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Abstract

In this paper we introduce the notion of functions of bounded vari-
ation in the Waterman-Shiba’s sense with variable exponent on a real
interval [a, b] and we study some of its basic properties. We show that
the set of all such functions generalize some known Banach spaces. Fi-
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the introduced class.
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1 Introduction

The notion of function of bounded variation, or BV function, was intro-
duced by C. Jordan in 1881, [9], when he critically re-examined a faulty proof
given by Dirichlet to the famous Fourier’s conjecture on trigonometric series ex-
pansion of periodic functions, see [11]. By showing that functions of bounded
variation are precisely those that can be expressed as the difference of two
monotone functions, Jordan actually extended the celebrated Dirichlet’s cri-
terium to the class of BV functions. Since then, the notion has been gen-
eralized in several ways leading to many important results in mathematical
analysis.

Two well-known generalizations are the functions of bounded p-variation
and functions of bounded φ-variation introduced by N. Wiener [21] and L. C.
Young [22] respectively. Many basic properties of the variation in the sense of
Wiener and a large number of important applications of this concept can be
found in [1] and [5].

We denote by BV ([a, b]) = BV ([a, b],R) the space of all real-valued func-
tions of bounded variation on the interval [a, b].

We will say that a sequence of positive real numbers, Λ = {λi}
∞
i=1

, is a
W-sequence if it is non-decreasing and

∑

(1/λi) = +∞.

In 1972, D. Waterman [20] introduced the class ΛBV ([a, b]) of functions
of bounded Λ-variation and in 1980, M. Shiba [17] generalized Waterman’s
notion by introducing the class ΛpBV ([a, b]) (1 ≤ p < ∞); that is, the class of
all functions f : [a, b] → R with bounded Λp-variation on [a, b]. Following:

Definition 1.1 ([19]). Let I = [a, b] ⊂ R be a closed interval. Let Λ be a
W-sequence and suppose that p ≥ 1. A function f : I → R is said to be of
bounded Λp-variation on I (f ∈ ΛpBV (I)) if

VΛp
(f) = VΛ(f, p, I) = sup

ξ
VΛ(ξ, f, p, I) < ∞,

where

VΛ(ξ, f, p, I) :=

(

n
∑

i=1

|f(xi)− f(xi−1)|
p

λi

)1/p

,

and the supremum is taken over all partitions ξ : a = x0 < x1 < · · · < xn = b
of the interval I.

In more recent years, there has been a growing interest in the study of
various mathematical problems concerning classes of functions whose growth
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is limited by considering variable exponents, such as the, so called, variable
Lp spaces (or variable exponent Lp(·)), especially for its applications in the
theory of non-newtonian fluids and image processing, see e.g. [12], [15], [23].
Lebesgue spaces with variable exponent have been introduced already in 1931
by Orlicz, see [4], [14] and [16]. In [10] the authors established many of the
basic properties of Lebesgue spaces Lp(x) and the corresponding Sobolev spaces
W k,p(x). In [2], Castillo, Merentes and Rafeiro studied a new space of functions
of bounded p(·)-variation, they introduced the notion of bounded variation in
the sense of Wiener with exponent p(·)-variable. Letter, in [13], Mej́ıa, Mer-
entes and Sánchez characterized the functions of those spaces, establishing
important properties and also they presented some properties of the composi-
tion (Nemytskij) operator when it acts between such spaces.

2 Space of Functions of Bounded Λp(·)-Variation

Here we introduce the notion of variation in the Waterman-Shiba’s sense
with variable exponent.

Definition 2.1. Let [a, b] ⊂ R be a closed interval and let Λ be a W-
sequence. Given a function p : [a, b] → (1,+∞) and a function f : [a, b] → R,

the functional V
p(·)
Λ (f) given by

V
p(·)
Λ (f) = V

p(·)
Λ (f ; [a, b]) := sup

π∗

n
∑

i=1

|f(ti)− f(ti−1)|
p(xi−1)

λi

(1)

will be called the Λp(·)-variation of f on [a, b], where the supremum is taken on
all tagged partitions π∗ of [a, b]; i.e., a partition of the interval [a, b] together
with a finite sequence of numbers x0, x1, . . . , xn−1 such that tj ≤ xj ≤ tj+1 for
all j = 0, 1, . . . , n− 1.

