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Abstract

We consider Fredholm bounded linear operators S+1 acting from
one Fréchet space X into another one Y, where S is Fredholm and T
is nuclear. We obtain formulas for solutions of the induced equations:
(S+T)x =vyo, y*(S+1T) = zj. These formulas are abstract analogues
of the classical formulas for solutions of Fredholm integral equations in
the space of continuous functions on [a,b]. In this approach the main
tools are provided by the theory of determinant systems. The effective
formulas for determinant systems for nuclear perturbations of Fredholm
operators in Fréchet spaces play the crucial role and lead to formulas of
Fredholm type.
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1 Introduction

The primary concern in the classical Fredholm theory [11] is obtaining
solutions of the equation (I + A1)z = z in the space C|a,b], where T is an
integral endomorphism with the kernel continuous on [a, b] X [a,b]. The the-
ory has been modified and generalized by many authors [19, 16, 14, 1, 15, 20]
to make it applicable to certain classes of integral endomorphisms of concrete
Banach spaces. The bibliography on determinants both in concrete and ab-
stract Banach spaces is very rich and we mention here a small part of it only
(18, 23, 22, 27, 17, 12, 13].
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R. Sikorski [24, 25] has derived formulas of Fredholm type for solutions
of a Fredholm linear equation (I +7T)x = xy and for the adjoint equation
E(I+T) =&, T being a quasinuclear endomorphism of a Banach space. Later
A. Buraczewski [3, 4] extended the Sikorski’s result to the formulas for Fred-
holm equations induced by endomorphisms of a Banach space of the form
S+ T, where S is Fredholm and 7' is quasinuclear. The further generalization
6] of these formulas was obtained for equations

(S+T)x =y (1)

and
w(S+T)=¢&, (2)

where S is any fixed Fredholm operator, of non-negative index, from a Banach
space X into another one Y and 7' is any quasinuclear operator from X into Y.
The formulas of Fredholm type are abstract analogues of the classical formulas
for solutions of Fredholm integral equations in C|a, b].

So far determinants have been applied for solving linear Fredholm equa-
tions in Banach spaces. The purpose of this paper is to extend results related
to Fredholm operators acting in Banach spaces over Fredholm operators acting
in Fréchet spaces. In this approach we apply tools provided by the theory of
determinant systems [24, 26, 2, 5, 8]. By means of terms of a determinant sys-
tem we exhibit explicit solutions of a certain class of Fredholm linear equations
in complete metrizable locally convex spaces. We focus on the case when the
considered Fredholm equations (1), (2) are induced by nuclear perturbations
of Fredholm bounded operators. We apply effective formulas for determinant
systems for operators S + T', where S is a Fredholm operator from a Fréchet
space X into another one Y and 7' is nuclear [8]. Our new results include
formulas of Fredholm type for equations (1), (2) in Fréchet spaces.

2 Preliminaries

We begin with a brief review on the terminology used in the theory of
determinant systems. The notation is adopted from papers [26, 2, 5, 7, 8, 9].

In what follows, X,Y denote fixed Fréchet spaces over the same field K
of real or complex numbers with topologies determined by separating fam-
ilies of seminorms {p,}nen and {q,}nen, respectively, satisfying conditions:
() < Pri1(x), ¢u(y) < gnia(y) for x € X, y € Y. We endow the space X*,
of all continuous linear functionals on X, with the topology of the strict in-
ductive limit of Banach spaces {(X}, || [|») }nen, where

X = {x* e X*: de>0Vr € X, |$*$‘ < Cpn(x) }7
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& = sup{[a*a] : pale) <1} for a* € X,

Given a (4 + m)-linear functional D on (X*)* x Y™, D ( zll’ o ’5” )
denotes its value at the point (z7,...,25,y1,...,ym) € (X*)* x Y™ The
functional D is said to be bi-skew symmetric if it is skew symmetric both in
variables z7, ..., and Y1, ..., Yy . The set of all bi-skew symmetric function-
als on (X*)* x Y™ is denoted by bss,,,,,(X*,Y). D is called a (Y*, X)-weakly
continuous functional on (X*)* x Y™ if the following conditions are satisfied:

