Mathematica Aeterna, Vol. 2, 2012, no. 8, 675 -687

Fuzzy consequence operators

Yong Chan Kim

Department of Mathematics, Gangneung-Wonju National University, Gangneung, Gangwondo 210-702, Korea yck@gwnu.ac.kr

Abstract

We investigate the properties of fuzzy consequence operators in generalized residuated lattice. In particular, we investigate the relations between right (resp. left) \odot -preorders and fuzzy consequence operators.

Mathematics Subject Classification: 03E72, 54A40,54B10

Keywords: Generalized residuated lattice, right(left) \odot -preorder, right (left) \odot -transitive, fuzzy consequence operators

1 Introduction

Pavelka [8] introduced the concept of fuzzy consequence operator. Recently, it is developed in the approximate reasoning context with different fuzzy logics on residuated lattices [4,5]. On the other hand, Wille [10] introduced the structures on lattices which are important mathematical tools for data analysis and knowledge processing. MV-algebra was introduced by Chang [2] to provide algebraic models for many valued propositional logic. Recently, it is developed many directions (BL-algebra, residuated algebra) [5,9,10]. In particular, noncommutative structures play an important role in metric spaces, algebraic structures (groups, rings, quantales, pseudo-BL-algebras)[3,6,7,9,10]. Georgescu and Popescu [6] introduced generalized residuated lattice as a noncommutative structure.

In this paper, we investigate the properties of fuzzy consequence operators in generalized residuated lattice. In particular, we investigate the relations between right (resp. left) \odot -preorders and fuzzy consequence operators.

2 Preliminaries

Definition 2.1 [6] A structure $(L, \lor, \land, \odot, \rightarrow, \Rightarrow, \bot, \top)$ is called a *generalized residuated lattice* iff it satisfies the following properties: (L1) $(L, \lor, \land, \bot, \top)$ is a bounded lattice where \bot is the bottom element and \top is the top element;

(L2) (L, \odot, \top) is a monoid;

(L3) adjointness properties, i.e.

$$x \leq y \rightarrow z \text{ iff } x \odot y \leq z \text{ iff } y \leq x \Rightarrow z.$$

Two maps ${}^{0}, *: L \to L$ defined by $a^{0} = a \to \bot$ and $a^{*} = a \Rightarrow \bot$ is called strong negations if $a^{0*} = a$ and $a^{*0} = a$. We define

$$\top_x(y) = \begin{cases} \top, & \text{if } y = x, \\ \bot, & \text{otherwise.} \end{cases} \quad \top^*_x(y) = \top^0_x(y) = \begin{cases} \bot, & \text{if } y = x, \\ \top, & \text{otherwise.} \end{cases}$$

In this paper, we assume that $(L, \lor, \land, \odot, \rightarrow, \Rightarrow, *, ^{\circ}, \bot, \top)$ be a generalized residuated lattice with strong negations * and $^{\circ}$.

Definition 2.2 Let X be a set. A function $R: X \times X \to L$ is called a *right* \odot -*preorder* on X if it satisfies the following conditions:

(R) (reflexive) $R(x, x) = \top$ for all $x \in X$,

(LT) (right transitive) $R(x, y) \odot R(y, z) \le R(x, z)$, for all $x, y, z \in X$.

A function $R: X \times X \to L$ is called a *left* \odot -*preorder* on X if it satisfies (R) and the following condition:

(RT) (left transitive) $R(y, z) \odot R(x, y) \le R(x, z)$, for all $x, y, z \in X$.

Definition 2.3 [5] An operator $C : L^X \to L^X$ is called a *fuzzy consequence* operator iff it satisfies the following conditions:

(C1) $A \leq C(A)$ for $A \in L^X$. (C2) If $A \leq B$, then $C(A) \leq C(B)$ $A \in L^X$. (C3) C(C(A)) = C(A) for $A \in L^X$.

Lemma 2.4 For each $x, y, z, x_i, y_i \in L$, the following properties hold.