Note that any partition π = {x0, . . . , xn} also can be viewed as a union of

non-overlapping intervals
n
⋃

i=1

Ii with Ii : [xi−1, xi], i = 1, . . . , n.

Definition 2.2. The set of functions of bounded Λp(·)-variation in the Waterman-
Shiba’s sense is defined as

Λp(·)BV ([a, b]) =

{

f : [a, b] → R/ ∃ β > 0 where V
p(·)
Λ

(

f

β

)

< ∞

}

.
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Remark 2.3.

1. If p(x) = 1 for all x ∈ [a, b] then

Λp(·)BV ([a, b]) = ΛBV ([a, b]).

2. If p(x) = p, for all x ∈ [a, b] with 1 < p < +∞ then

V
p(·)
Λ (f) = [VΛp

(f)]p.

Lemma 2.4. (General Properties of the Λp(·)-variation) Let Λ be a W-
sequence, p : [a, b] → [1,+∞) a function and let f : [a, b] → R be a function.

(P1) Minimality: If s, t ∈ [a, b] with s < t, then

|f(t)− f(s)|p(xst)

λst
≤ V

p(·)
Λ (f).

where xts a number between [t, s] and λst is the corresponding term in the
sequence Λ associated to any partition π that contains [s, t] as subinterval.

(P2) Monotonicity: If s, t ∈ [a, b] with a ≤ s ≤ t ≤ b, then

V
p(·)
Λ (f ; [a, s]) ≤ V

p(·)
Λ (f ; [a, t]), V

p(·)
Λ (f ; [t, b]) ≤ V

p(·)
Λ (f ; [s, b]) and

V
p(·)
Λ (f ; [s, t]) ≤ V

p(·)
Λ (f ; [a, b]).

(P3) Semi-additivity: If c ∈ [a, b] then

V
p(·)
Λ (f ; [a, b]) ≥ V

p(·)
Λ (f ; [a, c]) + V

p(·)
Λ (f ; [c, b]).

(P4) Change of variable: If [c, d] ⊂ R and ϕ : [c, d] → [a, b] is a monotone
function (not necessarily strictly), then

V
p(·)
Λ (f ;ϕ([c, d])) = V

p(·)
Λ (f ◦ ϕ; [c, d]).

(P5) Regularity:

V
p(·)
Λ (f ; [a, b]) = sup

{

V
p(·)
Λ (f ; [s, t]); s, t ∈ [a, b], s ≤ t

}

.

Proof. The proof of these properties are obtained by using arguments similar
to those presented in Lemma 2 in [13].
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3 Further Properties of Functions of Bounded

Λp(·)-Variation

Here we present some further properties of the functionals V
p(·)
Λ (·) that we

will need later to prove that the set Λp(·)BV ([a, b]) actually is a vector space.

Theorem 3.1. If Λ is a W-sequence, p : [a, b] → (1,+∞) is a function and
f : [a, b] → R is a function then

1. V
p(·)
Λ (|f |) ≤ V

p(·)
Λ (f) for all f ∈ Λp(·)BV ([a, b]).

2. If β1 > β2 then V
p(·)
Λ

(

f
β1

)

≤ V
p(·)
Λ

(

f
β2

)

for all f ∈ Λp(·)BV ([a, b]).

3. V
p(·)
Λ is convex.

Proof. Let π : a = t0 < t1 < · · · < tn = b a partition of the interval [a, b] and
let π∗ be a tagged partition of π. Then

1. It readily follows using that

||f(ti)| − |f(ti−1)|| ≤ |f(ti)− f(ti−1)|.

Note also that if f ∈ Λp(·)BV ([a, b]) then |f | ∈ Λp(·)BV ([a, b]).

2. Let β1, β2 such that β1 > β2. Then,
∣

∣

∣

∣

(

f

β1

)

(ti)−

(

f

β1

)

(ti−1)

∣

∣

∣

∣

p(xi−1)

=

(

1

β1

|f(ti)− f(ti−1)|

)p(xi−1)

≤

(

1

β2
|f(ti)− f(ti−1)|

)p(xi−1)

=

∣

∣

∣

∣

(

f

β2

)

(ti)−

(

f

β2

)

(ti−1)

∣

∣

∣

∣

p(xi−1)

.