1. for any fixed points z7,...,2; iy, ..., 2 € X* (i = 1,...u) and

Y1, ---,Ym € Y there exists a point x; € X such that

*

* * * *
'z, =D "V TR o el Tk for every a* € X*.
Y1, ey Ym

2. for any fixed points z7, ..., 2}, € X" and y1,...,Yj-1,Yj+1,-- -, Ym €Y
(j =1,...m) there exists a point 7 € Y* such that

=D b ’ K ) for ever ey.
y]y ( Y, -5 Yi-1,YYji+1, -5 YUnm vy

We denote by L, ,,,(X*,Y) the space of all (Y*, X)-weakly continuous func-
tionals on (X*)* x Y™ equipped with the topology determined by a family of
seminorms

{pMi‘x...xM;;le X...X Mm }M{‘,---M;:EMX* My, MmeMy s

where My contains all o(X*, X)-bounded subsets of X*, My contains all
o(Y,Y*)-bounded subsets of Y and
D( Ty, T )‘
Yis- -5 Ym

Each D € Ly ;(X*Y) is called an operator on X* x Y and can, simultane-
ously, be interpreted as a bilinear functional on X* x Y, x* Dy being its value
at (z*,y) € X* x Y and as a linear mapping D : Y — X, Dy being its value
at y and also as a linear mapping D : X* — Y* z*D being its value at z*. It
follows from the above that
*Dy = x*(Dy) = (z*D)y forall z* € X* yeY.

We denote by op(X* — Y* )Y — X) the space of all operators on X* x Y.
Given non—zero points zg € X, yi € Y*, the operator zy - y§ € op(X* —

pM{><...><M;;><M1><...><Mm(D) = sup
zreMr i=1,...pn
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Y* Y — X) whose value at a point (z*,y) € X* x Y is equal to the prod-
uct of the numbers z*zq and yiy, i.e. *(xo - y5)y = v x0 - yJy, is said to be a
one—dimensional operator on X* X Y.

For any A € op(Y* — X*, X — Y') we introduce the following notation:

R(A)={Az: z€ X}, NA) ={reX: Az =0},

R(A) ={y*A: y*eY*}, NA) ={y*eY*: y*A=0}.
A bilinear functional A € op(Y* — X*, X — Y') such that dimN(A) = n’ < oo,
dimN (A) =m’ < oo, R(A) = N(A)*+ and R(A) = N(A)* is called a Fredholm
operator of order r(A) = min{n’, m'} and index d(A) = n' — m’. An operator
B € op(X* — Y* Y — X) is said to be a generalized inverse of A, provided
ABA = A and BAB = B.

A bounded linear functional F': op(X* — Y*| Y — X) — K is said to be a
quasinucleus onop(X* — Y* Y — X)), if there exists Tp € op(Y* - X*, X = Y)
such that F(x - y*) = y*Trx for (y*,z) € Y* x X. The space of all quasinu-
clei on op(X* — Y*)Y — X) is denoted by en(Y* — X*, X — Y). For fixed
non-zero yp € Y, x; € X*, the quasinucleus zj; ® yo, defined by

(25 ®yo)(B) = 2{Byo for B € op(X* - Y* Y — X),

is said to be a one—dimensional quasinucleus on op(X* — Y*Y — X). Any
finite sum > xF ® y; of one-dimensional quasinuclei is said to be a finitely

i=1
dimensional quasinucleus on op(X* — Y* Y — X). A quasinucleus

Feemn(Y*— X*, X = Y) of the form:

F=> \t*®, (3)
i=1
where \; € K, > |\i| < 400, (2%)ien, (Ji)ien are bounded sequences in, X*
i=1

and Y, respectively, is called a nucleus on op(X* — Y*)Y — X). In view of
8], the nucleus (3) determines the bounded nuclear operator [21, 10]

Tr = i)\iﬂi AT
i—1

Assume F' € cn(Y* — X*, X = Y)and D € bss, (X", Y) N L,n(X*Y).

