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Abstract

The classic concept of limit is not enough to accurately describe

the property of convergent sequence, however the definition of frequent

convergence of sequence, defined by the concept of frequent measure,

can get the better details of divergent sequence than the classic con-

cept of convergence. In this thesis, using the definition and properties

of frequent measure and frequent convergence, we study the frequently

convergent properties of difference equations xn+k = 1− x
2
n. We first

present a fixed point theorem and then define a polynomial function,

which are both closely related to the above diffrence equations. Through

different monotonic properties of the above polynomial function on a dif-

ferent intervals, we detailed disscuss the solution of the above diffrence

equation as k = 2, that is xn+2 = 1− x
2
n, when initial values in diffrent

intervals, and then we generalize the conclusion to the case k being any

positive integer.
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1 Introduction

Discrete-time dynamic systems are always represented by difference equations.
For discrete-time dynamic system, we use t to represent time, the system can
be represented by the following equation:

xt+1 = f(xt) (1)

where f is a function [1]. If f is a linear function, then the danymic system
is linear, if f is a nonlinear function, then the danymic system is nonlinear.
This paper explores the frequently convergent properties of a class of nonlinear
discrete dynamic system.

For difference equation (1), given an initial value x0, we can use this differ-
ence equations to determine a sequence X = {xn}∞n=1, the sequence is called a
solution of the differential equation (1) . Since the solutions of difference equa-
tions are sequences, we can transfer some convergent properties of sequences
to the solutions of difference equations. The classic concept of limit has been
insufficient to accurately describe the convergence and divergence of the ae-
quence, so Chuanjun Tian [2] first introduced the concept of frequent measure
of sequence, and thus defined the definitions of frequent convergence and fre-
quent oscillation of sequences [3− 6]. Now the concept of frequent measure
has become a basic tool of studying discrete danymic systems. In recent years,
there are much attention about frequent oscillation of solutions of difference
equations [6 − 20], but little concern on frequent convergence of solutions of
difference equations [5, 21− 23].

In 2006, Chuanjun Tian and Suisheng Zheng [5] first discussed the frequent
convergence of solutions of the following difference equations with the initial
value x0 in [0, 1]:

xn+1 = 1− xn
2 (2)

For the above nonlinear differential equation, the selection of initial values
does not guarantee that the solution of difference equation belongs to the same
range. In view of the initial value can be taken over entire real axis, Hui Li and
Yuanhong Tao [23] discussed the frequently convergent properties of diffrence
equation (2) as the initial value took on different intervals of real axis. This
paper intends to disscuss the frequently convergent properties of the following
diffrence equation:

xn+k = 1− xn
2 (3)

where k is an arbitary positive integer.

2 Preliminary Notes

Let Z be the set of integers, for any k, l ∈ Z, denoting Z[k,∞) = {i ∈ Z|i ≥ k},
Z[k, l] = {i ∈ Z|k ≤ i ≤ l}, Z(−∞, l] = {i ∈ Z|i ≤ l}. If Ω ⊆ Z, then |Ω|
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means the numbers of elements of set Ω. Denoting Ω(n) = Ω ∩ Z(−∞, n].
Let X = {Xn} be a real sequence, c be any real number, then the set {n ∈
Z[k,∞)|Xn > c} will be denoted by (v > c), the notations (v ≥ c), (v < c)
and (v ≤ c) will be defined similarly.

Definition 2.1 [2] Let Ω be a subset of Z+, if the limit lim supn→∞
|Ωn|
n

exists, then we call it upper frequent measure of the set Ω, denoting by µ∗(Ω);

if the limit limn→∞ inf |Ωn|
n

exists, then we call it lower frequent measure of Ω,
denoting by µ∗(Ω). Specially, if µ∗(Ω) = µ∗(Ω), then we call it the frequent
measure of the set Ω, denoting by µ(Ω), we also say that Ω is measurable. If
Ω can not be measured, we say that Ω is unmeasurable.

