First order differential subordination for functions with one rotation which have positive real part

Jinjing Qiao

College of Mathematics and Information Science, Hebei University, Baoding, 071002, China mathqiao@126.com

Qiannan Guo

College of Mathematics and Information Science, Hebei University, Baoding, 071002, China 479818568@qq.com

Abstract

Sharp estimates on β are determined so that p(z) is subordinate to some well known starlike functions P(z) with Re $e^{i\theta_0}P(z) > 0$ for some $\theta_0 \in [0, 2\pi]$, whenever $1 + \beta z p'(z)$ is subordinate to $\frac{e^{-i\theta_0}\sqrt{1+z}+i\sin\theta_0}{\cos\theta_0}$.

Mathematics Subject Classification: Primary: 30C65, 30C45; Secondary: 30C20.

Keywords: Analytic function, starlike function, differential subordination, positive real part.

1 Introduction

An analytic function f(z) in \mathbb{D} is subordinate to the analytic function g(z) in \mathbb{D} (or g(z) is superordinate to f(z)), if there is an analytic function $\omega(z)$ in \mathbb{D} with $\omega(0) = 0$ and $|\omega(z)| < 1$, such that $f(z) = (g \circ \omega)(z)$. Moreover, if g(z) is univalent in \mathbb{D} , then $f(z) \prec g(z)$ is equivalent to f(0) = g(0) and $f(\mathbb{D}) \subseteq g(\mathbb{D})$ (cf. $[4, P_{52}]$).

Let p(z) be an analytic function in \mathbb{D} and p(0) = 1. In 1935, Goluzin [5] investigated the first order differential subordination $zp'(z) \prec zq'(z)$ and obtained that if zq'(z) is convex, then $p'(z) \prec q'(z)$ holds and the function q'(z) is the best dominant. In the following time, many authors gave several generalizations of first order differential subordination. Nunokawa *et al.* [7] proved that if $1 + zp'(z) \prec 1 + z$, then $p(z) \prec 1 + z$. In 2007, Ali *et al.* [2] determined the estimates of β for which the subordination $1 + \beta zp'(z)/p^j(z) \prec$

(1+Dz)/(1+Ez) (j=0,1,2) implies $p(z) \prec (1+Az)/(1+Bz)$ where $A,B,D,E \in [-1,1]$. Recently, Omar and Halim [8] discussed the condition on β in terms of complex number D and real number E with -1 < E < 1 and $|D| \le 1$ such that $1+\beta z p'(z)/p^j(z) \prec (1+Dz)/(1+Ez)$ (j=0,1,2) implies $p(z) \prec \sqrt{1+z}$. We can see [3, 9, 10, 11] for more details.

Let $p(z) = 1 + c_1 z + c_2 z^2 + \cdots$ be an analytic function and $p_*(z)$ be a function with positive real part like $\sqrt{1+z}$, (1+Az)/(1+Bz), e^z , $\Phi_0(z) = 1 + \frac{z}{k}((k+z)/(k-z))$ $(k=\sqrt{2}+1)$, $\Phi_1(z) = 1 + \sin z$, $\Phi_2(z) = 1 + \frac{4}{3}z + \frac{2}{3}z^2$ and $\Phi_3(z) = z + \sqrt{1+z^2}$. We determine the sharp bounds on β such that $p(z) \prec P(z) = \frac{e^{-i\theta_0}p_*(z)+i\sin\theta_0}{\cos\theta_0}$, whenever

$$1 + \beta z p'(z) \prec \frac{e^{-i\theta_0} \sqrt{1+z} + i \sin \theta_0}{\cos \theta_0},$$

where $\theta_0 \in [0, 2\pi]$. Obviously, Re $e^{i\theta_0}P(z) > 0$. Our result is sharp and a generalization of the corresponding one in [1].

2 Main Results

Our first result gives bounds of β such that

$$1 + \beta z p'(z) \prec \frac{e^{-i\theta_0} \sqrt{1+z} + i \sin \theta_0}{\cos \theta_0}$$

implies that the function p(z) is subordinate to some well-known starlike functions. First, we give the following lemma.