We fix all the variables x3, ..., 2% and yo, . . ., ¥, and consider D T Ty
a Yiy oy Ym

as the function of the variables x7, y; only, i.e. as the operator from
op(X* = Y* Y — X). We denote the value of F' at the operator by

FDD(@"”’%Z). (4)

Y2,y Ym
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The symbol FUD stands for the function which assigns, to z3,...,z;, € X~
Y2, ..., Ym € Y, the number (4). Thus FOD € bss,—1m-1(X*,Y). Assume,
for p,m > 1, that FOD € L,_1,—1(X",Y) and then repeat the above pro-
cedure to define FOFOD € bss,_o,-2(X*,Y). By iterating the procedure
k—times, k = min{u, m}, we define FOD, FOFOD, ..., FOFO... FOD, pro-
k—times
vided FOFO...FOD € L, i (X*,Y) (i <k). We also write
i—times
FBF = % FOFO. .. FO, FO being the function which assigns FLID to every
k—times
D e L, ,(X*Y)Nbss,n(X*Y).
A sequence (D), .y, fulfilling the conditions:
(d1) D,, € bssy, m, (X", Y), where p1,,, m, € Ny, fi, = pio +n, my, = my +n,
min{ p0, mo} = 0;
(d2) Dy € Ly, (X*,Y);
(d3) there exists r € Ny such that D, # 0;
(d4) the following identities hold for n € Nj:

(1) Dn+1( Too A1 oo xﬂn ) =

Az, vy, ooy Ym,
Hn ) * * * %
— Z(_l)ll,jan < xo, ey l’l_l,llfH_l, ey IN’!L )’
i=0 Y1, cee Y,
y*Aa xf{, ey x*
2 Dn Mn —
) ( A ymn)

M , 3 ¥
= —1)iy*y,; D, 1 ) o)
];O( )yy] <y07 ey Y- Yj4s - ymn)
where v € X,y* e Y*, 2l e X* y; €Y, (i=0,1,..., 1, 7=0,1,...,m,), is
said to be a determinant system for A € op(Y* — X*, X —Y) [5]. The least
r € Ny, such that D, # 0 and the difference j1g — myq are called the order and

the index of (Dp),cy,, respectively.

3 Main Results

In this section we examine a class of linear Fredholm equations, in Fréchet
spaces, induced by nuclear perturbations of Fredholm operators. We prove the
main theorem providing formulas for solutions of such equations. We begin
with the considerations leading to some auxiliary results.

Let Se€op(Y*— X*, X —-Y) be a fixed Fredholm operator of the or-
der 7(S) = min{n’,m’'} =r and the index d(S)=n'—m'. We denote by
{st,...,s5},{s1,..., sw} complete systems of solutions of the equations y*S = 0
and Sz = 0, respectively. Given a generalized inverse U € op(X* — Y* |V — X)
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of S, there exist points uj,...,u}, and uy, ..., u,, such that

n

1

US:[—Zsi-u* and SU:J—Zui-SZ‘,
i=1 i=1
where ufs; = 0;; (1,7 =1,...7'), sfu; =0;; (4,7 =1,...m')

and [ € op(X* - X*, X — X), J €op(Y* — Y*)Y — Y) are identity oper-
ators. We define the following operator belonging to op(X* — Y*)Y — X) :

Q:U+isi-s;‘.
i=1

Let (Dy)nen, be a determinant system for S, defined by the formula

* *
Do T Thw )
n —
Yr---5 Yntm/'—r

* * * *

iUy . iU Yn s —r Ti81 .. ] Sp

* * * *
| T U 2 Ulnmy e Ty 51 oo T S (5)
* * Y

11 ce ST Yn+m/—r 0 0
* *

EN e Sy 1 Yntm!—r 0 e 0

where 27 € X*, y; €Y, i=1,...n+n' —r, j=1,...n+m' —r. Given
Feem(Y*— X*, X —Y), we denote

oo

Dn(F) =Y Dui(F), n€ N, (6)
k=0
where
D, o(F) =D, and D, (F)=FD,; for k€ N. (7)

In the sequel the following lemma plays an essential role.

