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Abstract

In the paper, we prove a result: Let k(≥ 2) be a positive integer
and let F be a family of functions holomorphic in a domain D ⊆ C and
all of whose zeros have multiplicity at least k. Suppose that f(z) and

f (k)(z) share zero IM in D for all f ∈ F . Then {f
′

f : f ∈ F} is normal in
D. Our result extend the Schwick [10] normal criteria in which suppose
that f(z) and f (k)(z) have no zeros in D for all f ∈ F .
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1 Introduction and Main Result

Let f be nonconstant meromorphic (entire) function in the whole plane. It is
assumed that the reader is familiar with the standard notations and the basic
results of Nevanlinna’s value-distribution theory(see Hayman [6] or Schiff [9]).
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Let D be a domain in complex plain C and F a family of meromorphic
functions defined in D. F is called to be normal in D if each sequence {fn} ⊂ F
has a subsequence {fnk

} which converges spherically locally uniformly in D to
a meromorphic function or ∞(see Schiff [9]).

Let f(z) and g(z) be two nonconstant meromorphic functions in a domain
D ⊆ C, and let a be a finite complex value. We say that f and g share a
CM(or IM) provided that f − a and g − a have the same zeros counting(or
ignoring) multiplicity in D.

The following theorem was conjectured by Hayman [5] in 1959 and proved
by Frank [4] in 1976 for k ≥ 3 and by Langley [7] in 1993 for k = 2.

Theorem 1.1 Let f(z) be a nonconstant meromorphic function in the whole
complex plane C and k ≥ 2. If f and f (k) have no zeros, then f(z) has the
form f(z) = eaz+b or f(z) = (az + b)−m, where a, b ∈ C, a 6= 0,m ∈ N.

In the case where f is entire the result was proved by Hayman [5] himself
for k = 2 and by Clunie [3] in the general case. In this case f ′

f
is constant.

Influenced from Bloch’s principle [1]), that is, there is a normality criterion
corresponding to every Liouville-Picard type theorem. The following result of
Schwick [10] can be considered as the normal families analogue arising accord-
ing to Bloch’s Principle from Theorem 1.1 restricted to entire functions.

Theorem 1.2 Let k(≥ 2) be a positive integer and let F be a family of
functions holomorphic in a domain D ⊆ C. If f and f (k) have no zeros in D
for all f ∈ F , then {f ′

f
: f ∈ F is normal in D.

In this paper, we extend Theorem 1.2.

Theorem 1.3 (Main Result) Let k(≥ 2) be a positive integer and let F be
a family of functions holomorphic in a domain D ⊆ C and all of whose zeros
have multiplicity at least k. Suppose that f(z) and f (k)(z) share zero IM in D
for all f ∈ F . Then {f ′

f
: f ∈ F} is normal in D.

The following Example 1.1 illustrates that Theorem 1.3 is more efficient
than Theorem 1.2.

Example 1.1 Take k(≥ 2) be a fixed positive integer, fn(z) = zn, n ≥ k,
D = {|z| < 1}. Then fn(z) and f (k)

n (z) have the only one distinct zero z = 0.

So fn(z) and f (k)
n (z) share 0 IM in D and {f

′
n(z)
fn(z)
} is normal in D by Theorem

1.1
In 2003, Bergweiler and Langley [2] extended the Schwick’s theorem to

families of meromorphic functions and obtained the following theorem.

Theorem 1.4 Let k(≥ 2) be a positive integer and let F be a family of
functions meromorphic in a domain D ⊆ C. If f and f (k) have no zeros in D
for all f ∈ F , then {f ′

f
: f ∈ F} is normal in D.
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It is natural to pose the following conjecture.
Conjecture 1.2 Let k(≥ 2) be a positive integer and let F be a family

of functions meromorphic in a domain D ⊆ C and all of whose zeros have
multiplicity at least k. Suppose that f(z) and f (k)(z) share zero IM in D for
all f ∈ F . Then {f ′

f
: f ∈ F} is normal in D.

2 Preliminary Lemmas

In order to prove our result, we need the following lemmas. Lemma 2.1 is an
extending result of Zalcman[8] concerning normal families.

Lemma 2.1 [8] Let F be a family of meromorphic functions on the unit
disc, all of whose zeros have multiplicity at least k, and there exist A ≥ 1 such
that f(z) = 0 implies |f (k)(z)| ≤ A for each f(z) ∈ F . If F is not normal on
the unit disc, then for any 0 ≤ α ≤ k there exist

a) a number 0 < r < 1;
b) points zn with |zn| < r;
c) functions fn ∈ F ;
d) positive numbers ρn → 0

such that gn(ζ) := ρ−αn fn(zn+ρnζ) converges locally uniformly to a nonconstant
meromorphic function g(ζ) whose zeros have multiplicity at least k and order
is at most 2, and g](ζ) ≤ g](0) = kA+ 1.

Remark g(ζ) is a nonconstant entire function if F is a family of holo-
morphic functions on the unit disc in Lemma 2.1.