(1) \odot is isotone in both arguments. (2) \rightarrow and \Rightarrow are antitone in the first and isotone in the second argument. (3) $x \rightarrow y = \top$ iff $x \leq y$ iff $x \Rightarrow y = \top$. (4) $x \rightarrow \top = x \Rightarrow \top = \top$ and $\top \rightarrow x = \top \Rightarrow x = x$. (5) $x \odot y \leq x \land y$. (6) $x \odot (\bigvee_{i \in \Gamma} y_i) = \bigvee_{i \in \Gamma} (x \odot y_i)$ and $(\bigvee_{i \in \Gamma} x_i) \odot y = \bigvee_{i \in \Gamma} (x_i \odot y)$. (7) $x \rightarrow (\bigwedge_{i \in \Gamma} y_i) = \bigwedge_{i \in \Gamma} (x \rightarrow y_i)$ and $(\bigvee_{i \in \Gamma} x_i) \rightarrow y = \bigwedge_{i \in \Gamma} (x_i \rightarrow y)$. (8) $x \Rightarrow (\bigwedge_{i \in \Gamma} y_i) = \bigwedge_{i \in \Gamma} (x \Rightarrow y_i)$ and $(\bigvee_{i \in \Gamma} x_i) \Rightarrow y = \bigwedge_{i \in \Gamma} (x_i \Rightarrow y)$. (9) $x \odot (x \Rightarrow y) \leq y$ and $(x \rightarrow y) \odot x \leq y$. (10) $(x \Rightarrow y) \odot (y \Rightarrow z) \leq (x \Rightarrow z)$ and $(y \rightarrow z) \odot (x \rightarrow y) \leq (x \rightarrow z)$. (11) $x \Rightarrow y \leq (y \Rightarrow z) \rightarrow (x \Rightarrow z)$ and $x \rightarrow y \leq (y \rightarrow z) \Rightarrow (x \rightarrow z)$. (12) $\bigwedge_{i \in \Gamma} x_i^* = (\bigvee_{i \in \Gamma} x_i)^*$ and $\bigvee_{i \in \Gamma} x_i^* = (\bigwedge_{i \in \Gamma} x_i)^*$. (13) $\bigwedge_{i \in \Gamma} x_i^0 = (\bigvee_{i \in \Gamma} x_i)^0$ and $\bigvee_{i \in \Gamma} x_i^0 = (\bigwedge_{i \in \Gamma} x_i)^0$. (14) $(x \odot y) \rightarrow z = x \rightarrow (y \rightarrow z)$ and $(x \odot y)^0 = x \rightarrow y^0$. (15) $(x \odot y) \Rightarrow z = y \Rightarrow (x \Rightarrow z)$ and $(x \odot y)^* = y \Rightarrow x^*$. (16) $x \rightarrow (y \Rightarrow z) = y \Rightarrow (x \rightarrow z)$ and $x \Rightarrow (y \rightarrow z) = y \rightarrow (x \Rightarrow z)$.

Proof. (1)-(13) are proved in [6,9].

(14) Since $((x \odot y) \to z) \odot (x \odot y) \leq z$, we have $(x \odot y) \to z \leq x \to (y \to z)$. Since $(x \to (y \to z)) \odot (x \odot y) \leq (y \to z) \odot y \leq z$, we have $x \to (y \to z) \leq (x \odot y) \to z$.

(16) Since
$$\left(y \odot \left(x \to (y \Rightarrow z)\right)\right) \odot x = y \odot \left(\left(x \to (y \Rightarrow z)\right) \odot x\right) \le y \odot (y \Rightarrow z) \le z$$
, then $x \to (y \Rightarrow z) \le y \Rightarrow (x \to z)$.

Since
$$y \odot ((y \Rightarrow (x \to z)) \odot x) = (y \odot (y \Rightarrow (x \to z))) \odot x = (x \to z) \odot x \le z$$
, then $y \Rightarrow (x \to z) \le x \to (y \Rightarrow z)$.

(15) and other cases are similarly proved.

3 Fuzzy consequence operators

Definition 3.1 Let $R \in L^{X \times X}$ be a fuzzy relation. Define mappings $I^R, I_R, C^R, C_R : L^X \to L^X$ as follows:

$$I_R(A)(x) = \bigwedge_y (R(x,y) \Rightarrow A(y)) \quad I^R(A)(x) = \bigwedge_y (R(x,y) \to A(y)).$$
$$C_R(A)(x) = \bigvee_y (A(y) \odot R(y,x)) \quad C^R(x) = \bigvee_y (R(y,x) \odot A(y)).$$

Definition 3.2 (1) An operator $C: L^X \to L^X$ is called right \odot -coherent if

 $A(y) \odot C(\top_y)(x) \le C(A)(x).$

(2) An operator $C: L^X \to L^X$ is called left \odot -coherent if

$$C(\top_y)(x) \odot A(y) \le C(A)(x).$$

Lemma 3.3 Let $R \in L^{X \times X}$ be a fuzzy relation. Define

$$R \circ R(x,z) = \bigvee_{y} (R(x,y) \odot R(y,z)), \quad R^{-1}(x,y) = R(y,x).$$

- (1) If R be a right \odot -preorder, then R^{-1} be a left \odot -preorder.
- (2) R is a right \odot -preorder on X iff $R \circ R = R$ and $R(x, x) = \top$.
- (3) R is a left \odot -preorder on X iff $R^{-1} \circ R^{-1} = R^{-1}$ and $R(x, x) = \top$.

Proof (1), (2) and (3) are easily proved from:

$$\begin{array}{ll} R(x,z) &= R(x,x) \odot R(x,z) \leq R \circ R(x,z) = \bigvee_y (R(x,y) \odot R(y,z)) \\ &\leq R(x,z) \\ R^{-1}(x,z) &= R^{-1}(x,x) \odot R^{-1}(x,z) \leq R^{-1} \circ R^{-1}(x,z) \\ &= \bigvee_y (R^{-1}(x,y) \odot R^{-1}(y,z)) = \bigvee_y (R(y,x) \odot R(z,y)) \\ &\leq R(z,x) = R^{-1}(x,z). \end{array}$$

Theorem 3.4 $I_R(A^*) = (C_{R^{-1}}(A))^*$ and $I^R(A^0) = (C^{R^{-1}}(A))^0$.