Lemma 3.1. Suppose that:
(@) (Dn)nen, is the determinant system, defined by (5), for a Fredholm
operator S € op(Y* — X* X —Y) of order r;
(b) Feen(Y* — X*, X = Y) is a nucleus defined by (3);
(¢) r(S+Tp)=1';
(d) (Dp(F))nen, is the sequence defined by (6), (7).

Then
oM, ..., z¥ M ' xy . ¥
Dn F 1 ’ ’ n+n/—r = (=1)" +m Dn F 1 ’ n+n/—r
( ) ( Y1, R Yn+m/—r ) ( ) ( ) ( Nyb ) Nyn-i-m’—
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forn € Ny, where
M=Q(S+1Tr) -1, N=(S+TrQ—J. (9)

Proof. In view of the main result of [8], (D,,(F))nen, is a determinant system
for S+ TF € op(Y* — X*, X — YY), where the series on the right-hand side
of (6) converges to D,,(F) in the space Lyin/—rnim—r(X*,Y) (n € Ny). Since
7(S + Tr) =1/, there exist points 2’7, ... 2", . and ¥;,. ..yl ., _, such that

LU,* P :L’/*/ ’
5=Du(F)( Ty ’“+"—7”) 0.
( ) ( yi, e y;”-i—m’—r’ #

Suppose that {z,... 2} and {2],...25,,,_ .} are bases of N(S +TF)
and N (S + Tr), respectively, where

1 o, a2k ool ey @
ZL'*ZZ' _ —DTI(F) ( 517/17 y Ti1, T, XTyiq, ) SL’/T +n/—r ) (10)
5 yl’ Ceey yrl_;’_m/_r

fora* e X*(i=1,...,r+n' —r) and
]_ l’l* ZE,*/ ’
2y = _Dr’ F 1 ) r'4+n/—r ) 11
jy (5 ( ) ( yi> st y;'—la Y, y;’-i-la R y;«q—m’—r ( )

foryeY (j=1,...r +m/ —r) . Denote by B a generalized inverse of S + Tr
defined by the formula

X 1 A OV
s B’y = gDTl'f'l(F) < y yil y/ + ) (12)
y g eeey ' 4m! —r

for (z*,y) € X* x Y. In view of (10) and (11),

r'4n'—r
B(S+Tp)=1— > z-a, (13)
i=1
where 2'7z; = 6;; (i,j = 1,...,7" +n' —r) and
r'4+m’—r
(S+Tr)B=J— > yi-zf, (14)
i=1

where 27y = 0y (i, = 1,...,7" +m’ —r). It is obvious that B(S +Tp)B = B
and (S+Tr)B(S+1Tp) =S+ Tr. By using (13), bearing in mind (9), we
obtain

r'4n/—r r'4+n/—r

BN =B(S+Tp)Q-B=(I- Y z-2))Q—-B=Q—-B- >  z-2Q.
i=1 =1
(15)
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Similarly, multiplying M in (9) on the right by B and using (14), we obtain

r'+m’—r v’ +m/—r
MB = Q(S+Tr)B—B =Q(J Z Y- 2)—B=Q—B- Z Qu; - 7 -
(16)
Introducing the notation
r'4+n'—r r'4+m/—r

i=1 i=1
and taking into account (15) and (16),
MB—-L=BN-K. (18)

