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Abstract

Sharp estimates on /3 are determined so that p(z) is subordinate to
some well known starlike functions P(z) with Re €% P(z) > 0 for some

6o € [0, 27], whenever 1+ 2p/(z) is subordinate to ¢"00y/1¥z+isinfo

cos Oy
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1 Introduction

An analytic function f(z) in D is subordinate to the analytic function g(z) in
D (or g(z) is superordinate to f(z)), if there is an analytic function w(z) in D
with w(0) = 0 and |w(z)| < 1, such that f(z) = (gow)(z). Moreover, if g(z) is
univalent in D, then f(z) < g(z) is equivalent to f(0) = ¢(0) and f(D) C ¢g(D)
(cf. [4, Pss)).

Let p(z) be an analytic function in I and p(0) = 1. In 1935, Goluzin
[5] investigated the first order differential subordination zp/(z) < z¢'(z) and
obtained that if z¢'(2) is convex, then p’(z) < ¢'(z) holds and the function
¢'(z) is the best dominant. In the following time, many authors gave several
generalizations of first order differential subordination. Nunokawa et al. [7]
proved that if 1 4 2p/(z) < 1+ z, then p(z) < 14 z. In 2007, Ali et al. [2]
determined the estimates of 8 for which the subordination 1+ Bzp/(z)/p’(z) <
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(14 Dz)/(1 + Ez) (j = 0,1,2) implies p(z) < (1 + Az)/(1 + Bz) where
A,B,D,E € [-1,1]. Recently, Omar and Halim [8] discussed the condition
on S in terms of complex number D and real number F with —1 < F < 1 and
|D| <1 such that 1+ S82p/(2)/p/(2) < (1+ Dz)/(1+ E2) (j =0,1,2) implies
p(z) < V14 z. We can see [3, 9, 10, 11] for more details.

Let p(z) = 1+ c12 + 22 + - -+ be an analytic function and p.(z) be a
function with positive real part like v/1+ z, (14 Az)/(1 + Bz), €*, ®o(2) =
L+ 2((k+2)/(k—2)) (k=V2+1), ®1(2) =1+sinz, Py(z) =1+ 52+ 222
and ®3(2) = z+ V1 + 22. We determine the sharp bounds on J such that
p(z) < P(z) = M, whenever

cos Og
e~ ®0\/T+ z +isinf,
cos g ’

1+ B2p'(2) <

where 6y € [0,27]. Obviously, Re ¢ P(z) > 0. Our result is sharp and a
generalization of the corresponding one in [1].

2 Main Results
Our first result gives bounds of § such that

e~ ®0\/1+ z +isinf,

cos 6y

1+ 8zp'(2) <

implies that the function p(z) is subordinate to some well-known starlike func-
tions. First, we give the following lemma.

Lemma 2.1 [6, P30, Theorem 3.4] Let q(z) be analytic in D and let ¢ (w)
and v(w) be analytic in a domain U containing q(D) with ¢ (w) # 0 when

w € q@). Set Q(z) = 2¢'(2)(q(2)) and h(z) = v(q(2)) + Q(2). Sup-
pose that (i) either h(z) is convez, or Q(z) is starlike univalent in D and (ii)
Re (zh/(2)/Q(2)) > 0 for z € D. If p(z) is analytic in D, with p(0) = ¢(0),
p(D) C U and

v(p(2)) + 20 (2)(p(2)) < v(a(2) + 24'(2)¥(q(2)),
then p(z) < q(z),and q(z) is best dominant.

Theorem 2.2 Suppose that the function p(z) is analytic in D, p(0) = 1

and ,
e~ %0\/1T+ z +isinf,
cos By
with Oy € [0,2x]. Then the following results of subordination hold:

14 62p'(2) <
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(1)If B > 22trlog2los(Lev) o 09116, then

e 0\/1+ 2z +isinb,

p(z) < cos b,

(2)If B> %2 ~ 357694, then

e %0 ®(2) + isin by

p(z) < cos b

(3)If B > 2182 ~ (0.729325, then

sin(1)

e~ d,(2) + isinfby
cos 8y ’

p(z) <

(4)If B > 3(1 —log2) ~ 0.920558, then

e %0 ®,(2) + i sin by
cos 6, '

p(z) <

(5)If B> (2 4+ v2)(1 — log 2) ~ 1.044766, then

e ®;(2) + isin by
cos 8 )

p(2) <

_ 2-log4—V2+log(1+v?2) __
(6)Let —1 < B < A < 1 and By = 3 loa(11v3) ~ 0.151764. If

cither (i) B < By and § > 2280182 0 6137061=L. or (ii) B > B, and

5 > 2(1+B (\/— 12—1052 log(1+\/_) ~ O 451974 1+B then

e (1 + Az)/(1+ Bz) +isin 90
cos b

p(z) <
The bounds on 3 are best possible.