The following are some properties of frequency measurement:

Proposition 2.2 [2] If Ω ⊆ Z+, µ∗(Ω) and µ∗(Ω) both exist, then

0 ≤ µ∗(Ω) ≤ µ∗(Ω) ≤ 1.

If Ω is a finite set, then µ(Ω) = 0, µ(Z+) = 1. Especially µ(φ) = 0.

Proposition 2.3 [2] If Ω and Γ are the subsets of Z+, Ω ⊆ Γ, then µ∗(Ω) ≤
µ∗(Γ) and µ∗(Ω) ≤ µ∗(Γ).

Proposition 2.4 [2] If Ω and Γ are two subsets of Z+, then we have

µ∗(Ω) + µ∗(Γ)− µ∗(Ω ∩ Γ) ≤ µ∗(Ω + Γ) ≤ µ∗(Ω) + µ∗(Γ)− µ∗(Ω ∩ Γ)

µ∗(Ω) + µ∗(Γ)− µ∗(Ω ∩ Γ) ≤ µ∗(Ω + Γ) ≤ µ∗(Ω) + µ∗(Γ)− µ∗(Ω ∩ Γ)

Besides, if Ω and Γ are mutually disjoint, then

µ∗(Ω) + µ∗(Γ) ≤ µ∗(Ω + Γ) ≤ µ∗(Ω) + µ∗(Γ) ≤ µ∗(Ω + Γ) ≤ µ∗(Ω) + µ∗(Γ).

Proposition 2.5 [2] For any set Ω ⊆ Z+, we have µ∗(Ω)+µ∗(Z+ \ Ω) = 1.

Proposition 2.6 [2] If Ω and Γ are two subsets of Z+, and Ω ⊆ Γ, then we
have

µ∗(Γ)− µ∗(Ω) ≤ µ∗(Γ \ Ω) ≤ µ∗(Γ)− µ∗(Ω),

µ∗(Γ)− µ∗(Ω) ≤ µ∗(Γ \ Ω) ≤ µ∗(Γ)− µ∗(Ω).

Proposition 2.7 [2] If Ω and Γ are two subsets of Z+, and µ∗(Ω)+µ∗(Γ) ≥
1, then the set Ω ∩ Γ must be an infinite set.



560 Fanqiang Bu, Hui Li and Yuanhong Tao

Definition 2.8 [3] Let X = {xn}∞n=k be a real sequence and c any real num-
ber. If for any given number ε > 0, there is a constant ω ∈ [0, 1) such that
µ∗(|X − c| ≥ ε) ≤ ω (or (µ∗(|X − c| ≥ ε) ≤ ω)), then c is called a frequent
limit of upper (respectively lower) degree ω of the sequence X, and X is said
to be frequently convergent to c of upper (respectively lower) degree ω.

If there exists a constant ε0 such that µ{|X − c| ≥ ε} = ω for any number
ε ∈ (0, ε0) then the sequence X is said to be frequently convergent to c of
degree ω and c is said to be a frequent limit of degree ω of X. In particular, if
ω = 0, we say that X frequently converges to c, and c is the frequent limit of
X, denoting by f limn→∞ xn = c.

The following are properties of frequent limit, where X = {xn}, Y =
{yn}, Z = {zn} are all real sequences.

Proposition 2.9 [3] If f limn→∞ xn = f limn→∞ yn = a, if µ(X ≤ Z≤ Y ) =
1, then f limn→∞ zn = a.

Proposition 2.10 [3] If f limn→∞ xn = a and f limn→∞ yn = b 6= 0, then
f limn→∞(xn ± yn) = a± b and f limn→∞(xnyn) = ab.

Proposition 2.11 [3] If f limn→∞ xn = a and f limn→∞ yn = b 6= 0, then
the sequence {xn/yn} is frequent convergence, and f limn→∞(xn/yn) = a/b.

Proposition 2.12 [3] If f limn→∞ xn = a and function g(t) is continuous
near point a, then f limn→∞ g(xn) = g(a).