Let (D!)nen, be the determinant system for S + Tr defined by the formula

/ IT, ] x;—i-n’—r _
D =
"\ Y1, s Yntmi—r
* * * *
21 By, . 21 BYnsm/—r 121 . T2 4/ —r
* * * *
_ Ty Byr oo X BYngm o T 21 e T ey
* * Y
21 o 21 Ynt+m/—r 0 o 0
* *
ZT’-i-m/—Tyl . Zrl+m’—7’y”+m/_7" 0 . 0

rieX (i=1,...,n+n —r),y; €Y (j=1,...,n+m —r).It follows from
the theory of determinant systems [26, 3] that there exists a scalar ¢ # 0 such
that D!, = ¢D,(F) for n € Ny. Therefore,

* *
oM, ..., xF, , M
Dn(F) 14V, ) n+n’—r — (19)

Y1, ey Yn+m/—r

x*{MByl o I M BYp i/ —r M2z o TIM 2y
* *
. Ty TMByl Tyt v MBYpymi—p Ty M2 Ty T,Mzr -
27 o 21 Yntm! —r 0 o 0

FAVIVN 1) S AV S ] e e 0 o 0

Having (9), we easily obtain Mz; = —z; (i =1,...,r" +n' —r). Hence, apply-
ing well-known properties of classical determinants, we transform the right-
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hand side of (19) into the determinant

* * * * T
a:lMByl . :L'IMByner/_r 121 . T2 4/ —r
* *
det Ty MByl Ty MByn+m o T Rl e Ty ey
211 . 2] Yntm!—r 0 . 0
* *
| Z?"/-"-ml—T’yl [P Zrl+m/_ryn+m/_fr O [P O i

(20)

multiplied by ¢(—1)"*"~". Furthermore, by multiplying the (n + m' —r + i)

th column of the matrix in (20), by —2’;Qy; , and adding to the j—th column

(t=1,....,7"4+n —r,j=1,...,n+m’ —r), we preserve the determinant of
r'+n'—r

the matrix. In view of (17), since 25 (MB — L)y; = x; MBy; — >, a2z - vfQy;
i=1
(k=1,...,n+n' —r), we obtain the equivalent form of (20):

:L'T(MB — L)y . x5 (MB — L)yn+m1_r iz e X 2t
n+n —T(MB L) s xn—i—n —T’(MB L)yn-l-m - x;-{—n’—r’zl to x;-i—n’—rZT'-HL’—T
27 o 21 Yntm! —r 0 o 0
Z:/+m/_,,.y1 e Z:/+m’_7‘yn+m/—7” 0 e O
(21)
It follows from (18), that (21) is equal to
x*{(BN — Ky . (BN — K)yn+m/_r iz cee X Zpg—y
T (BN Ky .. (BN K)Yngmimr Ty p21 oo T 2ty
21 e 21 Ynt+m/—r 0 e 0
201 ot —r Y1 .. 230 4ot —Yrtm! —r 0 . 0
(22)
r'4+m/—r
Taking into account the identities x} (BN —K)y; = ©;BNy,— Y. z/y; - :Qy,
i=1

(k=1,....n4+n —r,j=1,...,n+m' —r), multiplying the
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(n+n"—r+i)th (i =

xTBNyl xTBNyn—i-m’—r SL’TZl
*
n+n BNyl n+n BNyn+m _r l’n+n/_7,21
Zlyl Z1 Yn+m/—r 0
L Zr’—i—m —rY1 Zr’—i—m —rYntm/—r 0

Grazyna Ciecierska

"+ m’ —r) row of the matrix

*
Ly Zp!gn!—r
*
Lopn! —pr'+n/—r
0 )
0 1

by —z;Qy., and adding to its k—th row, (22) can be written in the form

By virtue of (9),

ZIN = —zf (1=1,...

* * *
xlBNyl ileNynJFm'—r T121
*
n+n —rBNyl n+n —T’BNy""l‘m - Tppn/—p?1
Zl hn Zl Yn+m/—r 0
2 z 0
i 4m/—r Y1 rm/ —r Yntm/ —r

'+ ml —r).

