First order differential subordination for functions with one rotation which have positive real part

Jinjing Qiao
College of Mathematics and Information Science, Hebei University, Baoding, 071002, China mathqiao@126.com
\section*{Qiannan Guo}
College of Mathematics and Information Science, Hebei University, Baoding, 071002, China 479818568@qq.com

Abstract

Sharp estimates on β are determined so that $p(z)$ is subordinate to some well known starlike functions $P(z)$ with $\operatorname{Re} e^{i \theta_{0}} P(z)>0$ for some $\theta_{0} \in[0,2 \pi]$, whenever $1+\beta z p^{\prime}(z)$ is subordinate to $\frac{e^{-i \theta_{0}} \sqrt{1+z}+i \sin \theta_{0}}{\cos \theta_{0}}$.

Mathematics Subject Classification: Primary: 30C65, 30C45; Secondary: 30C20.

Keywords: Analytic function, starlike function, differential subordination, positive real part.

1 Introduction

An analytic function $f(z)$ in \mathbb{D} is subordinate to the analytic function $g(z)$ in \mathbb{D} (or $g(z)$ is superordinate to $f(z)$), if there is an analytic function $\omega(z)$ in \mathbb{D} with $\omega(0)=0$ and $|\omega(z)|<1$, such that $f(z)=(g \circ \omega)(z)$. Moreover, if $g(z)$ is univalent in \mathbb{D}, then $f(z) \prec g(z)$ is equivalent to $f(0)=g(0)$ and $f(\mathbb{D}) \subseteq g(\mathbb{D})$ (cf. $\left[4, P_{52}\right]$).

Let $p(z)$ be an analytic function in \mathbb{D} and $p(0)=1$. In 1935, Goluzin [5] investigated the first order differential subordination $z p^{\prime}(z) \prec z q^{\prime}(z)$ and obtained that if $z q^{\prime}(z)$ is convex, then $p^{\prime}(z) \prec q^{\prime}(z)$ holds and the function $q^{\prime}(z)$ is the best dominant. In the following time, many authors gave several generalizations of first order differential subordination. Nunokawa et al. [7] proved that if $1+z p^{\prime}(z) \prec 1+z$, then $p(z) \prec 1+z$. In 2007, Ali et al. [2] determined the estimates of β for which the subordination $1+\beta z p^{\prime}(z) / p^{j}(z) \prec$
$(1+D z) /(1+E z)(j=0,1,2)$ implies $p(z) \prec(1+A z) /(1+B z)$ where $A, B, D, E \in[-1,1]$. Recently, Omar and Halim [8] discussed the condition on β in terms of complex number D and real number E with $-1<E<1$ and $|D| \leq 1$ such that $1+\beta z p^{\prime}(z) / p^{j}(z) \prec(1+D z) /(1+E z)(j=0,1,2)$ implies $p(z) \prec \sqrt{1+z}$. We can see $[3,9,10,11]$ for more details.

Let $p(z)=1+c_{1} z+c_{2} z^{2}+\cdots$ be an analytic function and $p_{*}(z)$ be a function with positive real part like $\sqrt{1+z},(1+A z) /(1+B z), e^{z}, \Phi_{0}(z)=$ $1+\frac{z}{k}((k+z) /(k-z))(k=\sqrt{2}+1), \Phi_{1}(z)=1+\sin z, \Phi_{2}(z)=1+\frac{4}{3} z+\frac{2}{3} z^{2}$ and $\Phi_{3}(z)=z+\sqrt{1+z^{2}}$. We determine the sharp bounds on β such that $p(z) \prec P(z)=\frac{e^{-i \theta_{0} p_{*}(z)+i \sin \theta_{0}}}{\cos \theta_{0}}$, whenever

$$
1+\beta z p^{\prime}(z) \prec \frac{e^{-i \theta_{0}} \sqrt{1+z}+i \sin \theta_{0}}{\cos \theta_{0}}
$$

where $\theta_{0} \in[0,2 \pi]$. Obviously, $\operatorname{Re} e^{i \theta_{0}} P(z)>0$. Our result is sharp and a generalization of the corresponding one in [1].

2 Main Results

Our first result gives bounds of β such that

$$
1+\beta z p^{\prime}(z) \prec \frac{e^{-i \theta_{0}} \sqrt{1+z}+i \sin \theta_{0}}{\cos \theta_{0}}
$$

implies that the function $p(z)$ is subordinate to some well-known starlike functions. First, we give the following lemma.