Definition 2.13 [3] Let X = {xn}∞n=k be a real sequence and I ⊆ R. If
there exists a constant ω ∈ [0, 1] such that µ∗(X /∈ I) ≤ ω (or equivalently,
µ∗(X ∈ I) ≥ 1− ω), then X is said to be frequently inside I of upper degree
ω. If µ∗(X /∈ I) ≤ ω (or equivalently, µ∗(X ∈ I) ≥ 1− ω), then X is said to
be frequently inside I of lower degree ω.

In particular, if µ∗(X /∈ I) = 0, then X is said to be frequently inside I.

3 Main Results

In this section, we will discuss the frequently convergence of solutions of dif-
ference equation (3). We first establish an fixed point theorem closely related
to the diffrence equation (3), and which will be used in the sequel.

Provided the following two difference equations:

xn+k = 1− (1− xn
2)2 (4)

xn+k = 1− [1− (1− xn
2)2]2 (5)
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Theorem 3.1 The fixed points of difference equation (3) must also be fixed
points of difference equations (4) and (5), but the fixed points of difference
equation (4) are not always fixed points of difference equations (5).

Proof. We first solve the fixed points of difference equation (3) : suppose that

x = 1− x2, namely x2 + x− 1 = 0, then two fixed points of (3) are −1+
√
5

2
and

−1−
√
5

2
.

Then we find the fixed points of difference equation (4): set that x =
1−(1−x2)2, namely x4−2x2+x = 0, obviously x4−2x2+x = x(x−1)(x2+x−1),

so four fixed points of (4) are −1−
√
5

2
, 0, −1+

√
5

2
, 1.

Therefore, the fixed points of difference equation (3) must also be fixed
points of difference equations (4).

We next to seek the fixed points of difference equation (5): set that x =
1− [(1− x2)2]2, namely x8 − 4x6 + 4x4 − 1 = 0, obviously

x8 − 4x6 + 4x4 − 1 = (x2 + x− 1)(1 + x2 + x3 − 2x4 − x5 + x6)

So using numerical methods, we can get six fixed points of (5):

−1 −
√
5

2
,
−1 +

√
5

2
, 0.0871062±0.655455i,−1.00914±0.324759i, 1.42203±0.114188i.

where i =
√
−1.

Thus the fixed points of difference equations (5) are two real numbers and
four complex numbers, while the fixed points of difference equations (4) are
four real numbers, so the fixed points of difference equation (3) must also
be fixed points of difference equations (5), and the fixed points of difference
equation (4) are not always fixed points of difference equations (5). Hence the
theorem holds. #

Now we begin to discuss the diffrence equation (2) as n = 2, that is,

xn+2 = 1− xn
2 (6)

Obiviously, given two initial-values x0, x1, we can use equation (6) to deduce
sequence X = {xn}∞n=0, which is the solution of the difference equation (6).

Obviously, if the initial-values x0, x1 = −1±
√
5

2
, then we can deduce that xn =

1±
√
5

2
, n = 0, 1, 2 · · ·, which means the solution of the difference equation (6)

is constant-valued. If the initial-value x0, x1 doesn’t equal to −1±
√
5

2
, then we

have the following theorem:

Theorem 3.2 Let x0, x1 be the initial-values of the difference equation (6),
X = {xn}∞n=0 be the solution , then we have the following results:

1) If x0, x1 ∈ (−∞, −1−
√
5

2
) ∪ (1+

√
5

2
,+∞), then X = {xn}∞n=0 belongs to

(−∞, −1−
√
5

2
);
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2) If x0, x1 ∈ (−1−
√
5

2
,−1]∪[1, 1+

√
5

2
), thenX = {xn}∞n=0 belongs to (−1−

√
5

2
, 1];

