Since $R(x, y) \odot R(y, z) \leq R(x, z)$ iff $R(x, y) \leq R(y, z) \rightarrow R(x, z)$, we have $R \leq R_{\phi^{R}}$. Hence $R=R_{\phi^{R}}$.

Since R is right \odot-transitive, we have

$$
A(x) \odot R(x, y) \odot R(y, z) \leq A(x) \odot R(x, z)
$$

$$
A(x) \odot R(x, y) \leq R(y, z) \rightarrow A(x) \odot R(x, z)
$$

Thus, $C_{R}(A) \leq \phi^{R}(A)$.
Conversely,

$$
R_{\phi^{R}}(y, x)=\phi^{R}\left(\top_{y}\right)(x)=\bigwedge_{w}(R(x, w) \rightarrow R(y, w)) \geq R(y, x)=C_{R}\left(\top_{y}\right)(x) .
$$

Thus $R(y, x) \odot R(x, w) \leq R(y, w)$ for all $x, y, w \in X$;i.e. R is right \odot-transitive.

Definition 3.10 Let $R \in L^{X \times Y}$ be a fuzzy relation. Define mappings $R_{\uparrow}, R_{\Uparrow}: L^{X} \rightarrow L^{Y}$ and $R^{\uparrow}, R^{\Uparrow}: L^{Y} \rightarrow L^{X}$ as follows:

$$
\begin{aligned}
& R_{\uparrow}(A)(x)=\bigwedge_{y}(A(x) \rightarrow R(x, y)) \quad R_{\Uparrow}(A)(x)=\bigwedge_{y}(A(x) \Rightarrow R(x, y)), \\
& R^{\downarrow}(B)(y)=\bigwedge_{x}(B(y) \rightarrow R(x, y)) \quad R^{\Downarrow}(B)(y)=\bigwedge_{y}(B(y) \Rightarrow R(x, y)) .
\end{aligned}
$$

Theorem 3.11 Let $R \in L^{X \times Y}$ be a fuzzy relation. Define $\eta_{R}: L^{X} \rightarrow L^{X}$ as

$$
\eta_{R}(A)(x)=R^{\downarrow}\left(R_{\Uparrow}(A)\right)(x)=\bigwedge_{y}\left(\left(\bigwedge_{w} A(w) \Rightarrow R(w, y)\right) \rightarrow R(x, y)\right) .
$$

Then the following properties:
(1) η_{R} is a left \odot-coherent operator.
(2) η_{R} is a fuzzy consequence operator with a left \odot-preorder as follows

$$
R_{\eta_{R}}(z, x)=\eta_{R}\left(\top_{z}\right)(x)=\bigwedge_{w}(R(z, y) \rightarrow R(x, y)) .
$$

(3) If $R \in L^{X \times X}$, then R is a reflexive relation iff $R_{\eta_{R}}^{-1} \leq R$.
(4) If $R \in L^{X \times X}$, then R is a right \odot-preorder iff $R_{\eta_{R}}^{-1}=R$.

Proof (1) Since $((b \rightarrow a) \odot c) \odot(c \Rightarrow b)=(b \rightarrow a) \odot(c \odot(c \Rightarrow b)) \leq(b \rightarrow$ $a) \odot b \leq a$, we have $(b \rightarrow a) \odot c \leq(c \Rightarrow b) \rightarrow a$. It follows

$$
\begin{aligned}
\eta_{R}\left(\top_{z}\right)(x) \odot A(z) & =\bigwedge_{y}\left(\left(\bigwedge_{w} \top_{z}(w) \Rightarrow R(w, y)\right) \rightarrow R(x, y)\right) \odot A(z) \\
& =\bigwedge_{y}((R(z, y) \rightarrow R(x, y)) \odot A(z) \\
& \leq \bigwedge_{y}((R(z, y) \rightarrow R(x, y)) \odot A(z)) \text { (by Lemma 2.4(2)) } \\
& \leq \bigwedge_{y}((A(z) \Rightarrow R(z, y)) \rightarrow R(x, y))(\text { by above equality) } \\
& \leq \bigwedge_{y}\left(\bigwedge_{z}(A(z) \Rightarrow R(z, y)) \rightarrow R(x, y)\right) \\
& =\eta_{R}(A)(x) .
\end{aligned}
$$