Proof (1)

$$I_R(A^*)(x) = \bigwedge_y (R(x, y) \Rightarrow A^*(y)) = (\bigvee_y (A(y) \odot R(x, y))^* = (C_{R^{-1}}(A))^*.$$

(2)

$$I^{R}(A^{0})(x) = \bigwedge_{y} (R(x, y) \to A^{0}(y))$$

= $(\bigvee_{y} (R(x, y) \odot A(y))^{0} = (C^{R^{-1}}(A))^{0}.$

Theorem 3.5 (1) Let $C : L^X \to L^X$ be a right \odot -coherent fuzzy consequence operator and R_C defined by

$$R_C(x,y) = C(\top_x)(y).$$

Then R_C is a right \odot -preorder on X and $C_{R_C}(A) \leq C(A)$ for all $A \in L^X$ with $C_{R_C}(\top_x)(y) = R_C(x,y) = C(\top_x)(y).$ (2) Let $C: L^X \to L^X$ be a left \odot -coherent fuzzy consequence operator and

(2) Let $C: L^X \to L^X$ be a left \odot -coherent fuzzy consequence operator and R_C defined by

$$R_C(x,y) = C(\top_x)(y).$$

Then R_C is a left \odot -preorder on X and $C_{R_C}(A) \leq C(A)$ for all $A \in L^X$ with $C_{R_C}(\top_x)(y) = R_C(x,y) = C(\top_x)(y).$

Proof (1) Since $C: L^X \to L^X$ is right \odot -coherent, $C(\top_x)(y) \odot C(\top_y)(z) \le C(C(\top_x))(z)$. Thus, R_C is a right \odot -preorder on X from: $R_C(x, x) = C(\top_x)(x) \ge \top_x(x) = \top$ and

$$R_C(x, y) \odot R_C(y, z) = C(\top_x)(y) \odot C(\top_y)(z)$$

$$\leq C(C(\top_x))(z) = C(\top_x)(z) = R_C(x, z).$$

$$C_{R_C}(A)(x) = \bigvee_y (A(y) \odot R_C(y, x)) = \bigvee_y (A(y) \odot C(\top_y)(x)) \le C(A)(x).$$

Moreover, $C_{R_C}(\top_x)(y) = R_C(x, y) = C(\top_x)(y)$. (2) Since $C : L^X \to L^X$ is left \odot -coherent, $C(\top_y)(z) \odot C(\top_x)(y) \leq$ $C(C(\top_x))(z)$. Thus, R_C is a left \odot -preorder on X from:

$$R_C(y, z) \odot R_C(x, y) = C(\top_y)(z) \odot C(\top_x)(y)$$

$$\leq C(C(\top_x))(z) = C(\top_x)(z) = R_C(x, z).$$

Other cases are proved as a similar method in (1).

Theorem 3.6 Let $R \in L^{X \times X}$ be a fuzzy relation.

(1) C_R is a right \odot -coherent operator. Moreover, R is a right \odot -preorder iff C_R is a fuzzy consequence operator with $R_{C_R} = R$.

(2) C^R is a left \odot -coherent operator. Moreover, R is a left \odot -preorder iff C^R is a fuzzy consequence operator with $R_{C^R} = R$.

Proof (1) Since $C_R(\top_x)(y) = \bigvee_z(\top_x(z) \odot R(z,y)) = R(x,y)$, we have

$$C_R(A)(x) = \bigvee_y (A(y) \odot R(y, x)) = \bigvee_y (A(y) \odot C_R(\top_y)(x))$$

$$\geq A(y) \odot C_R(\top_y)(x).$$

Thus C_R is a right \odot -coherent operator. Let R be a right \odot -preorder. Then C_R is a fuzzy consequence operator from:

$$C_R(A)(x) = \bigvee_y (A(y) \odot R(y, x)) \ge A(x) \odot R(x, x) = A(x).$$

$$C_R(C_R(A))(x) = \bigvee_y (C_R(A)(y) \odot R(y, x))$$

$$= \bigvee_y (\bigvee_w (A(w) \odot R(w, y)) \odot R(y, x))$$

$$\le \bigvee_w (A(w) \odot R(w, x)) = C_R(A)(x).$$

Moreover, $R_{C_R}(x, y) = C_R(\top_x)(y) = \bigvee_z (\top_x(z) \odot R(z, y)) = R(x, y).$

Conversely, since C_R is a right \odot -coherent fuzzy consequence operator operator, by Theorem 3.5(1), $R_{C_R} = R$ is a right \odot -preorder.

(2) Since $C^{R}(\top_{x})(y) = \bigvee_{z} (R(z, y) \odot \top_{x}(z)) = R(x, y)$, we have

$$C^{R}(A)(x) = \bigvee_{y} (R(y, x) \odot A(y)) = \bigvee_{y} (C_{R}(\top_{y})(x) \odot A(y)) \ge C_{R}(\top_{y})(x) \odot A(y).$$

Hence C^R is a left \odot -coherent operator. Other cases are proved as a similar method in (1).

Theorem 3.7 (1) If $C: L^X \to L^X$ is an operator with C(A) < C(B) for $A \leq B$ and $\alpha \odot C(A) \leq C(\alpha \odot A)$ for $\alpha \in L$, then C is a right \odot -coherent operator.

(2) If $C: L^X \to L^X$ is an operator with $C(A) \leq C(B)$ for $A \leq B$ and $C(A) \odot \alpha < C(A \odot \alpha)$ for $\alpha \in L$, then C is a left \odot -coherent operator.

Proof (1) Since $A = \bigvee_x (A(y) \odot \top_y)$, we have

$$C(A)(x) = C(\bigvee_y (A(y) \odot \top_y))(x) \ge \bigvee_y C(A(y) \odot \top_y)(x) \ge \bigvee_y (A(y) \odot C(\top_y)(x)).$$

Thus C is a right \odot -coherent operator.