3)If x0, x1 ∈ [−1, 1−
√
5

2
)∪(1−

√
5

2
, −1+

√
5

2
)∪(−1+

√
5

2
, 1], then X = {xn}∞n=0 has

two frequent limits 0 and 1 of the same degree 0.5.
4) If x0 ∈ (−∞, −1−

√
5

2
) ∪ (1+

√
5

2
,+∞), x1 ∈ (−1−

√
5

2
,−1] ∪ [1, 1+

√
5

2
), then

X = {xn}∞n=0 is frequently inside (−∞, −1−
√
5

2
) and (−1−

√
5

2
, 1) of the same

degree 0.5 ;
5) If x0 ∈ (−∞, −1−

√
5

2
) ∪ (1+

√
5

2
,+∞), x1 ∈ [−1, 1−

√
5

2
) ∪ (1−

√
5

2
, −1+

√
5

2
) ∪

(−1+
√
5

2
, 1], then X = {xn}∞n=0 is frequently inside (−∞, −1−

√
5

2
) of degree 0.5

and has two frequent limits 0 and 1 of the same degree 0.25;
6) If x0 ∈ (−1−

√
5

2
,−1] ∪ [1, 1+

√
5

2
), x1 ∈ [−1, 1−

√
5

2
) ∪ (1−

√
5

2
, −1+

√
5

2
) ∪

(−1+
√
5

2
, 1], then X = {xn}∞n=0 belongs to (−1−

√
5

2
, 1) and has two frequent limits

0 and 1 of the same degree 0.5.

Proof. Let G(t) = t − [1 − (1 − t2)2]. If G(t) = 0, then from Theorem

1 we can get four roots: t1 = −1−
√
5

2
, t2 = 0, t3 = −1+

√
5

2
, t4 = 1. Obviously,

t1 < t2 = 0 < t3 < t4.
By elementary analysis, it is easy to see thatG(t) > 0 for t ∈ (−∞, −1−

√
5

2
)∪

[0, −1+
√
5

2
) ∪ [1,+∞) and G(t) < 0 for t ∈ (−1−

√
5

2
, 0] ∪ (−1+

√
5

2
, 1], that is,

{t>1−(1−t2)2, t∈(−∞,−1−
√

5

2
)∪[0,−1+

√

5

2
)∪[1,+∞)

t<1−(1−t2)2, t∈(−1−
√

5

2
,0]∪(−1+

√

5

2
,1]

In order to fully descibe the frequently convergent properties of the solotion
of (6) as the initial values in different intervals, we can discuss the following
five intervals which the two initial values belong to:

(−∞,
−1−

√
5

2
); (

−1−
√
5

2
, 0]; [0,

−1 +
√
5

2
); (

−1 +
√
5

2
, 1]; (1,+∞).

But the function y = x2 is an even function, so we can only consider the
case of initial values in negative half of the real axis, then we can deduce the
case of initial values in positive half of the real axis. Thus the aymmetric
points t1, t2, t3, t4 of t′1 = 1+

√
5

2
, t′2 = t2 = 0, t′3 = 1−

√
5

2
, t′4 = −1 can also be

regard as the terminals of intervals in real axis. Since t1 < t′4 < t′3 < t2 =
0 < t3 < t4 < t′1, the negative half of the real axis can be separated into the
following intervals:

(−∞,
−1−

√
5

2
); (

−1−
√
5

2
,−1]; [−1,

1−
√
5

2
); (

1−
√
5

2
, 0].

Then we should analyze the following eight cases of initial values
I : x0, x1 ∈ (−∞, −1−

√
5

2
); II : x0, x1 ∈ (−1−

√
5

2
,−1];

III : x0, x1 ∈ [−1, 1−
√
5

2
); IV : x0, x1 ∈ (1−

√
5

2
, 0];
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V : x0 ∈ (−∞, −1−
√
5

2
); x1 ∈ (−1−

√
5

2
,−1]; V I : x0 ∈ (−∞, −1−

√
5

2
); x1 ∈

[−1, 1−
√
5

2
);

V II : x0 ∈ (−∞, −1−
√
5

2
); x1 ∈ (1−

√
5

2
, 0]; V III : x0 ∈ (−1−

√
5

2
,−1]; x1 ∈

[−1, 1−
√
5

2
);

V IV : x0 ∈ (−1−
√
5

2
,−1]; x1 ∈ (1−

√
5

2
, 0]; V V : x0 ∈ [−1, 1−

√
5

2
); x1 ∈

(1−
√
5

2
, 0];

We next to discuss each case in details:
Case I : x0, x1 ∈ (−∞, −1−

√
5

2
).