Dividing by λi and taking supremum over all tagged partitions π∗ we
obtain

V
p(·)
Λ

(

f

β1

)

≤ V
p(·)
Λ

(

f

β2

)

.

3. Let α, β ≥ 0 such that α + β = 1, and f, g ∈ Λp(·)BV ([a, b]). Using the
convexity of the function h(t) = ta, a ≥ 1 we have

|(αf + βg)(ti)− (αf + βg)(ti−1)|
p(xi−1)

= |α(f(ti)− f(ti−1)) + β(g(ti)− g(ti−1))|
p(xi−1)

≤ (α|f(ti)− f(ti−1)|+ β|g(ti)− g(ti−1)|)
p(xi−1)

≤ α|f(ti)− f(ti−1)|
p(xi−1) + β|g(ti)− g(ti−1)|

p(xi−1).
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Thus

|(αf + βg)(ti)− (αf + βg)(ti−1)|
p(xi−1)

λi

≤ α
|f(ti)− f(ti−1)|

p(xi−1)

λi
+ β

|g(ti)− g(ti−1)|
p(xi−1)

λi
.

Taking supremum over all tagged partitions π∗ we finally obtain:

V
p(·)
Λ (α f + β g) ≤ α V

p(·)
Λ (f) + β V

p(·)
Λ (g).

Now we prove that the set of all functions of bounded Λp(·)-variation in the
Waterman-Shiba’s sense, on an interval [a, b], is a vector space.

Theorem 3.2. Λp(·)BV ([a, b]) is a vector space.

Proof. Let f, g ∈ Λp(·)BV ([a, b]) and suppose α, β ∈ R. Then, there are
β1, β2 > 0 such that

V
p(·)
Λ

(

f

β1

)

< ∞ and V
p(·)
Λ

(

g

β2

)

< ∞.

Let β̂ := max{β1, β2} > 0. By property (2) of Theorem 3.1 we have

V
p(·)
Λ

(

f

β̂

)

≤ V
p(·)
Λ

(

f

β1

)

< ∞

and

V
p(·)
Λ

(

f

β̂

)

≤ V
p(·)
Λ

(

g

β2

)

< ∞.

If α = β = 0, αf + βg = 0 ∈ Λp(·)BV ([a, b]). We suppose then that
α 6= 0 ∨ β 6= 0.

Let µ = (|α| + |β|) β̂ > 0 and let π∗ be a tagged partition of [a, b]. Given
f, g ∈ Λp(·)BV ([a, b]) and i ∈ {1, 2, . . . , n}, we have

|(αf + βg)(ti)− (αf + βg)(ti−1)| = |α(f(ti)− f(ti−1)) + β(g(ti)− g(ti−1))|

≤ |α||f(ti)− f(ti−1)|+ |β||g(ti)− g(ti−1)|.

Thus,
∣

∣

∣

∣

(

αf + βg

µ

)

(ti)−

(

αf + βg

µ

)

(ti−1)

∣

∣

∣

∣

≤
|α|

µ
|f(ti)−f(ti−1)|+

|β|

µ
|g(ti)−g(ti−1)|,
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which imply that

∣

∣

∣

∣

(

αf + βg

µ

)

(ti)−

(

αf + βg

µ

)

(ti−1)

∣

∣

∣

∣

p(xi−1)

≤

(

|α|

|α|+ |β|

|f(ti)− f(ti−1)|

β̂
+

|β|

|α|+ |β|

|g(ti)− g(ti−1)|

β̂

)p(xi−1)

≤
|α|

|α|+ |β|

(

|f(ti)− f(ti−1)|

β̂

)p(xi−1)

+
|β|

|α|+ |β|

(

|g(ti)− g(ti−1)|

β̂

)p(xi−1)

=
|α|

|α|+ |β|

∣

∣

∣

∣

(

f

β̂

)

(ti)−

(

f

β̂

)

(ti−1)

∣

∣

∣

∣

p(xi−1)

+
|β|

|α|+ |β|

∣

∣

∣

∣

(

g

β̂

)

(ti)−

(

g

β̂

)

(ti−1)

∣

∣

∣

∣

p(xi−1)

.