*
TyZrigm!—r

*
L —p2r!4n! —r

0

0
(23)
Hence, it follows from

the well-known property of determinants, that (23) is equal to

f{BNyl xTBNyn—i-m’—r 7z T2 i —r
n+n’—rBNy1 n+n’—rBNyn+m - $Z+n’—rzl I2+n/_rzr’+n’—r
21 Nyl 21 Nyn—i—m -r 0 0
7“ +m —T’Nyl Z:’J,-m’—rNyTL—i-m/—T 0 O
multiplied by (—1)"+™~". By the above, we conclude that
Dn F 1%y ) n+n’—r ) = c(=1)" "+m/! D/ < 1 ’ n+n/—r
(F) ( Y1, o Yntm/—r =1 Ny, ooy Nyngm—r

In view of the relationship between (D!,),cn, and (
which completes the proof.

(24)

Dn(F))neny, (24) yields (8),

O

With the assumptions of Lemma 3.1, we can formulate the following its

consequence.

Corollary 3.2.

*

LL’*M, c SL’:/ n’—rM ran!—r
Do) (M T M) gy,

.flfl,
Y1,

) (

.oy

. ey

n+n’—r
Yn+m/—r

(25)

).
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Proof. Since

l’?{a SRR I:q_n/_w (r'+n'=r)(r'+m’—r)
Dr’(F) = C(—1> X
Y, -5 Yr'em/—r
* * * *
211 R Z21Yr' +m! —r Ti21 N L1 Zp!4n/+m/
> . . . ’
* * * *
“ptpm/ = Y1 e By Yr'dm/ —r Lt =/ ZL - o Lty gt 2/ ! —m/

substituting n = 7’ in (20) and then using the well-known property of parti-
tioned matrices, we obtain (25). O

We are now in a position to state and prove the main result of this paper,
i.e. formulas of Fredholm type for linear equations (1), (2) induced by the
operator S + T in Fréchet spaces.

Theorem 3.3. Under the assumptions of Lemma 3.1, let (D})nen, be a
determinant system for S + Tr, defined by the formula:

D ( s PO ) _ D, (F) ( oM, .., :):;*LM,_TM) .

"\ Y, s Yntmi—r Y1, ey Yndm/—r

1% 1% / / : S of e
If 2"y, .20 and Yy, . Yy, are points satisfying the condition

/%

I
5*:D:/(flf1, ey xT”'ﬁ‘n/—T)?éO

/ !/
y17 ceey yr’—i—m’—r

and B* is the operator defined by the formula

1%

ritni=r or (z¥,y) e X* xY, (26
y7 yi7 R y;"+m’—7‘ ) f ( y) ( )

1 ,’L’* ZI}'/T
* Dk, * ) y ottty
z*B Yy = gDT’-l-l

a

then the following statements hold:
(a) {z1, - 2y} and {25, ... 25, _, } are bases for N(S + Ty) and N'(S + Tr),
respectively, where

1 x'] x'; x*, '

* * 1> = i—1> ) i+l r’'4+n/—r

r z; = —5* Dr’ / ’ (27)
1 B Yrt pm! —r

forz* e X*(i=1,....7"+n' —r),

1 ' . .,
Z* — —D*/ b ) r'+n'—r 28
iV T ( Y, o Yicn Y Y cees Ypy ) (28)
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foryeY (=1,...r+m' —r).
(b) The equation (S + Tr)x = yo has a solution x € X if and only if

1% 1%
(T el
Y s Vil Yoo Yiets coos Y
(j=1,....,7"+m' —r) and the general form of the solution is
xr = (Q—B*>y0—|—06121 +.. .—l—ozrl+n/_rzrl+n/_r (Oéi - K, 1= 1, e ,T/ + n — 7’).

(¢) The equation y*(S + Tr) = xj, has a solution y* € Y™ if and only if

D o Zly, xd, A, ., A
Dr’ ( /1 i—1 0 i+1 /r +n'/—r ) =0 (30)
yl’ ey yr’—l—m’—r
(t=1,....7"+n" —r) and the general form of the solution is given by

Yy = a5(Q=B")+ L1+ A B2y (B €K, =1, +m/ — 7).