Hence η_{R} is a left \odot-coherent operator.

$$
\begin{align*}
\eta_{R}(A)(x) & =\bigwedge_{y}\left(\left(\bigwedge_{w} A(w) \Rightarrow R(w, y)\right) \rightarrow R(x, y)\right) \tag{2}\\
& \geq \bigwedge_{y}((A(x) \Rightarrow R(x, y)) \rightarrow R(x, y)) \geq A(x)
\end{align*}
$$

Thus, $R^{\downarrow}\left(R_{\Uparrow}(A)\right) \geq A$ implies $R_{\Uparrow}\left(R^{\downarrow}\left(R_{\Uparrow}(A)\right)\right) \leq R_{\Uparrow}(A)$. Similarly,

$$
\begin{aligned}
R_{\Uparrow}\left(R^{\downarrow}(B)\right)(y) & =\bigwedge_{y}\left(\left(\bigwedge_{w} B(w) \rightarrow R(x, w)\right) \Rightarrow R(x, y)\right) \\
& =\bigwedge_{y}((B(y) \rightarrow R(x, y)) \Rightarrow R(x, y)) \geq B(y)
\end{aligned}
$$

Hence, $R_{\Uparrow}\left(R^{\downarrow}\left(R_{\Uparrow}(A)\right)\right) \geq R_{\Uparrow}(A)$. Thus, $\eta_{R}\left(\eta_{R}(A)\right)=\eta_{R}(A)$, for all $A \in L^{X}$. Moreover,

$$
R_{\eta_{R}}(z, x)=\eta_{R}\left(\top_{z}\right)(x)=\bigwedge_{w}(R(z, y) \rightarrow R(x, y)) .
$$

(3) Since R is reflexive, $R_{\eta_{R}}^{-1} \leq R$ from

$$
\begin{aligned}
R_{\eta_{R}}(z, x) & =\eta_{R}\left(\top_{z}\right)(x)=\wedge_{w}(R(z, w) \rightarrow R(x, w)) \\
& \leq R(z, z) \rightarrow R(x, z)=R(x, z) .
\end{aligned}
$$

Conversely,

$$
\begin{aligned}
R_{\eta_{R}}(x, x) & =\eta_{R}\left(\top_{x}\right)(x)=\bigwedge_{w}(R(x, w) \rightarrow R(x, w))=\top \\
& \leq R(x, x) .
\end{aligned}
$$

(4) Since $R(z, x) \odot R(x, y) \leq R(z, y)$ iff $R(z, x) \leq R(x, y) \rightarrow R(z, y)$, we have $R(z, x) \leq R_{\eta_{R}}^{-1}(z, x)$. Hence $R=R_{\eta_{R}}^{-1}$.

Conversely,

$$
R_{\eta_{R}}(z, x)=\eta_{R}\left(\top_{z}\right)(x)=\bigwedge_{w}(R(z, w) \rightarrow R(x, w)) \geq R(x, z) .
$$

Thus $R(x, z) \odot R(z, w) \leq R(x, w)$ for all $x, y, w \in X$;i.e. R is right \odot-transitive.

Theorem 3.12 Let $R \in L^{X \times Y}$ be a fuzzy relation. Define $\eta^{R}: L^{X} \rightarrow L^{X}$ as

$$
\eta^{R}(A)(x)=R^{\Downarrow}\left(R_{\uparrow}(A)\right)(x)=\bigwedge_{y}\left(\left(\bigwedge_{w} A(w) \rightarrow R(w, y)\right) \Rightarrow R(x, y)\right) .
$$

Then the following properties:
(1) η^{R} is a right \odot-coherent operator.
(2) η^{R} is a fuzzy consequence operator with a right \odot-preorder as follows

$$
R_{\eta^{R}}(z, x)=\eta^{R}\left(\top_{z}\right)(x)=\bigwedge_{w}(R(z, y) \Rightarrow R(x, y)) .
$$

(3) If $R \in L^{X \times X}$, then R is a reflexive relation iff $R_{\eta^{R}}^{-1} \leq R$.
(4) If $R \in L^{X \times X}$, then R is a left \odot-preorder iff $R_{\eta^{R}}^{-1}=R$.