Since x2
0 > 3+

√
5

2
, we have x2 = 1− x2

0 < −1−
√
5

2
and x2

2 > 3+
√
5

2
, then

x4 = 1− x2
1 <

−1−
√
5

2
, thus we can easily deduce that {x2n}∞n=0 ⊂ (−∞, −1−

√
5

2
).

In view of the inequality t > 1− (1− t2)2 on t ∈ (−∞, −1−
√
5

2
) and (6), we have

−1−
√
5

2
> x0 > x2 > x4 > · · · > x2n > · · · > −∞,

that is, {x2n}∞n=0 is a decreasing sequence which belongs to (−∞, −1−
√
5

2
). Sim-

ilarly, {x2n+1}∞n=0 ⊂ (−∞, −1−
√
5

2
) and

−1−
√
5

2
> x1 > x3 > x5 > · · · > x2n+1 > · · · > −∞,

that is, {x2n+1}∞n=0 is also a decreasing sequence which belongs to (−∞, −1−
√
5

2
),

hence the solution X of the difference equation (6) belongs to (−∞, −1−
√
5

2
).

Case II : x0, x1 ∈ (−1−
√
5

2
,−1].

Since 1 ≤ x2
0 < 3+

√
5

2
, then we have −1−

√
5

2
< x2 = 1− x2

0 ≤ 0 and 0 ≤
x2
2 < 3+

√
5

2
, from −1−

√
5

2
< x4 = 1− x2

1 ≤ 1 and 0 ≤ x2
4 < 3+

√
5

2
, we have

−1−
√
5

2
< x6 = 1− x2

4 ≤ 1, thus we can deduce that {x2n}∞n=0 ⊂ (−1−
√
5

2
, 1].

Similarly, {x2n+1}∞n=0 ⊂ (−1−
√
5

2
, 1], hence the solution X of the difference

equation (6) belongs to (−1−
√
5

2
, 1].

Case III : x0, x1 ∈ [−1, 1−
√
5

2
).

Since 3−
√
5

2
< x2

0 ≤ 1, we have 0 ≤ x2 = 1− x2
0 < −1+

√
5

2
and 0 ≤ x2

2 <
3−

√
5

2
, then −1+

√
5

2
< x4 = 1− x2

1 ≤ 1 and 3−
√
5

2
< x2

4 ≤ 1, then we have

0 ≤ x6 = 1− x2
2 <

−1+
√
5

2
, and 0 ≤ x2

6 <
3−

√
5

2
, then −1+

√
5

2
< x8 = 1− x2

3 < 1,
thus we can deduce that

{x4n+2}∞n=0 ⊂ [0,
−1 +

√
5

2
); {x4n}∞n=1 ⊂ (

−1 +
√
5

2
, 1].

Similarly we have

{x4n+3}∞n=0 ⊂ [0,
−1 +

√
5

2
); {x4n+1}∞n=1 ⊂ (

−1 +
√
5

2
, 1].
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In view of (6), we have

xn+4 = 1− x2
n+2 = 1− (1− x2

n)
2
, n = 0, 1, 2, . . . . (7)

It also follows from the inequality t > 1 − (1 − t2)2 on t ∈ [0, −1+
√
5

2
) and

t < 1− (1− t2)2 on t ∈ (−1+
√
5

2
, 1] that

−1 +
√
5

2
> x2 > x6 = 1−(1− x2

2)
2
> . . . > x4n+2 = 1−(1− x2

4n−2)
2
> . . . ≥ 0;

−1 +
√
5

2
> x3 > x7 = 1−(1− x2

3)
2
> . . . > x4n+3 = 1−(1− x2

4n−1)
2
> . . . ≥ 0;

−1 +
√
5

2
< x4 < x8 = 1− (1− x2

4)
2
< . . . < x4n = 1− (1− x2

4n−4)
2
< . . . ≤ 1;

−1 +
√
5

2
< x5 < x9 = 1−(1− x2

5)
2
< . . . < x4n+1 = 1−(1− x2

4n−3)
2
< . . . ≤ 1.