In order to state the following lemmas [2] and the proof of Theorem 1.1,
we define differential operators Ψk for k ∈ N by

Ψ1(y),Ψk+1(y) = yΨk(y) +
d

dz
(Ψk(y)). (1)

Lemma 2.2 Let f(z) be meromorphic in a domain D and let F (z) := f ′

f
.

Then for each k ∈ N we have Ψk(F ) = f (k)

f
.

Lemma 2.3 Let k ≥ 2 be an integer, and let F (z) be nonconstant and
meromorphic in the whole complex plane C and satisfy the following conditions:

(1) Ψk(F ) has no zeros;
(2) if z0 is a simple pole of F then Res(F, z0) 6∈ {1, 2, · · · , k − 1};
(3) for k = 2, there exists δ > 0 such that if z0 is a simple pole of F then

|Res(F, z0)| ≥ δ.
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Then F has the form

F (z) =
(k − 1)z + a

z2 + bz + c
(2)

or

F (z) =
1

az + b
. (3)

Here a, b, c ∈ C, with a 6= 0 in (3).

Lemma 2.4 Let k ≥ 2 be an integer, and let y be meromorphic in a domain
D, such that if z0 is a simple pole of y then Res(y, z0) 6∈ {1, 2, · · · , k − 1}. Let
k ∈ N with n ≤ k. If y has a pole at z0 of multiplicity m then Ψn(y) has a pole
at z0 of multiplicity nm.

3 Proof of Main Result

Without loss of generality, we assume that D = {z ∈ C, |z| < 1}. Suppose
that {f ′

f
: f ∈ F} is not normal in D. Without loss of generality, we assume

that {f ′
f

: f ∈ F} is not normal at z = 0.

Claim 1. f (k)

f
have no zeros and Res(f

′

f
, z0) ≥ k for any pole z0 of f ′

f
.

By the hypothesis of Theorem 1.3, we know that f (k) and f sharing zero

IM implies that f (k)

f
have no zeros. Since f is holomorphic in D and whose

zeros have multiplicity at least k, we see that any pole z0 of f ′

f
must be simple

and is a zero of f and Res(f
′

f
, z0) ≥ k holds.

Furthermore, Res(f
′

f
, z0) 6∈ {1, 2, · · · , k − 1}. Thus take δ ∈ (0, k], we have

that |Res(f
′

f
, z0)| ≥ δ for any zero z0 of f ∈ F . Applying Lemma 2.1 to the

family of all functions 1
F

with F := f ′

f
∈ {f ′

f
: f ∈ F},we obtain that there

exist a sequence of points zn → 0, fn ∈ F and ρn → 0+ such that as n→∞

gn(ζ) := ρnFn(zn + ρnζ)→ g(ζ)

uniformly on any compact subset of C, where g(ζ) is a non-constant meromor-
phic function such that g](z) ≤ g](0) = 1 + 1

δ
for all z ∈ C.

Let z0 is a simple pole of g. Then, By Hurwitz theorem, if n is large
enough, gn has a simple pole an with an → z0. Since zn + ρnan is a simple
pole of Fn with Res(Fn, zn + ρnan) = Res(gn, an) we deduce from Claim 1 that
Res(gn, an) ≥ k ≥ δ. This implies that

Claim 2. Res(g, z0) ≥ k ≥ δ. In particular, every pole of g is a pole of
Ψk(g), by Lemma 2.4.

Note that Ψk(gn(ζ)) = ρknΨk(Fn(zn+ρnζ)), we get by Lemma 2.2 and Claim
1 that Ψk(gn) has no zeros. Set S be the set of poles of g, then Ψk(gn)→ Ψk(g)
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locally uniformly on C\S, and either Ψk(g) has no zeros or Ψk(g) ≡ 0 on C\S
by Hurwitz theorem. In the former case we know that Ψk(g) has no zeros and
that Ψk(gn)→ Ψk(g) on the whole plane C by the maximum principle applied
to 1

Ψk(gn)
and 1

Ψk(g)
.

Case 1. Ψk(g) has no zeros.
By Lemma 2.3, we deduce that g has the form (2) or (3).
Suppose that g has the form (2) but is not of the form (3). Then g has two

poles, counting multiplicities, and∑
z0∈g−1({∞})

Res(g, z0) = k − 1, (4)

by the residue theorem.
On the other hand, by Claim 2, we infer that∑

z0∈g−1({∞})
Res(g, z0) ≥ k.

This contradicts with (4).
Suppose that g has the form (3). Then 1

|a| = |Res(g,− b
a
)| ≥ δ so that

|a| ≤ 1
δ
. On the other hand, |a| ≥ |a|

1+|b|2 = g](0) = 1
δ
. This is impossible.

Case 2. Ψk(g) ≡ 0.
By Claim 2, we have from Lemma 2.2 that g has no poles. Thus g is entire,

and so is the function f defined by f(z) = exp(
∫ z

0 g(ζ)dζ). Hence g = f ′

f
, f

(k)

f
=

Ψk(g) ≡ 0 by Lemma 2.2. Therefore f is a polynomial. This implies that f is
constant, and then g ≡ 0, a contradiction.

The proof of Theorem 1.3 is complete.
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