Proof (1) Since $(a \rightarrow b) \odot(a \odot(b \Rightarrow c))=((a \rightarrow b) \odot a) \odot(b \Rightarrow c) \leq$ $b \odot(b \Rightarrow c) \leq c$, we have $a \odot(b \Rightarrow c) \leq(c \Rightarrow b) \rightarrow a$. It follows

$$
\begin{aligned}
A(z) \odot \eta^{R}\left(\top_{z}\right)(x) & =A(z) \odot \bigwedge_{y}\left(\left(\bigwedge_{w} \top_{z}(w) \rightarrow R(w, y)\right) \Rightarrow R(x, y)\right) \\
& =A(z) \odot \bigwedge_{y}(R(z, y) \Rightarrow R(x, y)) \\
& \leq \bigwedge_{y}(A(z) \odot(R(z, y) \Rightarrow R(x, y)))(\text { by Lemma 2.4(2)) } \\
& \leq \bigwedge_{y}((A(z) \rightarrow R(z, y)) \Rightarrow R(x, y)) \text { (by above equality) } \\
& \leq \bigwedge_{y}\left(\wedge_{z}(A(z) \rightarrow R(z, y)) \Rightarrow R(x, y)\right) \\
& =\eta^{R}(A)(x) .
\end{aligned}
$$

Hence η^{R} is a right \odot-coherent operator.
(2)

$$
\begin{aligned}
\eta^{R}(A)(x) & =\bigwedge_{y}\left(\left(\bigwedge_{w} A(w) \rightarrow R(w, y)\right) \Rightarrow R(x, y)\right) \\
& =\bigwedge_{y}((A(x) \rightarrow R(x, y)) \Rightarrow R(x, y)) \geq A(x)
\end{aligned}
$$

Thus, $R_{\uparrow}\left(R^{\Downarrow}\left(R_{\uparrow}(A)\right)\right) \leq R_{\uparrow}(A)$. Similarly,

$$
\begin{aligned}
R_{\uparrow}\left(R^{\Downarrow}(B)\right)(y) & =\bigwedge_{y}\left(\left(\bigwedge_{w} B(w) \Rightarrow R(x, w)\right) \rightarrow R(x, y)\right) \\
& =\bigwedge_{y}((B(y) \Rightarrow R(x, y)) \rightarrow R(x, y)) \geq B(y) .
\end{aligned}
$$

Hence, $R_{\uparrow}\left(R^{\Downarrow}\left(R_{\uparrow}(A)\right)\right) \geq R_{\uparrow}(A)$. Thus, $\eta^{R}\left(\eta^{R}(A)\right)=\eta^{R}(A)$, for all $A \in L^{X}$. Moreover,

$$
R_{\eta^{R}}(z, x)=\eta^{R}\left(\top_{z}\right)(x)=\bigwedge_{w}(R(z, y) \Rightarrow R(x, y)) .
$$

(3) Since R is reflexive, $R_{\eta^{R}}^{-1} \leq R$ from

$$
\begin{aligned}
R_{\eta^{R}}(z, x) & =\eta_{R}\left(\top_{z}\right)(x)=\wedge_{w}(R(z, w) \Rightarrow R(x, w)) \\
& \leq R(z, z) \Rightarrow R(x, z)=R(x, z) .
\end{aligned}
$$

Conversely,

$$
\begin{aligned}
R_{\eta^{R}}(x, x) & =\eta^{R}\left(\top_{x}\right)(x)=\bigwedge_{w}(R(x, w) \Rightarrow R(x, w))=\top \\
& \leq R(x, x) .
\end{aligned}
$$

(4) Since $R(x, y) \odot R(z, x) \leq R(z, y)$ iff $R(z, x) \leq R(x, y) \Rightarrow R(z, y)$, we have $R(z, x) \leq R_{\eta^{R}}^{-1}(z, x)$. Hence $R=R_{\eta^{R}}^{-1}$.