Lemma $2.1\left[6, P_{132}\right.$, Theorem 3.4] Let $q(z)$ be analytic in \mathbb{D} and let $\psi(\omega)$ and $v(\omega)$ be analytic in a domain U containing $q(\mathbb{D})$ with $\psi(\omega) \neq 0$ when $\omega \in q(\mathbb{D})$. Set $Q(z):=z q^{\prime}(z) \psi(q(z))$ and $h(z):=v(q(z))+Q(z)$. Suppose that (i) either $h(z)$ is convex, or $Q(z)$ is starlike univalent in \mathbb{D} and (ii) $\operatorname{Re}\left(z h^{\prime}(z) / Q(z)\right)>0$ for $z \in \mathbb{D}$. If $p(z)$ is analytic in \mathbb{D}, with $p(0)=q(0)$, $p(\mathbb{D}) \subseteq U$ and

$$
v(p(z))+z p^{\prime}(z) \psi(p(z)) \prec v(q(z))+z q^{\prime}(z) \psi(q(z))
$$

then $p(z) \prec q(z)$, and $q(z)$ is best dominant.
Theorem 2.2 Suppose that the function $p(z)$ is analytic in $\mathbb{D}, p(0)=1$ and

$$
1+\beta z p^{\prime}(z) \prec \frac{e^{-i \theta_{0}} \sqrt{1+z}+i \sin \theta_{0}}{\cos \theta_{0}}
$$

with $\theta_{0} \in[0,2 \pi]$. Then the following results of subordination hold:
(1) If $\beta \geq \frac{2(\sqrt{2}-1+\log 2-\log (1+\sqrt{2})}{\sqrt{2}-1} \approx 1.09116$, then

$$
p(z) \prec \frac{e^{-i \theta_{0}} \sqrt{1+z}+i \sin \theta_{0}}{\cos \theta_{0}}
$$

(2)If $\beta \geq \frac{2(1-\log 2)}{3-2 \sqrt{2}} \approx 3.57694$, then

$$
p(z) \prec \frac{e^{-i \theta_{0}} \Phi_{0}(z)+i \sin \theta_{0}}{\cos \theta_{0}} .
$$

(3) If $\beta \geq \frac{2(1-\log 2)}{\sin (1)} \approx 0.729325$, then

$$
p(z) \prec \frac{e^{-i \theta_{0}} \Phi_{1}(z)+i \sin \theta_{0}}{\cos \theta_{0}} .
$$

(4)If $\beta \geq 3(1-\log 2) \approx 0.920558$, then

$$
p(z) \prec \frac{e^{-i \theta_{0}} \Phi_{2}(z)+i \sin \theta_{0}}{\cos \theta_{0}} .
$$

(5) If $\beta \geq(2+\sqrt{2})(1-\log 2) \approx 1.044766$, then

$$
p(z) \prec \frac{e^{-i \theta_{0}} \Phi_{3}(z)+i \sin \theta_{0}}{\cos \theta_{0}} .
$$

(6) Let $-1<B<A<1$ and $B_{0}=\frac{2-\log 4-\sqrt{2}+\log (1+\sqrt{2})}{\sqrt{2}-\log (1+\sqrt{2})} \approx 0.151764$. If either (i) $B<B_{0}$ and $\beta \geq \frac{2(1-B)(1-\log 2)}{A-B} \approx 0.613706 \frac{1-B}{A-B}$ or (ii) $B>B_{0}$ and $\beta \geq \frac{2(1+B)(\sqrt{2}-1+\log 2-\log (1+\sqrt{2})}{A-B} \approx 0.451974 \frac{1+B}{A-B}$, then

$$
p(z) \prec \frac{e^{-i \theta_{0}}(1+A z) /(1+B z)+i \sin \theta_{0}}{\cos \theta_{0}} .
$$

The bounds on β are best possible.
Proof. The function $q_{\beta}(z): \overline{\mathbb{D}} \rightarrow C$ defined by

$$
q_{\beta}(z)=1+\frac{2 e^{-i \theta_{0}}}{\beta \cos \theta_{0}}(\sqrt{1+z}-\log (1+\sqrt{1+z})+\log 2-1)
$$

is analytic and is a solution of the differential equation

$$
1+\beta z q_{\beta}^{\prime}(z)=\frac{e^{-i \theta_{0}} \sqrt{1+z}+i \sin \theta_{0}}{\cos \theta_{0}}
$$