(2) Since $A = \bigvee_x (\top_y \odot A(y))$, we have

$$C(A)(x) = C(\bigvee_y(\top_y \odot A(y)))(x) \ge \bigvee_y C(\top_y \odot A(y))(x) \ge \bigvee_y (C(\top_y)(x) \odot A(y)).$$

Thus C is a left \odot -coherent operator.

Theorem 3.8 Let $R \in L^{X \times X}$ be a fuzzy relation. Define $\phi_R : L^X \to L^X$ as $\phi_R(A)(x) = I_R(C^R(A))(x) = \bigwedge_w \Big(R(x,w) \Rightarrow \bigvee_y (R(y,w) \odot A(y)) \Big).$

Then the following properties:

(1) ϕ_R is a left \odot -coherent operator.

(2) If R is a left \odot -preorder, then ϕ_R is a fuzzy consequence operator with a left \odot -preorder as follows

$$R_{\phi_R}(y,x) = \phi_R(\top_y)(x) = \bigwedge_w (R(x,w) \Rightarrow R(y,w)).$$

(3) R is a reflexive relation iff $R_{\phi_R} \leq R$ or $\phi_R \leq C^R$. (4) R is a left \odot -preorder iff $R_{\phi_R} = R$ or $\phi_R = C^R$.

Proof (1) ϕ_R is a left \odot -coherent operator from:

$$\phi_{R}(\top_{y})(x) \odot A(y) = \bigwedge_{w} \left(R(x,w) \Rightarrow \bigvee_{y} (R(y,w) \odot \top_{y}(y)) \right) \odot A(y)$$

= $\bigwedge_{w} \left(R(x,w) \Rightarrow R(y,w) \right) \odot A(y)$
 $\leq \bigwedge_{w} \left(R(x,w) \Rightarrow R(y,w) \odot A(y) \right)$
 $\leq \bigwedge_{w} \left(R(x,w) \Rightarrow C^{R}(A)(w) \right)$
= $\phi_{R}(A)(x)$

(2)

$$\phi_R(A)(x) = I_R(C^R(A))(x) = \bigwedge_w \left(R(x,w) \Rightarrow \bigvee_y (R(y,w) \odot A(y)) \right) = \bigwedge_w \left(R(x,w) \Rightarrow (R(x,w) \odot A(x)) \right) \ge A(x).$$

Thus, $\phi_R(\phi_R(A)) \geq \phi_R(A)$, for all $A \in L^X$. Since R is left \odot - preorder, $I_R(A) \leq A \leq C_R(A)$ and $I_R(C^R(A)) \leq C^R(A)$ implies $C^R(I_R(C^R(A))) \leq C^R(C^R(A)) = C^R(A)$. Thus $\phi_R(\phi_R(A)) = \phi_R(A)$. Moreover,

$$R_{\phi_R}(y,x) = \phi_R(\top_y)(x) = \bigwedge_w (R(x,w) \Rightarrow R(y,w)).$$

(3) Since R is reflexive, $R_{\phi_R} \leq R$ and $\phi_R \leq C^R$ from

$$\begin{aligned} R_{\phi_R}(y,x) &= \phi_R(\top_y)(x) = \bigwedge_w (R(x,w) \Rightarrow R(y,w)) \\ &\leq R(x,x) \Rightarrow R(y,x) = R(y,x) \\ \phi_R(A)(x) &= I_R(C^R(A))(x) = \bigwedge_w \left(R(x,w) \Rightarrow \bigvee_y (R(y,w) \odot A(y)) \right) \\ &\leq R(x,x) \Rightarrow \bigvee_y (R(y,x) \odot A(y)) = C^R(A)(x). \end{aligned}$$

Conversely,

$$\begin{aligned} R_{\phi_R}(x,x) &= \phi_R(\top_x)(x) = \bigwedge_w (R(x,w) \Rightarrow R(x,w)) = \top \\ &\leq C^R(\top_x)(x) = R(x,x). \end{aligned}$$

(4) Since $R(x, w) \odot R(y, x) \le R(y, w)$ iff $R(y, x) \le R(x, w) \Rightarrow R(y, w)$, we have $R \le R_{\phi_R}$. Hence $R = R_{\phi_R}$.

Since R is left \odot -transitive, we have

$$R(w, y) \odot R(x, w) \odot A(x) \le R(x, y) \odot A(x)$$
$$R(x, w) \odot A(x) \le R(w, y) \Rightarrow R(x, y) \odot A(x)$$

Thus, $C^R(A) \leq \phi_R(A)$.

Conversely,

$$R_{\phi_R}(y,x) = \phi_R(\top_y)(x) = \bigwedge_w (R(x,w) \Rightarrow R(y,w)) \ge R(y,x) = C^R(\top_y)(x).$$

Thus $R(x, w) \odot R(y, x) \le R(y, w)$ for all $x, y, w \in X$; i.e. R is left \odot -transitive.

Theorem 3.9 Let $R \in L^{X \times X}$ be a fuzzy relation. Define $\phi^R : L^X \to L^X$ as

$$\phi^R(A)(x) = I^R(C_R(A))(x) = \bigwedge_w \Big(R(x,w) \to \bigvee_y (A(y) \odot R(y,w)) \Big).$$

Then the following properties:

(1) ϕ^R is a right \odot -coherent operator.