Thus,

∣

∣

∣

(

αf+βg
µ

)

(ti)−
(

αf+βg
µ

)

(ti−1)
∣

∣

∣

p(xi−1)

λi
≤

|α|

|α|+ |β|

∣

∣

∣

(

f

β̂

)

(ti)−
(

f

β̂

)

(ti−1)
∣

∣

∣

p(xi−1)

λi

+
|β|

|α|+ |β|

∣

∣

∣

(

g

β̂

)

(ti)−
(

g

β̂

)

(ti−1)
∣

∣

∣

p(xi−1)

λi

.

Taking supremum over all tagged partitions π∗ of [a, b] we get

V
p(·)
Λ

(

α f + β g

µ

)

≤
|α|

|α|+ |β|
V

p(·)
Λ

(

f

β̂

)

+
|α|

|α|+ |β|
V

p(·)
Λ

(

g

β̂

)

< ∞.

Therefore,
α f + β g ∈ Λp(·)BV ([a, b]).

We conclude that Λp(·)BV ([a, b]) is indeed a vector space.

Now we define the function

‖ · ‖Λp(·)
: Λp(·)BV ([a, b]) → R

by

‖f‖Λp(·)
:= |f(a)|+ inf

{

β > 0 : V
p(·)
Λ

(

f

β

)

≤ 1

}

for each f ∈ Λp(·)BV ([a, b]).

We now prove that ‖ · ‖ defines a norm on Λp(·)BV ([a, b]).
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Theorem 3.3. (Λp(·)BV ([a, b]); ‖ · ‖Λp(·)
) is a normed vector space.

Proof. Let f, g ∈ Λp(·)BV ([a, b]), α ∈ R and let Λ = {λi}i≥1 be a W -sequence.

1. Clearly by definition:

‖f‖Λp(·)
≥ 0, for all f ∈ Λp(·)BV ([a, b]).

2. If α = 0 then ‖α f‖Λp(·)
= |α| ‖f‖Λp(·)

.

Suppose that α 6= 0. Then,

‖α f‖Λp(·)
= |α f(a)|+ inf

{

β > 0 : V
p(·)
Λ

(

α f

β

)

≤ 1

}

= |α| |f(a)|+ inf

{

β > 0 : V
p(·)
Λ

(

f
β
|α|

)

≤ 1

}

= |α| |f(a)|+ |α| inf

{

β

|α|
> 0 : V

p(·)
Λ

(

f
β
|α|

)

≤ 1

}

= |α|

(

|f(a)|+ inf

{

β̂ > 0 : V
p(·)
Λ

(

f

β̂

)

≤ 1

})

= |α|‖f‖Λp(·)
.

3. Let β1, β2 > 0 such that

β1 > inf

{

β > 0 : V
p(·)
Λ

(

f

β

)

≤ 1

}

:= C1

and

β2 > inf

{

β > 0 : V
p(·)
Λ

(

g

β

)

≤ 1

}

:= C2.

Thus, by the definition of infimum, there are β̂1, β̂2 such that

C1 < β̂1 < β1 with V
p(·)
Λ

(

f

β̂1

)

≤ 1

and

C2 < β̂2 < β2 with V
p(·)
Λ

(

g

β̂2

)

≤ 1,

then, using property (2) of Theorem 3.1, we have

V
p(·)
Λ

(

f

β1

)

≤ 1 and V
p(·)
Λ

(

g

β2

)

≤ 1.
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Put β̂ := β1 + β2. As V
p(·)
Λ (f) is convex

V
p(·)
Λ

(

f + g

β̂

)

= V
p(·)
Λ

(

β1

β̂

f

β1
+

β2

β̂

g

β2

)

≤
β1

β1 + β2

V
p(·)
Λ

(

f

β1

)

+
β1

β1 + β2

V
p(·)
Λ

(

g

β2

)