That is to say, the sequences {x4n+2}∞n=0 and {x4n+3}∞n=0 are two monotoni-

cally decreasing sub-sequence in [0, −1+
√
5

2
), and the sequences {x4n}∞n=1 and

{x4n+1}∞n=1 are two monotonically increasing sub-sequence in (−1+
√
5

2
, 1].

If we let yn = x4n for n = 1, 2, . . . , and zn = x4n+2 for n = 0, 1, 2, . . . ,, then

{yn}∞n=1 is a monotonically decreasing and bounded sequence in [0, −1+
√
5

2
) and

{zn}∞n=0 is a monotonically increasing and boubded sequence in (−1+
√
5

2
, 1], so

lim
n→∞

yn = y∗ ∈ [0,
−1 +

√
5

2
); lim

n→∞
zn = z∗ ∈ (

−1 +
√
5

2
, 1].

We assert that y∗ = 0 and z∗ = 1. To see this, note that we can write (7) in
the form

yn = H(yn−1), n = 1, 2, . . . ; zn = H(zn−1), n = 0, 1, 2, . . . ;

where H(u) = 1− (1− u2)
2
. It is easy to see that G(t) = t−H(t) = t− [1−

(1− t2)
2
] and y∗ = 1− (1− y2∗)

2
; z∗ = 1− (1− z2∗)

2
, i.e., G(y∗) = G(z∗) = 0.

Note that the polynomial G(t) = 0 has only one root 0 in [0, −1+
√
5

2
) and only

one root 1 in (−1+
√
5

2
, 1],so y∗ = 0, z∗ = 1, That is:

lim
n→∞

x4n = 0; lim
n→∞

x4n+2 = 1;

By similar arguments, we have

lim
n→∞

x4n+3 = 0; lim
n→∞

x4n+1 = 1.
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Thus from Definition 2.8, for any given number ε > 0 we have

µ∗(|X − 0| ≥ ε) = 0.5; µ∗(|X − 1| ≥ ε) = 0.5.

thus the solution X of the difference equation (6) has two frequent limits 0
and 1 of the same degree 0.5.

Case IV : x0, x1 ∈ (1−
√
5

2
, 0].

Since 0 ≤ x2
0 <

3−
√
5

2
, we have −1+

√
5

2
< x2 = 1− x2

0 ≤ 1 and 3−
√
5

2
< x2

2 ≤ 1,

then 0 ≤ x4 = 1− x2
2 < −1+

√
5

2
and 0 ≤ x2

4 < 3−
√
5

2
, then −1+

√
5

2
< x6 =

1− x2
4 ≤ 1 and 3−

√
5

2
< x2

6 ≤ 1, then we have 0 ≤ x8 = 1− x2
6 < −1+

√
5

2
, thus

we can deduce that {x2n+1}∞n=0 ⊂ (−1+
√
5

2
, 1) and

{x4n}∞n=1 ⊂ [0,
−1 +

√
5

2
); {x4n+2}∞n=0 ⊂ (

−1 +
√
5

2
, 1].

Similarly we have

{x4n+1}∞n=1 ⊂ [0,
−1 +

√
5

2
); {x4n+3}∞n=0 ⊂ (

−1 +
√
5

2
, 1].

By similar argument with Case III, we can say that the solution X of the
difference equation (6) has two frequent limits 0 and 1 of the same degree 0.5.

Case V : x0 ∈ (−∞, −1−
√
5

2
); x1 ∈ (−1−

√
5

2
,−1].

Since x0 ∈ (−∞, −1−
√
5

2
), from the analysis of Case I, we can get {x2n}∞n=0 ⊂

(−∞, −1−
√
5

2
). Due to x1 ∈ (−1−

√
5

2
,−1], from the analysis of Case II, we can

get {x2n+1}∞n=1 ⊂ (−1−
√
5

2
, 1]. From Definition 2.13 we have

µ(X /∈ (−∞,
−1−

√
5

2
)) = 0.5, µ(X /∈ (

−1 −
√
5

2
, 1]) = 0.5.

hence the solutionX of the difference equation (6) is frequently inside (−1−
√
5

2
, 1]

and frequently inside (−∞, −1−
√
5

2
) of the same degree 0.5.