Lemma 2.1 [6, P_{132} , Theorem 3.4] Let q(z) be analytic in \mathbb{D} and let $\psi(\omega)$ and $v(\omega)$ be analytic in a domain U containing $q(\mathbb{D})$ with $\psi(\omega) \neq 0$ when $\omega \in q(\mathbb{D})$. Set $Q(z) := zq'(z)\psi(q(z))$ and h(z) := v(q(z)) + Q(z). Suppose that (i) either h(z) is convex, or Q(z) is starlike univalent in \mathbb{D} and (ii) Re (zh'(z)/Q(z)) > 0 for $z \in \mathbb{D}$. If p(z) is analytic in \mathbb{D} , with p(0) = q(0), $p(\mathbb{D}) \subseteq U$ and

$$\upsilon(p(z)) + zp'(z)\psi(p(z)) \prec \upsilon(q(z)) + zq'(z)\psi(q(z)),$$

then $p(z) \prec q(z)$, and q(z) is best dominant.

Theorem 2.2 Suppose that the function p(z) is analytic in \mathbb{D} , p(0) = 1 and

$$1 + \beta z p'(z) \prec \frac{e^{-i\theta_0} \sqrt{1+z} + i \sin \theta_0}{\cos \theta_0}$$

with $\theta_0 \in [0, 2\pi]$. Then the following results of subordination hold:

$$(1)$$
 If $\beta \ge \frac{2(\sqrt{2}-1+\log 2-\log(1+\sqrt{2}))}{\sqrt{2}-1} \approx 1.09116$, then

$$p(z) \prec \frac{e^{-i\theta_0}\sqrt{1+z} + i\sin\theta_0}{\cos\theta_0}.$$

$$(2)$$
 If $\beta \ge \frac{2(1-\log 2)}{3-2\sqrt{2}} \approx 3.57694$, then

$$p(z) \prec \frac{e^{-i\theta_0}\Phi_0(z) + i\sin\theta_0}{\cos\theta_0}.$$

(3) If
$$\beta \ge \frac{2(1-\log 2)}{\sin(1)} \approx 0.729325$$
, then

$$p(z) \prec \frac{e^{-i\theta_0}\Phi_1(z) + i\sin\theta_0}{\cos\theta_0}.$$

(4) If $\beta \ge 3(1 - \log 2) \approx 0.920558$, then

$$p(z) \prec \frac{e^{-i\theta_0}\Phi_2(z) + i\sin\theta_0}{\cos\theta_0}.$$

$$(5)$$
If $\beta \ge (2 + \sqrt{2})(1 - \log 2) \approx 1.044766$, then

$$p(z) \prec \frac{e^{-i\theta_0}\Phi_3(z) + i\sin\theta_0}{\cos\theta_0}.$$

(6) Let -1 < B < A < 1 and $B_0 = \frac{2-\log 4-\sqrt{2}+\log(1+\sqrt{2})}{\sqrt{2}-\log(1+\sqrt{2})} \approx 0.151764$. If either (i) $B < B_0$ and $\beta \ge \frac{2(1-B)(1-\log 2)}{A-B} \approx 0.613706\frac{1-B}{A-B}$ or (ii) $B > B_0$ and $\beta \ge \frac{2(1+B)(\sqrt{2}-1+\log 2-\log(1+\sqrt{2})}{A-B} \approx 0.451974\frac{1+B}{A-B}$, then

$$p(z) \prec \frac{e^{-i\theta_0}(1+Az)/(1+Bz)+i\sin\theta_0}{\cos\theta_0}.$$

The bounds on β are best possible.