Suppose that the functions $v(\omega)=1$ and $\psi(\omega)=\beta$. The function Q : $\overline{\mathbb{D}} \rightarrow C$ is defined by $Q(z):=z q_{\beta}^{\prime}(z) \psi\left(q_{\beta}(z)\right)=\beta z q_{\beta}^{\prime}(z)$. Since

$$
\frac{e^{-i \theta_{0}} \sqrt{1+z}+i \sin \theta_{0}}{\cos \theta_{0}}-1
$$

is starlike function in \mathbb{D}, it follows that function $Q(z)$ is starlike. Also note that the function $h(z):=v\left(q_{\beta}(z)\right)+Q(z)$ satisfies $\operatorname{Re}\left(z h^{\prime}(z) / Q(z)\right)>0$ for $z \in \mathbb{D}$. Therefore, by using Lemma 2.1, it follows that $1+\beta z p^{\prime}(z) \prec 1+\beta z q_{\beta}^{\prime}(z)$ implies $p(z) \prec q_{\beta}(z)$.

Let

$$
q_{\beta}^{*}(z)=1+\frac{2}{\beta}(\sqrt{1+z}-\log (1+\sqrt{1+z})+\log 2-1)
$$

By the proof of [1, Theorem 2.1], we have $q_{\beta}^{*}(z) \prec p_{*}(z)$ which is equivalent to

$$
q_{\beta}(z)=\frac{e^{-i \theta_{0}}}{\cos \theta_{0}}\left(q_{\beta}^{*}(z)-1\right)+1 \prec \frac{e^{-i \theta_{0}}}{\cos \theta_{0}}\left(p_{*}(z)-1\right)+1=P(z) .
$$

The remaining part of the proof can be obtained by using the same arguments as that of the proof of [1, Theorem 2.1].

Theorem 2.3 Suppose that the function $p(z)$ is analytic in $\mathbb{D}, p(0)=1$, $\theta_{0} \in[0,2 \pi]$.
(1) If

$$
1+\beta z p^{\prime}(z) / p(z) \prec \frac{e^{-i \theta_{0}} \sqrt{1+z}+i \sin \theta_{0}}{\cos \theta_{0}}
$$

then

$$
\begin{aligned}
& p(z) \prec q_{\beta}(z)=\exp \left(\frac{2 e^{-i \theta_{0}}}{\beta \cos \theta_{0}}(\sqrt{1+z}-\log (1+\sqrt{1+z})+\log 2-1)\right) . \\
& \text { (2)If }
\end{aligned}
$$

$$
1+\beta z p^{\prime}(z) / p(z) \prec \frac{e^{-i \theta_{0}}(1+A z) /(1+B z)+i \sin \theta_{0}}{\cos \theta_{0}},
$$

then

$$
p(z) \prec q_{\beta}(z)=\exp \left(\frac{e^{-i \theta_{0}}}{\beta \cos \theta_{0}}(\log |1 / B z|+(A / B) \log |1+B z|)\right) .
$$

(3) If

$$
1+\beta z p^{\prime}(z) / p(z) \prec \frac{e^{-i \theta_{0}} \Phi_{0}(z)+i \sin \theta_{0}}{\cos \theta_{0}},
$$

then

$$
p(z) \prec q_{\beta}(z)=\exp \left(\frac{e^{-i \theta_{0}}}{\beta \cos \theta_{0}}(-z / k-2 \log |z / k-1|)\right)
$$

(4)If

$$
1+\beta z p^{\prime}(z) / p(z) \prec \frac{e^{-i \theta_{0}} \Phi_{2}(z)+i \sin \theta_{0}}{\cos \theta_{0}}
$$

then

$$
p(z) \prec q_{\beta}(z)=\exp \left(\frac{e^{-i \theta_{0}}}{\beta \cos \theta_{0}}\left((4 / 3) z+(1 / 3) z^{2}\right)\right) .
$$