Proof. Since (25) holds, the bi-skew symmetry of D,(F') combined with (27)
give rise to identities: 'j2; = d;; (4,5 = 1,...7" +n' —r). Thus, 21,... 2
are linearly independent. Denote ¢ = (—1)"*"*™ L. Since D,(F) =0 for
n < r', in view of (d4) (2), we obtain

*
1% 1% * 1% 1%

— Dy (F) oV 2y (SHTR) e, )
= CLlJy / / -

Y1, ceey yrl+m/_7,

' m/—r Zlf/* l’/* l’/* Zlf/*
s . . ; e Il

—c 3 (SN D (F) (T B e B ) g

]:1 yl’ ceey y]—l’ y]+17 s ey yT,l_;’_m/_T,

Consequently, {z1, ...z 1} is a complete system of solutions of the homoge-
neous equation (S + Tr)x = 0. Similarly, bearing in mind (28), it follows from
the bi-skew symmetry of D,/ (F) that zjy; = 6;; (4,5 = 1,...7" +m' —r). This
implies the linear independence of z7,...2%, ., _,. Furthermore, remembering
that (D} )nen, satisfies (d4) (1) and (S + TF) =/, we conclude that

* _
2i(S+Tr)r =
1* *
o 1 ) e N e _
= CDr’(F) / / / / -
Y- Y1 (S +Tr)z, Yirr - Yrgmi—r
T’/+n/_7“ x/* x/* x/* x/*
s * . ;o . ce / ’_
D S o (e e g I
. Yisooor Yt Yjgtr s Yrimr—y
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Thus {27,... 2}, _,} is a basis for N'(S + Tp), which proves statement (a).

Substituting (S + Tr)x for y in (26) and then taking into account both
(d4) (1) and Lemma 3.1, we obtain

1 x* . T
¥ BY(S + Ty)r = =D}, | I s G|
( F) 6* +1 ( (S —l_ TF)],” yi, ey y;’—i—m’—r’ ( )
1 * *
= — (z"Mzd"+
5*
' +n/—r x % 1% % ¥
+ 3 (-1 Ma Dy, < Core e Tt e et ) .
P v r Y1, cey yrl_;’_m/_r

Next, by applying (25), (27) and the bi-skew symmetry of D, .(F'), we
transform the right-hand side of (31) into the form

r'4+n/—r

Mz — Z 2T Mx -2tz
i=1
r'4n/—r
Consequently, B*(S +Tr) =M — > 2z -2’ M, which leads to
i=1
r'4+n'—r
Q-B)S+Tp) =1+ Y z-a/iM. (32)
i=1

Similarly, substituting y*(S + Tr) for z* in (26) and then using (d4) (2) and
Lemma 3.1, we find

1 v (S+Tr), «'1,..., x5,
(S + Tp)B*y = — D, Tl Tewer ) (33
y( F)B"y 5+ +1( n Yiseoor Yooy (33)
1 * *
o
r'+m/—r ‘ / LL’P{ o
+ “1)7y*N .D;S( ’ ””"") :
=1 ( )y y] yayi> R y;'—1>y;'+17 R y;«’+m’—7«

The bi-skew symmetry of D,.(F') combined with (25) and (28), yield the fol-
lowing form of the right-hand side of (33):

r'+m/—r

V'Ny— > vy 2Ny
j=1
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r'+m/—r

Thus, (S+Tp)B* =N — . Nyj-zj, which implies
j=1

r’+m/—r

(S+TR)(Q—B)=J+ Y  Nyj-z. (34)

Multiplying (34) by yo on the right and assuming (29) holds, we get

(S +Tr)(Q — B")yo = yo,

which proves statement (b). Analogously, multiplying (32) by z on the left
and assuming (30) holds, we arrive at

25(Q — B*)(S + Tp) = ).

This shows that statement (c) is valid, and the proof is complete.
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