Proof. The function $q_{\beta}(z)$: $\bar{\mathbb{D}} \to C$ defined by

$$q_{\beta}(z) = 1 + \frac{2e^{-i\theta_0}}{\beta \cos \theta_0} (\sqrt{1+z} - \log(1+\sqrt{1+z}) + \log 2 - 1)$$

is analytic and is a solution of the differential equation

$$1 + \beta z q_{\beta}'(z) = \frac{e^{-i\theta_0} \sqrt{1+z} + i \sin \theta_0}{\cos \theta_0}.$$

Suppose that the functions $v(\omega) = 1$ and $\psi(\omega) = \beta$. The function $Q: \bar{\mathbb{D}} \to C$ is defined by $Q(z) := zq'_{\beta}(z)\psi(q_{\beta}(z)) = \beta zq'_{\beta}(z)$. Since

$$\frac{e^{-i\theta_0}\sqrt{1+z}+i\sin\theta_0}{\cos\theta_0}-1$$

is starlike function in \mathbb{D} , it follows that function Q(z) is starlike. Also note that the function $h(z) := v(q_{\beta}(z)) + Q(z)$ satisfies Re (zh'(z)/Q(z)) > 0 for $z \in \mathbb{D}$. Therefore, by using Lemma 2.1, it follows that $1+\beta zp'(z) \prec 1+\beta zq'_{\beta}(z)$ implies $p(z) \prec q_{\beta}(z)$.

Let

$$q_{\beta}^{*}(z) = 1 + \frac{2}{\beta}(\sqrt{1+z} - \log(1+\sqrt{1+z}) + \log 2 - 1).$$

By the proof of [1, Theorem 2.1], we have $q_{\beta}^*(z) \prec p_*(z)$ which is equivalent to

$$q_{\beta}(z) = \frac{e^{-i\theta_0}}{\cos \theta_0} (q_{\beta}^*(z) - 1) + 1 \prec \frac{e^{-i\theta_0}}{\cos \theta_0} (p_*(z) - 1) + 1 = P(z).$$

The remaining part of the proof can be obtained by using the same arguments as that of the proof of [1, Theorem 2.1].

Theorem 2.3 Suppose that the function p(z) is analytic in \mathbb{D} , p(0) = 1, $\theta_0 \in [0, 2\pi]$.

(1) If

$$1 + \beta z p'(z)/p(z) \prec \frac{e^{-i\theta_0}\sqrt{1+z} + i\sin\theta_0}{\cos\theta_0},$$

then

$$p(z) \prec q_{\beta}(z) = \exp\left(\frac{2e^{-i\theta_0}}{\beta\cos\theta_0}(\sqrt{1+z} - \log(1+\sqrt{1+z}) + \log 2 - 1)\right).$$

(2) If

$$1 + \beta z p'(z)/p(z) \prec \frac{e^{-i\theta_0}(1 + Az)/(1 + Bz) + i\sin\theta_0}{\cos\theta_0},$$

then

$$p(z) \prec q_{\beta}(z) = \exp\left(\frac{e^{-i\theta_0}}{\beta \cos \theta_0} (\log|1/Bz| + (A/B)\log|1 + Bz|)\right).$$

(3) If
$$1 + \beta z p'(z)/p(z) \prec \frac{e^{-i\theta_0} \Phi_0(z) + i \sin \theta_0}{\cos \theta_0},$$

then

$$p(z) \prec q_{\beta}(z) = \exp\left(\frac{e^{-i\theta_0}}{\beta \cos \theta_0}(-z/k - 2\log|z/k - 1|)\right).$$

(4) If

$$1 + \beta z p'(z)/p(z) \prec \frac{e^{-i\theta_0} \Phi_2(z) + i \sin \theta_0}{\cos \theta_0},$$

then

$$p(z) \prec q_{\beta}(z) = \exp\left(\frac{e^{-i\theta_0}}{\beta \cos \theta_0} ((4/3)z + (1/3)z^2)\right).$$

(5) If

$$1 + \beta z p'(z)/p(z) \prec \frac{e^{-i\theta_0} \Phi_3(z) + i \sin \theta_0}{\cos \theta_0},$$

then

$$p(z) \prec q_{\beta}(z) = \exp\left(\frac{e^{-i\theta_0}}{\beta \cos \theta_0} (z + \sqrt{z^2 + 1} - \log(1 + \sqrt{z^2 + 1}) + \log 2 - 1)\right).$$