(5) If

$$
1+\beta z p^{\prime}(z) / p(z) \prec \frac{e^{-i \theta_{0}} \Phi_{3}(z)+i \sin \theta_{0}}{\cos \theta_{0}}
$$

then

$$
p(z) \prec q_{\beta}(z)=\exp \left(\frac{e^{-i \theta_{0}}}{\beta \cos \theta_{0}}\left(z+\sqrt{z^{2}+1}-\log \left(1+\sqrt{z^{2}+1}\right)+\log 2-1\right)\right)
$$

Proof. The function $q_{\beta}(z)$ in $\overline{\mathbb{D}}$ defined by

$$
q_{\beta}(z)=\exp \left(\frac{2 e^{-i \theta_{0}}}{\beta \cos \theta_{0}}(\sqrt{1+z}-\log (1+\sqrt{1+z})+\log 2-1)\right)
$$

is analytic and is a solution of the differential equation

$$
1+\beta z q_{\beta}^{\prime}(z) / q_{\beta}(z)=\frac{e^{-i \theta_{0}} \sqrt{1+z}+i \sin \theta_{0}}{\cos \theta_{0}}
$$

Suppose that the functions $v(\omega)=1$ and $\psi(\omega)=\beta / \omega$. The function Q : $\overline{\mathbb{D}} \rightarrow C$ is defined by $Q(z):=z q_{\beta}^{\prime}(z) \psi\left(q_{\beta}(z)\right)=\beta z q_{\beta}^{\prime}(z) / q_{\beta}(z)$. Since

$$
\frac{e^{-i \theta_{0}} \sqrt{1+z}+i \sin \theta_{0}}{\cos \theta_{0}}-1
$$

is starlike function in \mathbb{D}, it follows that function $Q(z)$ is starlike. Note that the function $h(z):=v\left(q_{\beta}(z)\right)+Q(z)=1+Q(z)$ satisfies $\operatorname{Re}\left(z h^{\prime}(z) / Q(z)\right)>0$ for $z \in \mathbb{D}$. Therefore, by using Lemma 2.1, it follows that $1+\beta z p^{\prime}(z) / p(z) \prec$ $1+\beta z q_{\beta}^{\prime}(z) / q_{\beta}(z)$ implies $p(z) \prec q_{\beta}(z)$. By using the similar arguments, we have the other results of Theorem 2.3.

The proof of Theorem 2.3 is completed.

Theorem 2.4 Suppose that the function $p(z)$ is analytic in $\mathbb{D}, p(0)=1$, $\theta_{0} \in[0,2 \pi]$.
(1) If

$$
1+\beta z p^{\prime}(z) / p^{2}(z) \prec \frac{e^{-i \theta_{0}} \sqrt{1+z}+i \sin \theta_{0}}{\cos \theta_{0}}
$$

then

$$
p(z) \prec q_{\beta}(z)=\left[1-\frac{2 e^{-i \theta_{0}}}{\beta \cos \theta_{0}}(\sqrt{1+z}-\log (1+\sqrt{1+z})+\log 2-1)\right]^{-1} .
$$

(2) If

$$
1+\beta z p^{\prime}(z) / p^{2}(z) \prec \frac{e^{-i \theta_{0}}(1+A z) /(1+B z)+i \sin \theta_{0}}{\cos \theta_{0}},
$$

then

$$
p(z) \prec q_{\beta}(z)=\left[1-\frac{e^{-i \theta_{0}}}{\beta \cos \theta_{0}}(\log |1 / B z|+(A / B) \log |1+B z|)\right]^{-1} .
$$

(3) If

$$
1+\beta z p^{\prime}(z) / p^{2}(z) \prec \frac{e^{-i \theta_{0}} \Phi_{0}(z)+i \sin \theta_{0}}{\cos \theta_{0}},
$$

then

$$
p(z) \prec q_{\beta}(z)=\left[1-\frac{e^{-i \theta_{0}}}{\beta \cos \theta_{0}}(-z / k-2 \log |z / k-1|)\right]^{-1} .
$$

(4) If

$$
1+\beta z p^{\prime}(z) / p^{2}(z) \prec \frac{e^{-i \theta_{0}} \Phi_{2}(z)+i \sin \theta_{0}}{\cos \theta_{0}},
$$

then

$$
p(z) \prec q_{\beta}(z)=\left[1-\frac{e^{-i \theta_{0}}}{\beta \cos \theta_{0}}\left((4 / 3) z+(1 / 3) z^{2}\right)\right]^{-1} .
$$