Proof. The function gz(z): D — C defined by

20

[ cos b

is analytic and is a solution of the differential equation

e 00\ /1+ 2+ zsmé’o

cos 6y

(V14+z—log(l++vV1+2)+log2—1)

qs(2) =1+

14 Bzqy(z) =
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~ Suppose that the functions v(w) = 1 and ¥(w) = B. The function @ :
D — C is defined by Q(2) := 2q53(2)¥(qs(2)) = B2q5(z). Since

e /14 z +isinb,

cos b

is starlike function in D, it follows that function Q(z) is starlike. Also note
that the function h(z) := v(gs(z)) + Q(z) satisfies Re (2h'(2)/Q(2)) > 0 for
z € D. Therefore, by using Lemma 2.1, it follows that 1+82p'(2) < 1+ B2q5(z)
implies p(z) < gz(2).

Let

q5(2) = 1+%(\/1+z—log(1+\/1+z)+log2— 1).

By the proof of [1, Theorem 2.1], we have gj(2) < p.(z) which is equivalent to

—ifo —ito

= “(2)— 1)+ 1
95(2) cos@o(qﬁ(z) J+1= cos 6y

e

(P(2) = 1) +1 = P(2).

The remaining part of the proof can be obtained by using the same argu-
ments as that of the proof of [1, Theorem 2.1].

Theorem 2.3 Suppose that the function p(z) is analytic in D, p(0) = 1,
90 S [0, 27’(’]

(1)If y N
1+ B2p'(2)/p(2) < € ?g:— ¢S 907
then
—ifo
(2)If
1+ 820/ (2) /() < e=i00(1 + AZ){:SS;)BZ) + isin 907
then

—i0p

p(2) < qs(2) = exp (Becoseo (log|1/Bz|+ (A/B)log|1 + Bz\)) )

3)1f .
e~ dy(2) + isinby

L4 e (2)/p(z) < =2

Y
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then >
ple) < aa(2) = exp ( =2/ = 2log z/k — 1)) ).
(4)1f o
L+ el (2)f(z) < STl L
then i
p(2) < qs(z) = exp ( ;COS 7 (4/3)2+ (1/3)Z2>) .
(5)1f o
o el (2)fo(z) < A I,
then
—i6p
p(z) < qs(2) = exp <ﬁecose (z+Vz2+1—log(l+Vv22+1)+log2— 1)) ,
0

Proof. The function gz(z) in D defined by

2€—i90

[ cos b

is analytic and is a solution of the differential equation

e 0\/1+ 2z +isinb,

cos b

qﬁ(z):exp< (\/1+z—log(1+\/1+z)—i—log2—1))

L+ Bzqy(2)/qs(2) =

~ Suppose that the functions v(w) = 1 and ¢(w) = B/w. The function Q :
D — C is defined by Q(2) := 2q5(2)¥(qs(2)) = B2q5(2)/qs(2). Since

e /14 z +isinb,

cos b

—1

is starlike function in D), it follows that function @(z) is starlike. Note that
the function h(z) := v(gs(2)) + Q(z) = 1+ Q(z) satisfies Re (zh/(2)/Q(z)) > 0
for z € D. Therefore, by using Lemma 2.1, it follows that 1 + Szp/(z)/p(2) <
1 + Bzqj(2)/qs(2) implies p(z) < gs(2). By using the similar arguments, we
have the other results of Theorem 2.3.

The proof of Theorem 2.3 is completed.

Theorem 2.4 Suppose that the function p(z) is analytic in D, p(0) = 1,
90 € [0, 27’(’]
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i ) -
Lt B () () < L2 st
cos 6y
then
2e~ 0 -
p(z) < qs(z) = |1 — Feosd (V14 z—log(l+vV1+2)+log2—1)
0
(2)1f
, e"% (1 + Az)/(1 + Bz) +isinf
L+ Bapf () P(z) < L E AU B2) ¥ isinfy
cos By
then

—i6p

) < a(2) = L= o/ B+ (4/B)og 1+ B2)|

[ cos by
(3)1f o
L+ B (2)37(2) < I
then D .
) < a(2) = L= S (afh — 2logla/k - 1)
(a)1f o
1+ Bl (2) () < S
then » .
P < aae) = L= (/3 (173
(5)1f o
L+ Bl (2)p7(2) < TR,
then

6—290

N [ cos b

p(z) < qs(z) = {1 (z+ V22 + —log(1+Vz2+1)+log2—1)}_ :

Proof. The function gg(z) in D defined by

2¢~ 00
qp(2) = {1

-1
- ﬁcose()(\/m —log(1+v1+2)+log2 — 1)}
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is analytic and is a solution of the differential equation

e/ T+z+isinb,

cos b

1+ Bzqy(2)/q5(2)

~ Suppose that the functions v(w) = 1 and ¢(w) = B/w?. The function Q :
D — C is defined by Q(z) := 2q5(2)¥(qs(2)) = Bzqs(2)/q3(2). Since

e /1 + z +isinb,

—1
cos b,

is starlike function in D), it follows that function Q(z) is starlike. Note that
the function h(z) := v(gs(z)) + Q(z) = 1+ Q(z) satisfies Re (zh/(2)/Q(z)) > 0
for z € D. So, by using Lemma 2.1, it follows that 1 + Bzp/(z)/p*(z) <
1+ Bzqy(2)/q3(2) implies p(z) < gg(z). By using the similar arguments, we
have the other results of Theorem 2.4.
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