(2) If R is a right \odot -preorder, then ϕ^R is a fuzzy consequence operator with a right \odot -preorder R_{ϕ^R} as follows

$$R_{\phi^R}(y,x) = \phi^R(\top_y)(x) = \bigwedge_w (R(x,w) \to R(y,w)).$$

(3) R is a reflexive relation iff $R_{\phi^R} \leq R$ or $\phi^R \leq C_R$.

(4) R is a right \odot -preorder iff $R_{\phi^R} = R$ or $\phi^R = C_R$.

Proof (1) Since $(b \odot (a \to c)) \odot a = b \odot ((a \to c) \odot a) \le b \odot c$, we have $b \odot (a \to c) \le a \to b \odot c$.

$$\phi^R(A)(x) = I^R(C_R(A))(x) = \bigwedge_w \Big(R(x,w) \to \bigvee_y (A(y) \odot R(y,w)) \Big).$$

$$\begin{split} \phi^{R}(\alpha \odot A)(x) &= I^{R}(C_{R}(\alpha \odot A))(x) \\ &= \bigwedge_{w} \left(R(x,w) \to \bigvee_{y}(\alpha \odot A(y) \odot R(y,w)) \right) \\ &= \bigwedge_{w} \bigvee_{y} \left(R(x,w) \to (\alpha \odot A(y) \odot R(y,w)) \right) \\ &\geq \bigwedge_{w} \bigvee_{y} \left(\alpha \odot \left(R(x,w) \to (A(y) \odot R(y,w)) \right) \right) \\ &\geq \bigwedge_{w} \left(\alpha \odot \bigvee_{y} \left(R(x,w) \to (A(y) \odot R(y,w)) \right) \right) \\ &\geq \alpha \odot \bigwedge_{w} \left(R(x,w) \to \bigvee_{y} (A(y) \odot R(y,w)) \right) \\ &= \alpha \odot \phi^{R}(A)(x). \end{split}$$

(2)

$$\phi^{R}(A)(x) = I^{R}(C_{R}(A))(x) = \bigwedge_{w} \left(R(x,w) \to \bigvee_{y} (A(y) \odot R(y,w)) \right)$$

$$\geq \bigwedge_{w} \left(R(x,w) \to (A(x) \odot R(x,w)) \right) \geq A(x).$$

Thus, $\phi_R(\phi_R(A)) \geq \phi_R(A)$, for all $A \in L^X$. Since R is a right \odot - preorder, $I^R(A) \leq A \leq C_R(A)$ and $I^R(C_R(A)) \leq C_R(A)$ implies $C_R(I^R(C_R(A))) \leq C_R(C_R(A)) = C_R(A)$. Thus $\phi^R(\phi^R(A)) = \phi^R(A)$. Moreover,

$$R_{\phi^R}(y,x) = \phi^R(\top_y)(x) = \bigwedge_w (R(x,w) \to R(y,w)).$$

(3) Since R is reflexive, $R_{\phi^R} \leq R$ and $\phi^R \leq C_R$ from

$$\begin{aligned} R_{\phi^R}(y,x) &= \phi^R(\top_y)(x) = \bigwedge_w (R(x,w) \to R(y,w)) \\ &\leq R(x,x) \to R(y,x) = R(y,x) \\ \phi^R(A)(x) &= I^R(C_R(A))(x) = \bigwedge_w \left(R(x,w) \to \bigvee_y (A(y) \odot R(y,w)) \right) \\ &\leq R(x,x) \to \bigvee_y (A(y) \odot R(y,x)) = C_R(A)(x). \end{aligned}$$

Conversely,

$$\begin{aligned} R_{\phi^R}(x,x) &= \phi^R(\top_x)(x) = \bigwedge_w (R(x,w) \to R(x,w)) = \top \\ &\leq C_R(\top_x)(x) = R(x,x). \end{aligned}$$

(4) Since $R(x, y) \odot R(y, z) \le R(x, z)$ iff $R(x, y) \le R(y, z) \to R(x, z)$, we have $R \le R_{\phi^R}$. Hence $R = R_{\phi^R}$.

Since R is right \odot -transitive, we have

$$A(x) \odot R(x, y) \odot R(y, z) \le A(x) \odot R(x, z)$$

Fuzzy consequence operators

$$A(x) \odot R(x, y) \le R(y, z) \to A(x) \odot R(x, z)$$

Thus, $C_R(A) \leq \phi^R(A)$.

Conversely,

$$R_{\phi^R}(y,x) = \phi^R(\top_y)(x) = \bigwedge_w (R(x,w) \to R(y,w)) \ge R(y,x) = C_R(\top_y)(x).$$

Thus $R(y, x) \odot R(x, w) \le R(y, w)$ for all $x, y, w \in X$; i.e. R is right \odot -transitive.