Case V I : x0 ∈ (−∞, −1−
√
5

2
); x1 ∈ [−1, 1−

√
5

2
);

Since x0 ∈ (−∞, −1−
√
5

2
) and x1 ∈ [−1, 1−

√
5

2
), from the analysis of Case I

and Case III, , we can get

−1−
√
5

2
> x0 > x2 > x4 > · · · > x2n > · · · > −∞,

−1 +
√
5

2
> x3 > x7 = 1−(1− x2

3)
2
> . . . > x4n+3 = 1−(1− x2

4n−1)
2
> . . . ≥ 0;

−1 +
√
5

2
< x5 < x9 = 1−(1− x2

5)
2
< . . . < x4n+1 = 1−(1− x2

4n−3)
2
< . . . ≤ 1.
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From Definition 2.13 we have

µ(X /∈ (−∞,
−1−

√
5

2
)) = 0.5

similar to the argument of Case III, for any given number ε > 0 we have

µ∗(|X − 0| ≥ ε) = 0.75; µ∗(|X − 1| ≥ ε) = 0.75.

hence the solutionX of the difference equation (6) is frequently inside (−∞, −1−
√
5

2
)

of degree 0.5 and has two frequent limits 0 and 1 of the same degree 0.25.
Case V II : x0 ∈ (−∞, −1−

√
5

2
); x1 ∈ (1−

√
5

2
, 0].

Since x0 ∈ (−∞, −1−
√
5

2
) and x1 ∈ (1−

√
5

2
, 0], from the analysis of Case I

and Case IV, we can get

{x2n}∞n=0 ⊂ (−∞,
−1 −

√
5

2
);

−1 +
√
5

2
< x3 < x7 = 1−(1− x2

3)
2
< . . . < x4n+3 = 1−(1− x2

4n−1)
2
< . . . ≤ 1;

−1 +
√
5

2
> x5 > x9 = 1−(1− x2

5)
2
> . . . > x4n+1 = 1−(1− x2

4n−3)
2
> . . . ≥ 0.

By the similar argument of Case VI, we conclude that the solution X of the
difference equation (6) is frequently inside (−∞, −1−

√
5

2
) of degree 0.5 and has

two frequent limits 0, 1 of the same degree 0.25.
Case V III : x0 ∈ (−1−

√
5

2
,−1]; x1 ∈ [−1, 1−

√
5

2
);

Since x0 ∈ (−1−
√
5

2
,−1] and x1 ∈ [−1, 1−

√
5

2
), from the analysis of Case II

and Case III, we can get

{x2n}∞n=1 ⊂ (
−1 −

√
5

2
, 1];

−1 +
√
5

2
> x3 ≥ x7 = 1−(1− x2

3)
2
> . . . > x4n+3 = 1−(1− x2

4n−1)
2
> . . . ≥ 0;

−1 +
√
5

2
< x5 < x9 = 1−(1− x2

5)
2
< . . . < x4n+1 = 1−(1− x2

4n−3)
2
< . . . ≤ 1.

Since [0, −1+
√
5

2
)∪ (−1−

√
5

2
, 1] ⊂ (−1−

√
5

2
, 1], we can conclude that the solution X

belongs to (−1−
√
5

2
, 1]. By the similar argument of Case VI, we conclude that

the solution X of the difference equation (6) has two frequent limits 0 and 1
of the same degree 0.25.

Case V IV : x0 ∈ (−1−
√
5

2
,−1]; x1 ∈ (1−

√
5

2
, 0].
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Since x0 ∈ (−1−
√
5

2
,−1] and x1 ∈ (1−

√
5

2
, 0], from the analysis of Case II and

Case IV, we can get

{x2n}∞n=1 ⊂ (
−1 −

√
5

2
, 1];

−1 +
√
5

2
< x3 < x7 = 1−(1− x2

3)
2
< . . . < x4n+3 = 1−(1− x2

4n−1)
2
< . . . ≤ 1;

−1 +
√
5

2
> x5 > x9 = 1−(1− x2

5)
2
> . . . > x4n+1 = 1−(1− x2

4n−3)
2
> . . . ≥ 0.