≤ 1,

consequently,

‖f + g‖Λp(·)
= |(f + g)(a)|+ inf

{

δ > 0 : V
p(·)
Λ

(

f + g

δ

)

≤ 1

}

≤ |f(a) + g(a)|+ β̂

≤ |f(a)|+ β1 + |g(a)|+ β2,

since β1 and β2 are arbitrary, particularly for β1 = β2 := 1/2n with
n ∈ N we obtain

‖f + g‖Λp(·)
≤ |f(a)|+ C1 +

1

2n
+ |g(a)|+ C2 +

1

2n

= |f(a)|+ C1 + |g(a)|+ C2 +
1

n
,

and taking limit when n → +∞, we obtain

‖f + g‖Λp(·)
≤ |f(a)|+ C1 + |g(a)|+ C2

= ‖f‖Λp(·)
+ ‖g‖Λp(·)

.

4. We now prove that ‖f‖Λp(·)
= 0 if and only if f = 0.

Note that if f = 0, V
p(·)
Λ

(

f
β

)

= 0 ≤ 1 for all β > 0, so that

inf

{

β > 0 : V
p(·)
Λ

(

f

β

)

≤ 1

}

= 0

and since f(a) = 0 we obtain ‖f‖Λp(·)
= 0. Suppose now that ‖f‖Λp(·)

=
0. Then

|f(a)|+ inf

{

β > 0 : V
p(·)
Λ

(

f

β

)

≤ 1

}

= 0,

which implies that

|f(a)| = 0 and inf

{

β > 0 : V
p(·)
Λ

(

f

β

)

≤ 1

}

= 0.
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Now, if inf
{

β > 0 : V
p(·)
Λ

(

f
β

)

≤ 1
}

= 0, given ε > 0, there exists 0 <

β < ε such that

V
p(·)
Λ

(

f

ε

)

≤ V
p(·)
Λ

(

f

β

)

≤ 1.

This implies that V
p(·)
Λ

(

f
ε

)

≤ 1, for all ε > 0, particularly for 0 < ε < 1,

V
p(·)
Λ (f) = V

p(·)
Λ

(

ε
f

ε

)

= V
p(·)
Λ

(

ε
f

ε
+ (1− ε) 0

)

≤ ε V
p(·)
Λ

(

f

ε

)

+ (1− ε) V
p(·)
Λ (0)

≤ ε.

Thus, 0 ≤ V
p(·)
Λ (f) ≤ ε, for all ε > 0 and this implies that

V
p(·)
Λ (f) = 0.

Moreover, without loss of generality we may consider the partition π :
a = t0 < t1 = x < t2 = b, from which we obtain

|f(x)− f(a)|p(a)

λ1
+

|f(b)− f(x)|p(x)

λ2
= 0,

then |f(x)− f(a)| = 0 and |f(b)− f(x)| = 0 so that f(x) = f(a) = f(b),
for all x ∈ [a, b] and as f(a) = 0 we obtain f = 0.

Theorem 3.4. Let p : [a, b] → [1,+∞) be a function and let Λ be a W -
sequence, then (Λp(·)BV ([a, b]); ‖ · ‖Λp(·)

) is a Banach’s space.

Proof. Let Λ = {λi}i≥1 a W -sequence and suppose that {fn}n≥1 is a Cauchy’s
sequence in (Λp(·)BV ([a, b]); ‖ · ‖Λp(·)

). Then, given ε > 0, there exists N > 0
such that for m,n ≥ N we obtain

‖fn − fm‖Λp(·)
≤

ε

2
,

that is to say,

|fn(a)− fm(a)|+ inf

{

β > 0 : V
p(·)
Λ

(

fn − fm
β

)

≤ 1

}

<
ε

2
.

Thus |fn(a)− fm(a)| <
ε

2
and

inf

{

β > 0 : V
p(·)
Λ

(

fn − fm
β

)

≤ 1

}

<
ε

2
, n,m ≥ N ;
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then, by the definition of infimum and the property 2 of Theorem 3.1,

V
p(·)
Λ

(

fn − fm
ε/2

)

≤ 1.