Conversely,

$$
R_{\eta^{R}}(z, x)=\eta^{R}\left(\top_{z}\right)(x)=\bigwedge_{w}(R(z, w) \Rightarrow R(x, w)) \geq R(x, z)
$$

Thus $R(z, w) \odot R(x, z) \leq R(x, w)$ for all $x, y, w \in X$;i.e. R is left \odot-transitive.

Example 3.13 Let $K=\left\{(x, y) \in R^{2} \mid x>0\right\}$ be a set and we define an operation $\otimes: K \times K \rightarrow K$ as follows:

$$
\left(x_{1}, y_{1}\right) \otimes\left(x_{2}, y_{2}\right)=\left(x_{1} x_{2}, x_{1} y_{2}+y_{1}\right) .
$$

Then (K, \otimes) is a group with $e=(1,0),(x, y)^{-1}=\left(\frac{1}{x},-\frac{y}{x}\right)$.
We have a positive cone $P=\left\{(a, b) \in R^{2} \mid a=1, b \geq 0\right.$, or $\left.a>1\right\}$ because $P \cap P^{-1}=\{(1,0)\}, P \odot P \subset P,(a, b)^{-1} \odot P \odot(a, b)=P$ and $P \cup P^{-1}=K$. For $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in K$, we define

$$
\begin{aligned}
\left(x_{1}, y_{1}\right) \leq\left(x_{2}, y_{2}\right) & \Leftrightarrow\left(x_{1}, y_{1}\right)^{-1} \odot\left(x_{2}, y_{2}\right) \in P,\left(x_{2}, y_{2}\right) \odot\left(x_{1}, y_{1}\right)^{-1} \in P \\
& \Leftrightarrow x_{1}<x_{2} \text { or } x_{1}=x_{2}, y_{1} \leq y_{2} .
\end{aligned}
$$

Then $(K, \leq \otimes)$ is a lattice-group. (ref. [1])
For $L \subset K$, the structure $\left(L, \odot, \Rightarrow, \rightarrow,\left(\frac{1}{2}, 1\right),(1,0)\right)$ is a generalized residuated lattice with strong negation where $\perp=\left(\frac{1}{2}, 1\right)$ is the least element and $\top=(1,0)$ is the greatest element from the following statements:

$$
\begin{aligned}
& \left(x_{1}, y_{1}\right) \odot\left(x_{2}, y_{2}\right)=\left(x_{1}, y_{1}\right) \otimes\left(x_{2}, y_{2}\right) \vee\left(\frac{1}{2}, 1\right)=\left(x_{1} x_{2}, x_{1} y_{2}+y_{1}\right) \vee\left(\frac{1}{2}, 1\right), \\
& \left(x_{1}, y_{1}\right) \Rightarrow\left(x_{2}, y_{2}\right)=\left(\left(x_{1}, y_{1}\right)^{-1} \otimes\left(x_{2}, y_{2}\right)\right) \wedge(1,0)=\left(\frac{x_{2}}{x_{1}}, \frac{y_{2}-y_{1}}{x_{1}}\right) \wedge(1,0), \\
& \left(x_{1}, y_{1}\right) \rightarrow\left(x_{2}, y_{2}\right)=\left(\left(x_{2}, y_{2}\right) \otimes\left(x_{1}, y_{1}\right)^{-1}\right) \wedge(1,0)=\left(\frac{x_{2}}{x_{1}},-\frac{x_{21}}{x_{1}}+y_{2}\right) \wedge(1,0) .
\end{aligned}
$$