By the similar argument of Case VIII, we conclude that the solution X of the
difference equation (6) belongs to (−1−

√
5

2
, 1] and has two frequent limits 0 and

1 of the same degree 0.25
Case V V : x0 ∈ [−1, 1−

√
5

2
); x1 ∈ (1−

√
5

2
, 0].

Since x0 ∈ [−1, 1−
√
5

2
) and x1 ∈ (1−

√
5

2
, 0], from the analysis of Case III and

Case IV, we can get

−1 +
√
5

2
> x2 > x6 = 1−(1− x2

2)
2
> . . . > x4n+2 = 1−(1− x2

4n−2)
2
> . . . ≥ 0;

−1 +
√
5

2
< x4 < x8 = 1− (1− x2

4)
2
< . . . < x4n = 1− (1− x2

4n−4)
2
< . . . ≤ 1;

−1 +
√
5

2
< x3 < x7 = 1−(1− x2

3)
2
< . . . < x4n+3 = 1−(1− x2

4n−1)
2
< . . . ≤ 1;

−1 +
√
5

2
> x5 > x9 = 1−(1− x2

5)
2
> . . . > x4n+1 = 1−(1− x2

4n−3)
2
> . . . ≥ 0.

By the similar argument of Case III and IV, for any given number ε > 0 we
have

µ∗(|X − 0| ≥ ε) = 0.5; µ∗(|X − 1| ≥ ε) = 0.5.

we conclude that the solution X of the difference equation (6) has two frequent
limits 0 and 1 of the same degree 0.5

Based on the above analysis and the symmetric intervals which initial values
belong to, the theorem is proved. #

Actually we can use inductive method to get the corresponding theo-
rem of (3) for arbitray positive integer k. Obviously, given k initial-values
x0, x1, · · · , xk−1, we can use equation (3) to deduce sequence X = {xn}∞n=0,
which is the solution of the difference equation (3). If the initial-values x0, x1, · · · , xk−1

do not equal to −1±
√
5

2
, then we have the following theorem:

Theorem 3.3 Let x0, x1, · · · , xk−1 be the initial-values of the difference equa-
tion (6), X = {xn}∞n=0 be the solution, then we have the following results:

1) If x0, x1, · · · , xk−1 ∈ (−∞, −1−
√
5

2
) ∪ (1+

√
5

2
,+∞), then X = {xn}∞n=0

belongs to (−∞, −1−
√
5

2
);
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2) If x0, x1, · · · , xk−1 ∈ (−1−
√
5

2
,−1] ∪ [1, 1+

√
5

2
), then X = {xn}∞n=0 belongs

to (−1−
√
5

2
, 1];

3) If x0, x1, · · · , xk−1 ∈ [−1, 1−
√
5

2
) ∪ (1−

√
5

2
, −1+

√
5

2
) ∪ (−1+

√
5

2
, 1], then X =

{xn}∞n=0 has two frequent limits 0 and 1 of the same degree 0.5.

4) If the number of initial values x0, x1, · · · , xk−1 in (−∞, −1−
√
5

2
)∪(1+

√
5

2
,+∞)

is athe number of initial values x0, x1, · · · , xk−1 in (−1−
√
5

2
,−1]∪ [1, 1+

√
5

2
) is b,

and the number of initial values x0, x1, · · · , xk−1 in [−1, 1−
√
5

2
)∪(1−

√
5

2
, −1+

√
5

2
)∪

(−1+
√
5

2
, 1] is k − a− b, then X = {xn}∞n=0 is frequently inside (−∞, −1−

√
5

2
) of

degree a

k
, frequently inside (−1−

√
5

2
, 1) of degree a

k
, and there are two frequent

limits 0 and 1 of same degree k−a−b
2k

.

Proof. Similar to the proof of Theorem 3.2.
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