Definition 3.10 Let $R \in L^{X \times Y}$ be a fuzzy relation. Define mappings $R_{\uparrow}, R_{\uparrow}: L^X \to L^Y$ and $R^{\uparrow}, R^{\uparrow}: L^Y \to L^X$ as follows:

$$\begin{split} R_{\uparrow}(A)(x) &= \bigwedge_{y} (A(x) \to R(x,y)) \ R_{\Uparrow}(A)(x) = \bigwedge_{y} (A(x) \Rightarrow R(x,y)), \\ R^{\downarrow}(B)(y) &= \bigwedge_{x} (B(y) \to R(x,y)) \ R^{\Downarrow}(B)(y) = \bigwedge_{y} (B(y) \Rightarrow R(x,y)). \end{split}$$

Theorem 3.11 Let $R \in L^{X \times Y}$ be a fuzzy relation. Define $\eta_R : L^X \to L^X$ as

$$\eta_R(A)(x) = R^{\downarrow}(R_{\uparrow}(A))(x) = \bigwedge_y \Big((\bigwedge_w A(w) \Rightarrow R(w, y)) \to R(x, y) \Big).$$

Then the following properties:

- (1) η_R is a left \odot -coherent operator.
- (2) η_R is a fuzzy consequence operator with a left \odot -preorder as follows

$$R_{\eta_R}(z,x) = \eta_R(\top_z)(x) = \bigwedge_w (R(z,y) \to R(x,y)).$$

(3) If $R \in L^{X \times X}$, then R is a reflexive relation iff $R_{\eta_R}^{-1} \leq R$. (4) If $R \in L^{X \times X}$, then R is a right \odot -preorder iff $R_{\eta_R}^{-1} = R$.

Proof (1) Since $((b \to a) \odot c) \odot (c \Rightarrow b) = (b \to a) \odot (c \odot (c \Rightarrow b)) \le (b \to a) \odot b \le a$, we have $(b \to a) \odot c \le (c \Rightarrow b) \to a$. It follows

$$\begin{split} \eta_{R}(\top_{z})(x) \odot A(z) &= \bigwedge_{y} \left((\bigwedge_{w} \top_{z}(w) \Rightarrow R(w, y)) \to R(x, y) \right) \odot A(z) \\ &= \bigwedge_{y} ((R(z, y) \to R(x, y)) \odot A(z)) \\ &\leq \bigwedge_{y} \left((R(z, y) \to R(x, y)) \odot A(z) \right) \text{ (by Lemma 2.4(2))} \\ &\leq \bigwedge_{y} \left((A(z) \Rightarrow R(z, y)) \to R(x, y) \right) \text{ (by above equality)} \\ &\leq \bigwedge_{y} \left(\bigwedge_{z} (A(z) \Rightarrow R(z, y)) \to R(x, y) \right) \\ &= \eta_{R}(A)(x). \end{split}$$

Hence η_R is a left \odot -coherent operator.

(2)

$$\eta_R(A)(x) = \bigwedge_y \left((\bigwedge_w A(w) \Rightarrow R(w, y)) \to R(x, y) \right) \\ \ge \bigwedge_y \left((A(x) \Rightarrow R(x, y)) \to R(x, y) \right) \ge A(x).$$

Thus, $R^{\downarrow}(R_{\uparrow}(A)) \geq A$ implies $R_{\uparrow}(R^{\downarrow}(R_{\uparrow}(A))) \leq R_{\uparrow}(A)$. Similarly,

$$\begin{aligned} R_{\uparrow}(R^{\downarrow}(B))(y) &= \bigwedge_{y} \left((\bigwedge_{w} B(w) \to R(x, w)) \Rightarrow R(x, y) \right) \\ &= \bigwedge_{y} \left((B(y) \to R(x, y)) \Rightarrow R(x, y) \right) \ge B(y). \end{aligned}$$

Hence, $R_{\uparrow}(R^{\downarrow}(R_{\uparrow}(A))) \geq R_{\uparrow}(A)$. Thus, $\eta_R(\eta_R(A)) = \eta_R(A)$, for all $A \in L^X$. Moreover,

$$R_{\eta_R}(z,x) = \eta_R(\top_z)(x) = \bigwedge_w (R(z,y) \to R(x,y)).$$

(3) Since R is reflexive, $R_{\eta_R}^{-1} \leq R$ from

$$R_{\eta_R}(z,x) = \eta_R(\top_z)(x) = \bigwedge_w (R(z,w) \to R(x,w))$$

$$\leq R(z,z) \to R(x,z) = R(x,z).$$

Conversely,

$$R_{\eta_R}(x,x) = \eta_R(\top_x)(x) = \bigwedge_w (R(x,w) \to R(x,w)) = \top \leq R(x,x).$$

(4) Since $R(z,x) \odot R(x,y) \le R(z,y)$ iff $R(z,x) \le R(x,y) \to R(z,y)$, we have $R(z,x) \le R_{\eta_R}^{-1}(z,x)$. Hence $R = R_{\eta_R}^{-1}$.

Conversely,

$$R_{\eta_R}(z,x) = \eta_R(\top_z)(x) = \bigwedge_w (R(z,w) \to R(x,w)) \ge R(x,z).$$

Thus $R(x,z) \odot R(z,w) \le R(x,w)$ for all $x, y, w \in X$; i.e. R is right \odot -transitive.

Theorem 3.12 Let $R \in L^{X \times Y}$ be a fuzzy relation. Define $\eta^R : L^X \to L^X$ as

$$\eta^R(A)(x) = R^{\Downarrow}(R_{\uparrow}(A))(x) = \bigwedge_y \Big((\bigwedge_w A(w) \to R(w, y)) \Rightarrow R(x, y) \Big).$$

Then the following properties:

- (1) η^{R} is a right \odot -coherent operator.
- (2) η^R is a fuzzy consequence operator with a right \odot -preorder as follows

$$R_{\eta^R}(z,x) = \eta^R(\top_z)(x) = \bigwedge_w (R(z,y) \Rightarrow R(x,y))$$

- (3) If $R \in L^{X \times X}$, then R is a reflexive relation iff $R_{\eta^R}^{-1} \leq R$. (4) If $R \in L^{X \times X}$, then R is a left \odot -preorder iff $R_{\eta^R}^{-1} = R$.