Proof. The function $q_{\beta}(z)$ in $\bar{\mathbb{D}}$ defined by

$$q_{\beta}(z) = \exp\left(\frac{2e^{-i\theta_0}}{\beta\cos\theta_0}(\sqrt{1+z} - \log(1+\sqrt{1+z}) + \log 2 - 1)\right)$$

is analytic and is a solution of the differential equation

$$1 + \beta z q_{\beta}'(z)/q_{\beta}(z) = \frac{e^{-i\theta_0}\sqrt{1+z} + i\sin\theta_0}{\cos\theta_0}.$$

Suppose that the functions $v(\omega) = 1$ and $\psi(\omega) = \beta/\omega$. The function $Q : \bar{\mathbb{D}} \to C$ is defined by $Q(z) := zq'_{\beta}(z)\psi(q_{\beta}(z)) = \beta zq'_{\beta}(z)/q_{\beta}(z)$. Since

$$\frac{e^{-i\theta_0}\sqrt{1+z}+i\sin\theta_0}{\cos\theta_0}-1$$

is starlike function in \mathbb{D} , it follows that function Q(z) is starlike. Note that the function $h(z) := v(q_{\beta}(z)) + Q(z) = 1 + Q(z)$ satisfies Re (zh'(z)/Q(z)) > 0 for $z \in \mathbb{D}$. Therefore, by using Lemma 2.1, it follows that $1 + \beta z p'(z)/p(z) \prec 1 + \beta z q'_{\beta}(z)/q_{\beta}(z)$ implies $p(z) \prec q_{\beta}(z)$. By using the similar arguments, we have the other results of Theorem 2.3.

The proof of Theorem 2.3 is completed.

Theorem 2.4 Suppose that the function p(z) is analytic in \mathbb{D} , p(0) = 1, $\theta_0 \in [0, 2\pi]$.

(1) If
$$1 + \beta z p'(z)/p^2(z) \prec \frac{e^{-i\theta_0}\sqrt{1+z} + i\sin\theta_0}{\cos\theta_0}$$

then

$$p(z) \prec q_{\beta}(z) = \left[1 - \frac{2e^{-i\theta_0}}{\beta \cos \theta_0} (\sqrt{1+z} - \log(1+\sqrt{1+z}) + \log 2 - 1)\right]^{-1}.$$

(2) If

$$1 + \beta z p'(z)/p^2(z) \prec \frac{e^{-i\theta_0}(1+Az)/(1+Bz) + i\sin\theta_0}{\cos\theta_0},$$

then

$$p(z) \prec q_{\beta}(z) = \left[1 - \frac{e^{-i\theta_0}}{\beta \cos \theta_0} (\log |1/Bz| + (A/B) \log |1 + Bz|)\right]^{-1}.$$

(3) If
$$1 + \beta z p'(z)/p^2(z) \prec \frac{e^{-i\theta_0} \Phi_0(z) + i \sin \theta_0}{\cos \theta_0}$$

then

$$p(z) \prec q_{\beta}(z) = \left[1 - \frac{e^{-i\theta_0}}{\beta \cos \theta_0} (-z/k - 2\log|z/k - 1|)\right]^{-1}.$$

(4) If
$$1 + \beta z p'(z)/p^2(z) \prec \frac{e^{-i\theta_0} \Phi_2(z) + i \sin \theta_0}{\cos \theta_0},$$

then

$$p(z) \prec q_{\beta}(z) = \left[1 - \frac{e^{-i\theta_0}}{\beta \cos \theta_0} ((4/3)z + (1/3)z^2)\right]^{-1}.$$