Let us fix s, t ∈ [a, b] with s < t and consider, without loss of generality,
the tagged partition π∗ : a = t0 < x0 < t1 = s < x1 < t2 = t < x2 < t3 = b.
Let M = max{λ2, 1} be, then

(

|(fn−fm)(t2)−(fn−fm)(t1)|
ε/2

)p(x1)

λ2
≤

3
∑

i=1

(

|(fn−fm)(ti)−(fn−fm)(ti−1)|
ε/2

)p(xi−1)

λi

≤ V
p(·)
Λ

(

fn − fm
ε/2

)

≤ 1

therefore,

|(fn − fm)(t2)− (fn − fm)(t1)|
p(x1) ≤

(ε

2

)p(x1)

λ2 ≤
(ε

2

)p(x1)

M

hence

|(fn − fm)(t)− (fn − fm)(s)|
p(x1) ≤

(ε

2
M
)p(x1)

thus

|(fn − fm)(t)− (fn − fm)(s)| ≤ M
ε

2
, for all s, t ∈ [a, b].

Let us fix s = a,

|fn(t)− fm(t)− (fn(a)− fm(a))| ≤ M
ε

2
, for all t ∈ [a, b]

and as |fn(a)− fm(a)| ≤ ε/2 we obtain

|fn(t)− fm(t)| = |fn(t)− fn(a) + fn(a) + fm(a)− fm(a)− fm(t)|

≤ |fn(t)− fm(t)− (fn(a) + fm(a))|+ |fn(a)− fm(a)|

≤ M
ε

2
+

ε

2
=

(M + 1) ε

2
, for all t ∈ [a, b].

Therefore, {fn}n≥1 is a uniform Cauchy sequence on the interval [a, b].
Since R is complete, there is a function f defined on [a, b] such that

lim
n→+∞

fn(t) = f(t), t ∈ [a, b].
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We now prove that {fn}n≥1 converges in the norm ‖ · ‖Λp(·)
. Note that

‖fn − f‖Λp(·)
= |fn(a)− f(a)|+ inf

{

β > 0 : V
p(·)
Λ

(

fn − f

β

)

≤ 1

}

. (2)

Recall that |fn(a)− fm(a)| < ε/2. Taking limit when m → +∞ we have

|fn(a)− f(a)| ≤ ε/2, n ≥ N. (3)

On the other hand, consider the tagged partition

π∗ : a = t0 < x0 < t1 < · · · < tk−1 < xk−1 < tk = b

and let us fix n ≥ N . Then,

k
∑

i=1

(

|fn(ti)− f(ti)− (fn(ti−1)− f(ti−1))|

ε/2

)p(xi−1)

λi

= lim
m→+∞

k
∑

i=1

(

|fn(ti)− fm(ti)− (fn(ti−1)− fm(ti−1))|

ε/2

)p(xi−1)

λi

≤ lim sup
m→+∞

V
p(·)
Λ

(

fn − fm
ε/2

)

≤ 1,

this implies that V
p(·)
Λ

(

fn−f
ε/2

)

≤ 1 and therefore

inf

{

δ > 0 : V
p(·)
Λ

(

fn − f

δ

)

≤ 1

}

≤
ε

2
. (4)

Returning to equation (2) and we using the results (3) and (4) we obtain

‖fn − f‖Λp(·)
≤

ε

2
+

ε

2
= ε, n ≥ N.

Thus, the sequence {fn}n≥1 converge to the function f in the norm ‖ · ‖Λp(·)

and in this manner we have to

(Λp(·)BV ([a, b]); ‖ · ‖Λp(·)
)

is a Banach space.
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4 Characterization of Λp(·)BV ([a, b]) by Com-

positions

A problem that has attracted the attention of many mathematicians has
been the representation “by the composition” of certain basic functions the
elements of new classes, or existing classes of functions; i.e., to characterize
somehow the functions of a given space as the composition of two simpler func-
tions. We begin by mentioning that W. Sierpinski in 1933 (see [18]) showed
that a function f : [a, b] → R is regulated if, and only if, it is the composition
of an increasing function and a continuous function; then, H. Federer in 1969
(see [7]) showed that a function is of bounded variation if, and only if, it is
the composition of a Lipschitz function with a monotone function. Chistyakov
and Galkin in 1998 (see [3]), proved a similar result for functions of p-bounded
variation with p > 1: they showed that a function is of p-bounded variation if,
and only, if it is the composition is a non-decreasing bounded function with a
Hölder function.