684

Proof (1) Since $(a \to b) \odot (a \odot (b \Rightarrow c)) = ((a \to b) \odot a) \odot (b \Rightarrow c) \leq$ $b \odot (b \Rightarrow c) \le c$, we have $a \odot (b \Rightarrow c) \le (c \Rightarrow b) \to a$. It follows

$$\begin{aligned} A(z) \odot \eta^{R}(\top_{z})(x) &= A(z) \odot \bigwedge_{y} \left((\bigwedge_{w} \top_{z}(w) \to R(w, y)) \Rightarrow R(x, y) \right) \\ &= A(z) \odot \bigwedge_{y} (R(z, y) \Rightarrow R(x, y)) \\ &\leq \bigwedge_{y} \left(A(z) \odot (R(z, y) \Rightarrow R(x, y)) \right) \text{ (by Lemma 2.4(2))} \\ &\leq \bigwedge_{y} \left((A(z) \to R(z, y)) \Rightarrow R(x, y) \right) \text{ (by above equality)} \\ &\leq \bigwedge_{y} \left(\bigwedge_{z} (A(z) \to R(z, y)) \Rightarrow R(x, y) \right) \\ &= \eta^{R}(A)(x). \end{aligned}$$

Hence η^R is a right \odot -coherent operator.

(2)

$$\eta^{R}(A)(x) = \bigwedge_{y} \left((\bigwedge_{w} A(w) \to R(w, y)) \Rightarrow R(x, y) \right) \\ = \bigwedge_{y} \left((A(x) \to R(x, y)) \Rightarrow R(x, y) \right) \ge A(x).$$

Thus, $R_{\uparrow}(R^{\downarrow}(R_{\uparrow}(A))) \leq R_{\uparrow}(A)$. Similarly,

$$R_{\uparrow}(R^{\Downarrow}(B))(y) = \bigwedge_{y} \left((\bigwedge_{w} B(w) \Rightarrow R(x, w)) \to R(x, y) \right) \\ = \bigwedge_{y} \left((B(y) \Rightarrow R(x, y)) \to R(x, y) \right) \ge B(y).$$

Hence, $R_{\uparrow}(R^{\downarrow}(R_{\uparrow}(A))) \geq R_{\uparrow}(A)$. Thus, $\eta^{R}(\eta^{R}(A)) = \eta^{R}(A)$, for all $A \in L^{X}$. Moreover,

$$R_{\eta^R}(z,x) = \eta^R(\top_z)(x) = \bigwedge_w (R(z,y) \Rightarrow R(x,y)).$$

(3) Since R is reflexive, $R_{\eta^R}^{-1} \leq R$ from

$$\begin{aligned} R_{\eta^R}(z,x) &= \eta_R(\top_z)(x) = \bigwedge_w (R(z,w) \Rightarrow R(x,w)) \\ &\leq R(z,z) \Rightarrow R(x,z) = R(x,z). \end{aligned}$$

Conversely,

$$\begin{aligned} R_{\eta^R}(x,x) &= \eta^R(\top_x)(x) = \bigwedge_w (R(x,w) \Rightarrow R(x,w)) = \top \\ &\leq R(x,x). \end{aligned}$$

(4) Since $R(x,y) \odot R(z,x) \le R(z,y)$ iff $R(z,x) \le R(x,y) \Rightarrow R(z,y)$, we have $R(z,x) \le R_{\eta^R}^{-1}(z,x)$. Hence $R = R_{\eta^R}^{-1}$. Conversely,

$$R_{\eta^R}(z,x) = \eta^R(\top_z)(x) = \bigwedge_w (R(z,w) \Rightarrow R(x,w)) \ge R(x,z).$$

Thus $R(z, w) \odot R(x, z) \le R(x, w)$ for all $x, y, w \in X$; i.e. R is left \odot -transitive.

Example 3.13 Let $K = \{(x, y) \in \mathbb{R}^2 \mid x > 0\}$ be a set and we define an operation $\otimes : K \times K \to K$ as follows:

$$(x_1, y_1) \otimes (x_2, y_2) = (x_1 x_2, x_1 y_2 + y_1).$$

Then (K, \otimes) is a group with $e = (1, 0), (x, y)^{-1} = (\frac{1}{x}, -\frac{y}{x}).$ We have a positive cone $P = \{(a, b) \in R^2 \mid a = 1, b \ge 0 \text{, or } a > 1\}$ because $P \cap P^{-1} = \{(1,0)\}, P \odot P \subset P, (a,b)^{-1} \odot P \odot (a,b) = P \text{ and } P \cup P^{-1} = K.$ For $(x_1, y_1), (x_2, y_2) \in K$, we define

$$(x_1, y_1) \le (x_2, y_2) \quad \Leftrightarrow (x_1, y_1)^{-1} \odot (x_2, y_2) \in P, \ (x_2, y_2) \odot (x_1, y_1)^{-1} \in P \\ \Leftrightarrow x_1 < x_2 \ \text{or} \ x_1 = x_2, y_1 \le y_2.$$