(5) If
$$1 + \beta z p'(z)/p^2(z) \prec \frac{e^{-i\theta_0} \Phi_3(z) + i \sin \theta_0}{\cos \theta_0},$$

then

$$p(z) \prec q_{\beta}(z) = \left[1 - \frac{e^{-i\theta_0}}{\beta \cos \theta_0} \left(z + \sqrt{z^2 + 1} - \log(1 + \sqrt{z^2 + 1}) + \log 2 - 1\right)\right]^{-1}.$$

Proof. The function $q_{\beta}(z)$ in $\bar{\mathbb{D}}$ defined by

$$q_{\beta}(z) = \left[1 - \frac{2e^{-i\theta_0}}{\beta \cos \theta_0} (\sqrt{1+z} - \log(1+\sqrt{1+z}) + \log 2 - 1)\right]^{-1}$$

is analytic and is a solution of the differential equation

$$1 + \beta z q_{\beta}'(z)/q_{\beta}^2(z) = \frac{e^{-i\theta_0}\sqrt{1+z} + i\sin\theta_0}{\cos\theta_0}.$$

Suppose that the functions $v(\omega) = 1$ and $\psi(\omega) = \beta/\omega^2$. The function $Q: \bar{\mathbb{D}} \to C$ is defined by $Q(z) := zq'_{\beta}(z)\psi(q_{\beta}(z)) = \beta zq'_{\beta}(z)/q^2_{\beta}(z)$. Since

$$\frac{e^{-i\theta_0}\sqrt{1+z}+i\sin\theta_0}{\cos\theta_0}-1$$

is starlike function in \mathbb{D} , it follows that function Q(z) is starlike. Note that the function $h(z) := v(q_{\beta}(z)) + Q(z) = 1 + Q(z)$ satisfies Re (zh'(z)/Q(z)) > 0 for $z \in \mathbb{D}$. So, by using Lemma 2.1, it follows that $1 + \beta z p'(z)/p^2(z) \prec 1 + \beta z q'_{\beta}(z)/q^2_{\beta}(z)$ implies $p(z) \prec q_{\beta}(z)$. By using the similar arguments, we have the other results of Theorem 2.4.

ACKNOWLEDGEMENTS. This paper was supported by National Natural Science Foundation of China (No. 11501159).

References

- [1] Om P. Ahuja, Sushil Kumar and V. Ravichandran, First order differential subordination for functions with positive real part, 2017, arXiv: 1703.03590v1[math. CV].
- [2] R. M. Ali, V. Ravichandran and N. Seenivasagan, Sufficient conditions for Janowski starlikeness, Int. J. Math. Math. Sci. 2007(2007), Art. ID 62925, 7 pages, doi:10.1155/2007/62925.
- [3] N. E. Cho, H. J. Lee, J. H. Park and R. Srivastava, Some applications of the first-order differential subordinations, Filomat 30(6)(2016), 1465-1474.
- [4] P. Duren, Harmonic mappings in the plane, Cambridge Univ. Press, 2004.
- [5] G. M. Goluzin, On the majorization principle in function theory, Dokl. Akad. Nauk. SSSR 42(1935), 647-650.
- [6] S. S. Miller and P.T. Mocanu, Differential Subordinations, Dekker, New York, 2000.
- [7] M. Nunokawa, M. Obradović and S. Owa, One criterion for univalency, Proc. Amer. Math. Soc. 106(4)(1989), 1035-1037.
- [8] R. Omer and S. A. Hailm, Differential subordination properties of Sokół-Stankiewicz starlike functions, Kyungpook Math. J. 53(3)(2013), 459-465.
- [9] V. Ravichandran and K. Sharma, Sufficient conditions for starlikeness, J. Korean Math. Soc. 52(4)(2015), 727-749.
- [10] K. Sharma and V. Ravichandran, Applications of subordination theory to starlike functions, Bull. Iranian Math. Soc. 42(3)(2016), 761-777.
- [11] N. Tuneski, T. Bulboacă and B. Jolevska-Tunesk, Sharp results on linear combination of simple expressions of analytic functions, Hacet. J. Math. Stat. 45(1)(2016), 121-128.

Received: June 7, 2017