(5) If

$$
1+\beta z p^{\prime}(z) / p^{2}(z) \prec \frac{e^{-i \theta_{0}} \Phi_{3}(z)+i \sin \theta_{0}}{\cos \theta_{0}},
$$

then
$p(z) \prec q_{\beta}(z)=\left[1-\frac{e^{-i \theta_{0}}}{\beta \cos \theta_{0}}\left(z+\sqrt{z^{2}+1}-\log \left(1+\sqrt{z^{2}+1}\right)+\log 2-1\right)\right]^{-1}$.
Proof. The function $q_{\beta}(z)$ in $\overline{\mathbb{D}}$ defined by

$$
q_{\beta}(z)=\left[1-\frac{2 e^{-i \theta_{0}}}{\beta \cos \theta_{0}}(\sqrt{1+z}-\log (1+\sqrt{1+z})+\log 2-1)\right]^{-1}
$$

is analytic and is a solution of the differential equation

$$
1+\beta z q_{\beta}^{\prime}(z) / q_{\beta}^{2}(z)=\frac{e^{-i \theta_{0}} \sqrt{1+z}+i \sin \theta_{0}}{\cos \theta_{0}}
$$

Suppose that the functions $v(\omega)=1$ and $\psi(\omega)=\beta / \omega^{2}$. The function Q : $\overline{\mathbb{D}} \rightarrow C$ is defined by $Q(z):=z q_{\beta}^{\prime}(z) \psi\left(q_{\beta}(z)\right)=\beta z q_{\beta}^{\prime}(z) / q_{\beta}^{2}(z)$. Since

$$
\frac{e^{-i \theta_{0}} \sqrt{1+z}+i \sin \theta_{0}}{\cos \theta_{0}}-1
$$

is starlike function in \mathbb{D}, it follows that function $Q(z)$ is starlike. Note that the function $h(z):=v\left(q_{\beta}(z)\right)+Q(z)=1+Q(z)$ satisfies $\operatorname{Re}\left(z h^{\prime}(z) / Q(z)\right)>0$ for $z \in \mathbb{D}$. So, by using Lemma 2.1, it follows that $1+\beta z p^{\prime}(z) / p^{2}(z) \prec$ $1+\beta z q_{\beta}^{\prime}(z) / q_{\beta}^{2}(z)$ implies $p(z) \prec q_{\beta}(z)$. By using the similar arguments, we have the other results of Theorem 2.4.

ACKNOWLEDGEMENTS. This paper was supported by National Natural Science Foundation of China (No. 11501159).

References

[1] Om P. Ahuja, Sushil Kumar and V. Ravichandran, First order differential subordination for functions with positive real part, 2017, arXiv: 1703.03590v1[math. CV].
[2] R. M. Ali, V. Ravichandran and N. Seenivasagan, Sufficient conditions for Janowski starlikeness, Int. J. Math. Math. Sci. 2007(2007), Art. ID 62925, 7 pages, doi:10.1155/2007/62925.
[3] N. E. Cho, H. J. Lee, J. H. Park and R. Srivastava, Some applications of the first-order differential subordinations, Filomat 30(6)(2016), 1465-1474.
[4] P. Duren, Harmonic mappings in the plane, Cambridge Univ. Press, 2004.
[5] G. M. Goluzin, On the majorization principle in function theory, Dokl. Akad. Nauk. SSSR 42(1935), 647-650.
[6] S. S. Miller and P.T. Mocanu, Differential Subordinations, Dekker, New York, 2000.
[7] M. Nunokawa, M. Obradović and S. Owa, One criterion for univalency, Proc. Amer. Math. Soc. 106(4)(1989), 1035-1037.
[8] R. Omer and S. A. Hailm, Differential subordination properties of Sokól-Stankiewicz starlike functions, Kyungpook Math. J. 53(3)(2013), 459-465.
[9] V. Ravichandran and K. Sharma, Sufficient conditions for starlikeness, J. Korean Math. Soc. 52(4)(2015), 727-749.
[10] K. Sharma and V. Ravichandran, Applications of subordination theory to starlike functions, Bull. Iranian Math. Soc. 42(3)(2016), 761-777.
[11] N. Tuneski, T. Bulboacă and B. Jolevska-Tunesk, Sharp results on linear combination of simple expressions of analytic functions, Hacet. J. Math. Stat. 45(1)(2016), 121-128.

Received: June 7, 2017