Then $(K, \leq \otimes)$ is a lattice-group. (ref. [1])

For $L \subset K$, the structure $(L, \odot, \Rightarrow, \rightarrow, (\frac{1}{2}, 1), (1, 0))$ is a generalized residuated lattice with strong negation where $\perp = (\frac{1}{2}, 1)$ is the least element and $\top = (1,0)$ is the greatest element from the following statements:

$$\begin{array}{ll} (x_1, y_1) \odot (x_2, y_2) &= (x_1, y_1) \otimes (x_2, y_2) \lor (\frac{1}{2}, 1) = (x_1 x_2, x_1 y_2 + y_1) \lor (\frac{1}{2}, 1), \\ (x_1, y_1) \Rightarrow (x_2, y_2) &= ((x_1, y_1)^{-1} \otimes (x_2, y_2)) \land (1, 0) = (\frac{x_2}{x_1}, \frac{y_2 - y_1}{x_1}) \land (1, 0), \\ (x_1, y_1) \rightarrow (x_2, y_2) &= ((x_2, y_2) \otimes (x_1, y_1)^{-1}) \land (1, 0) = (\frac{x_2}{x_1}, -\frac{x_2 y_1}{x_1} + y_2) \land (1, 0). \end{array}$$

Furthermore, we have $(x, y) = (x, y)^{*\circ} = (x, y)^{\circ*}$ from:

$$(x,y)^* = (x,y) \Rightarrow (\frac{1}{2},1) = (\frac{1}{2x},\frac{1-y}{x}),$$
$$(x,y)^{*\circ} = (\frac{1}{2x},\frac{1-y}{x}) \to (\frac{1}{2},1) = (x,y).$$

Let $X = \{a, b, c\}$ be a set. Define $R \in L^{X \times X}$ as

$$R = \begin{pmatrix} (1,0) & (\frac{5}{8},\frac{5}{2}) & (\frac{5}{6},\frac{5}{3}) \\ (\frac{5}{7},\frac{30}{7}) & (1,0) & (\frac{5}{8},-\frac{5}{4}) \\ (1,-2) & (\frac{5}{7},\frac{10}{3}) & (1,0) \end{pmatrix}$$

(1) Since $R \circ R = R$, $R^{-1} \circ R^{-1} = R^{-1}$ and $R(x, x) = R^{-1}(x, x) = \top$, by Lemma 3.3, R is a right \odot -preorder and R is a left \odot -preorder.

(2) From Theorem 3.6, since R is a right \odot -preorder, then $R_{C_R} = R$. Since R is a left \odot -preorder, then $R_{C^R} = R$.

(3) From Theorem 3.9, since R is a left \odot -preorder, then $R_{\phi_R} = R$ or $\phi_R = C^R$ where $R_{\phi_R}(x, y) = \bigwedge_w (R(y, w) \Rightarrow R(x, w)).$

(4) From Theorem 3.10, since R is a right \odot -preorder, then $R_{\phi^R} = R$ or $\phi^R = C_R$ where $R_{\phi^R}(x, y) = \bigwedge_w (R(y, w) \to R(x, w)).$

(5) From Theorem 3.11, since R is a right \odot -preorder, then $R_{\eta_R}^{-1} = R$ where $R_{\eta_R}^{-1}(x,y) = \bigwedge_w (R(y,w) \to R(x,w)).$

(6) From Theorem 3.12, since R is a left \odot -preorder, then $R_{\eta^R}^{-1} = R$ where $R_{n^R}^{-1}(x,y) = \bigwedge_w (R(y,w) \Rightarrow R(x,w)).$

References

- G. Birkhoff, Lattice Theory, Amer. Math. Soc. Colloq. Publ., 25, New York, 1968.
- [2] C.C. Chang, Algebraic analysis of many valued logics, Trans. of A.M.S.,88(2)(1958), 467-490.
- [3] A. Dvurecenskij, On pseudo MV-algebras, Soft Computing, 5(2001), 347-354.
- [4] J. Elorza, P. Burillo, Connecting fuzzy preorders, fuzzy consequence operators and fuzzy closure and co-closure systems, *Fuzzy Sets and Systems* 139(3)(2003), 601-613.
- [5] J. Elorza, R.F. Gonzalez, J. Bragard, P. Burillo, On the relation between fuzzy closing morphological operators, fuzzy consequence operators induced by fuzzy preorders and fuzzy closure and co-closure systems, (Article in press) *Fuzzy Sets and Systems*.
- [6] G. Georgescu, A. Popescu, Non-commutative fuzzy Galois connections, Soft Computing, 7 (2003), 458-467.
- [7] G. Georgescu, A. Popescu, Non-commutative fuzzy structures and pairs of weak negations, *Fuzzy Sets and Systems*, 143(2004), 129-155.
- [8] J. Pavelka, On fuzzy logic, Zeitschr.f. Math. Logik und Grundlagen d. Math.Bd. 25(1979), 45-52.
- [9] E. Turunen, Mathematics Behind Fuzzy Logic, A Springer-Verlag Co., 1999.
- [10] R. Wille, Restructuring lattice theory; an approach based on hierarchies of concept, in: 1. Rival(Ed.), Ordered Sets, Reidel, Dordrecht, Boston, 1982, 445-470.

Received: September, 2012