Let p : [a, b] → [1,+∞) be a function and let γ(·) be a function such that
0 < γ(·) ≤ 1. We say that g ∈ Hγ(·), the Hölder space of variable exponent, if
there exists C > 0 such that

|g(ti)− g(ti−1)| ≤ C |ti − ti−1|
γ(xi−1), for all xi−1 ∈ [a, b].

The least number C satisfying the above inequality is called the Hölder
constant of g.

Following these ideas, first we exhibit present next a procedure, involving
compositions, to produce plenty of concrete examples of functions of p(·)-
variation in the sense of Waterman-Shiba.

Theorem 4.1. If ϕ : [a, b] → R is monotone and bounded, g : ϕ([a, b]) → R

is a Hölder function with variable exponent γ(·) =
1

p(·)
and f = g ◦ ϕ, then

f ∈ Λp(·)BV ([a, b]).

Proof. Let Λ a W -sequence. Suppose that ϕ is non-decreasing (the decreasing
case is treated analogously). Then, ϕ([a, b]) = [ϕ(a), ϕ(b)] and by property 4
of Lemma 2.4 we have

V
p(·)
Λ

(

f

C
; [a, b]

)

= V
p(·)
Λ

(g ◦ ϕ

C
; [a, b]

)

= V
p(·)
Λ

( g

C
;ϕ([a, b])

)

for all C > 0.

(5)
Since g ∈ Hγ(·), there exists C > 0 such that

|g(ti)− g(ti−1)| ≤ C |ti − ti−1|
γ(xi−1) for all xi−1 ∈ [a, b],
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this implies that
|g(ti)− g(ti−1)|

C
≤ |ti − ti−1|

γ(xi−1)

then,

[

|g(ti)− g(ti−1)|

C

]p(xi−1)

≤ |ti − ti−1|
p(xi−1) γ(xi−1) = |ti − ti−1|

so that

[

|g(ti)−g(ti−1)|
C

]p(xi−1)

λi
≤

|ti − ti−1|

λi
≤

|ti − ti−1|

λ1
. (6)

Consider now T = {ti}
m
i=1 a partition of [ϕ(a), ϕ(b)], using (6) we have

m
∑

i=1

[

|g(ti)− g(ti−1)|
C

]p(xi−1)

λi
≤

m
∑

i=1

|ti − ti−1|

λ1
≤

ϕ(b)− ϕ(a)

λ1
,

now, we take supreme on T and remembering that ϕ is bounded, we obtain

V
p(·)
Λ

( g

C
;T
)

≤
ϕ(b)− ϕ(a)

λ1

< +∞.

This implies that

V
p(·)
Λ

( g

C
;ϕ([a, b])

)

= V
p(·)
Λ

( g

C
; [ϕ(a), ϕ(b)]

)

< +∞.

Thus, returning to equation (5) we have

V
p(·)
Λ

(

f

C
;ϕ([a, b])

)

< +∞.

Therefore, f = g ◦ ϕ ∈ Λp(·)BV ([a, b]).

Next we present the following result that states that Λp(·)BV is invariant
under monotone substitutions of variables this concerns with the theory of
linear composition operators:

Proposition 4.2. Given a function g : [c, d] → R, let τ : [a, b] → [c, d] be
continuous and strictly increasing function with τ(a) = c and τ(b) = d. Then
g ◦ τ ∈ Λp(·)BV [a, b] if and only if g ∈ Λp(·)BV [c, d].
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Proof. Let Π([a, b]) denote the set of all partitions of the interval [a, b] and let
π∗ = {x0, x1, . . . , xn} ∈ [a, b], then τπ∗ := {τ(x0), τ(x1), . . . , τ(xn)} ∈ Π([c, d])
and we have Π[a, b] = τ(Π([c, d])). The result follows by using a similar argu-
ment as the one given in the proof of Proposition 2.22 in [1].
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