Furthermore, we have $(x, y)=(x, y)^{* \circ}=(x, y)^{\circ *}$ from:

$$
\begin{aligned}
& (x, y)^{*}=(x, y) \Rightarrow\left(\frac{1}{2}, 1\right)=\left(\frac{1}{2 x}, \frac{1-y}{x}\right), \\
& (x, y)^{* \circ}=\left(\frac{1}{2 x}, \frac{1-y}{x}\right) \rightarrow\left(\frac{1}{2}, 1\right)=(x, y) .
\end{aligned}
$$

Let $X=\{a, b, c\}$ be a set. Define $R \in L^{X \times X}$ as

$$
R=\left(\begin{array}{ccc}
(1,0) & \left(\frac{5}{8}, \frac{5}{2}\right) & \left(\frac{5}{6}, \frac{5}{3}\right) \\
\left(\frac{5}{7}, \frac{30}{7}\right) & (1,0) & \left(\frac{5}{8},-\frac{5}{4}\right) \\
(1,-2) & \left(\frac{5}{7}, \frac{10}{3}\right) & (1,0)
\end{array}\right)
$$

(1) Since $R \circ R=R, R^{-1} \circ R^{-1}=R^{-1}$ and $R(x, x)=R^{-1}(x, x)=\top$, by Lemma 3.3, R is a right \odot-preorder and R is a left \odot-preorder.
(2) From Theorem 3.6, since R is a right \odot-preorder, then $R_{C_{R}}=R$. Since R is a left \odot-preorder, then $R_{C^{R}}=R$.
(3) From Theorem 3.9, since R is a left \odot-preorder, then $R_{\phi_{R}}=R$ or $\phi_{R}=C^{R}$ where $R_{\phi_{R}}(x, y)=\wedge_{w}(R(y, w) \Rightarrow R(x, w))$.
(4) From Theorem 3.10, since R is a right \odot-preorder, then $R_{\phi^{R}}=R$ or $\phi^{R}=C_{R}$ where $R_{\phi^{R}}(x, y)=\bigwedge_{w}(R(y, w) \rightarrow R(x, w))$.
(5) From Theorem 3.11, since R is a right \odot-preorder, then $R_{\eta_{R}}^{-1}=R$ where $R_{\eta_{R}}^{-1}(x, y)=\Lambda_{w}(R(y, w) \rightarrow R(x, w))$.
(6) From Theorem 3.12, since R is a left \odot-preorder, then $R_{\eta^{R}}^{-1}=R$ where $R_{\eta^{R}}^{-1}(x, y)=\Lambda_{w}(R(y, w) \Rightarrow R(x, w))$.

References

[1] G. Birkhoff,Lattice Theory, Amer. Math. Soc. Colloq. Publ., 25, New York, 1968.
[2] C.C. Chang, Algebraic analysis of many valued logics, Trans. of A.M.S.,88(2)(1958), 467-490.
[3] A. Dvurecenskij, On pseudo MV-algebras, Soft Computing,5(2001), 347354.
[4] J. Elorza, P. Burillo, Connecting fuzzy preorders, fuzzy consequence operators and fuzzy closure and co-closure systems, Fuzzy Sets and Systems 139(3)(2003), 601-613.
[5] J. Elorza, R.F. Gonzalez, J. Bragard, P. Burillo, On the relation between fuzzy closing morphological operators, fuzzy consequence operators induced by fuzzy preorders and fuzzy closure and co-closure systems, (Article in press) Fuzzy Sets and Systems.
[6] G. Georgescu, A. Popescu, Non-commutative fuzzy Galois connections,Soft Computing, 7 (2003), 458-467.
[7] G. Georgescu, A. Popescu, Non-commutative fuzzy structures and pairs of weak negations, Fuzzy Sets and Systems, 143(2004), 129-155.
[8] J. Pavelka, On fuzzy logic, Zeitschr.f. Math. Logik und Grundlagen d. Math.Bd. 25(1979), 45-52.
[9] E. Turunen, Mathematics Behind Fuzzy Logic, A Springer-Verlag Co., 1999.
[10] R. Wille, Restructuring lattice theory; an approach based on hierarchies of concept, in: 1. Rival(Ed.), Ordered Sets, Reidel, Dordrecht, Boston, 1982, 445-470.

Received: September, 2012

