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Abstract

In this work we will obtain a formula for the third regularized trace
of the self adjoint differential equation of second order with nuclear class
operator coefficient given in a finite interval.
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1 Introduction

Let H be a separable Hilbert space. In the Hilbert space Hy = Lo ([0, 7] ; H),
we consider the self-adjoint operators Ly and L generated by the differential

expressions
lo(y) =—y" (2),
Ly)=—y"(2) + Q(z)y (x) (1)
and the boundary conditions
y(0)=0, y'(m)=0 (2)

Suppose that the operator function @) (z) in the expression [ (y) satisfies
the following conditions:
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1. For all z € (0,7), Q(z): H— H is a self-adjoint nuclear operator.
Morever, @ (z) hasacontinuous derivative of fourth order with respect to the
norm in space oy (H) in the interval [0, 7| and for z € (0,7), QEQ) :H—H
are self-adjoint operators (i = 1,2,3,4).

2. sup Q) <1

3. There is an orthonormal basis {¢,} -, of the space H such that

2 1Q @) el < oo
n=1

4./07FQ(:c)dx:

5.Q0 ) =Q® 1 (r) =0, (i=1,2)

Here o1 (H) denotes the space of the nuclear operators from H to H.

2 o0
The spectrum of the operator L is the set { (m — %) } , and every point

of this set is an eigenvalue of Ly with infinite multiplicit?. The orthonormal
eigenfunctions corresponding to the eigenvalue have the form

2 1
wgln:\/;Sin<m—§)x~gpn7 n=12,.. (3)

In this work, we will fund a formula for the sum of the series
~ [ o (Afm — (m - ;)6> 2 3m) Q2 () de —
it [Q @] de — LT g (@) de + 1) = & [rQUY) (x) — trQUY) (0)] ~
& Q" (M Q(m) — rQ (o)) + 4l (7) — g (0)] = &,
where h = 1_85 >icy E]O'il |Bz‘j‘=

5@" - 7r3 Z =1 Z 321 foﬁ (Q (x) Pn s Soq)H cosixdr f(]7r (Q (SL’) Pqs @S)H

CoS (7’ - .]) rdx X f(;f (Q (ZZ}') Ps, gpn) COSjLEd,’L‘,

oo oo o0

35 [[(Q @) bu e (@) 90,65) (@ () s 00)

n=1qg=1s=1

This formula is said to be the third regularized trace formula.
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The sequences {A,},., are the eigenvalues of the operator L for every
m=1,2,...which belong to the interval

(=) ~ 1l (= 5) +1l).

The trace formulas for the selfadjoint Sturm-Liouville differential operators
have been found by Gelfand and Levitan [10], Dikiy [7], Gasimov and Levitan
9], Sadovnichiy and Podolskiy [14] and many others.

The trace formulas of the abstract self-adjoint operators with a continuous
spectrum were first analyzed by Krein [12], Faddeyev [8], Bayramoglu [5]. On
the other hand, trace formulas for the differential operators with operator
coefficient have been investigated by Abdukadirov [1], Maksudov et al. [13],
Adiguzelov and Baksi [2], Adiguzelov and Sezer [13], Albayrak et al. [4].

2 Investigating the spectrum of the operator
L some equalities about the resolvents

Let RS and R) be the resolvents of the operators Ly and L, respectively.
Lemma 2.1. If the operator function @) (z) satis fies the condition 3 and

A € p(Ly), then QRS : Hy — H, is a nuclear operator: QRS € oy (H;).
Proof. The eigenfunctions system {@ng}z’n:l of the operator Ly is an

orthonormal basis of the space H;. As known from [6], to show that QRY is a

nuclear operator, it is enough to prove that the series

>, 3 [oretul,, @

m=1

is convergent.
From (3) we obtain

-1
Dol 2ot ||QR§ fnn”Hl = 21 2net ||Q¢7Onn||H1 =

(m=3)" =

(-1~

2

2

(n-1)" -

-1

=3 Y, [ J%Sinz (m — %) T ||Q ([l?) SOnH?;[dZE} 1/2 <

<VITmaTi T 1Q@ gl = S [(m = ) = A

St 1Q (@) enlly, < CNERL m™ 304, 1Q (2) enlly,
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Here C' is a positive constant related only to A. By virtue of condition 3
from (5) we obtain

> 2 QR YR, < oo

m=1n=1

Teorem 2.1. If the operator function @) (z) satisfies conditions 1-3, then
the spectrum of the operator L is a subset of the union of the disjoint intervals

= [(m=3) =~ 1l (= 5) 1@l |« =123,

and the following conditions are satisfied:

a) Each point of the spectrum of the operator L which is different from

2
(m — %) in €2, is as isolated eigenvalue which has finite multiplicity.

2
b) (m — %) may be an eigenvalue of the operator L which has finite or
infinite multiplicity.
2
The equality lim Apy, = (m — %) holds. Here {A,,,} -, are the eigenval-
ues, belonging to the interval €, of the operator L, and each eigenvalue has
been repeated according to multiplicity.

Proof. The resolvent R, of the operator L satisfies the equation

RS — R\QRS = Ry (6)

2

o) 2
If\e R‘ !1 {(m — %) 1Q 5, (m — %) + ||Q||H1] , then we have

- (n-3)

For the self-adjoint operator R = (Ly — A7

-3y

> @y, ,m=1,2,..., (7)

-1

13, = max

holds . From here and (7), we obtain

-1
1230 e, < 1@, -

And so, we get
QRS g, < Qg 1RSIl < 1.

Thus, A (B) = R —BQRY is a contraction operator from L (H;) to L (Hy) .
Here L (H;) is the linear bounded operator space from H; to Hy. According to
this, A (Ry) Ry, that is, equation (6) has a unique solution Ry € L (H;). Thus,
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every point \ ¢ U Q,, is the regular point of the self-adjoint operator L. So,

the spectrum of operator Lis o (L) C Uy 1€Qy,. From formula (6) and lemma
2.1, forevery A € p(L)Np(Lo), Rx— RS belongsto oy (Hy), thatis, Ry— RY
is a nuclear operator. In this case, as it was proved in Kato [11, page244], the
continuous parts of the spectra of operators Ly and L coincide. According to
this, and since the spectrum of operator L is contgonuous, the continuous part
of the spectra operator L is the set {(m — 1)2} . This also means that

2
m=1
assertions (a), (b) and (c) of Theorem 2.1 are satisfied.

In the case when conditions (b) and (c) are satisfied, it can be proved that

the series . ~
> [Amn— (m— 5) ] , (m=1,2,..)

are absolutely convergent. On the other hand, if we consider Ry— RS € oy (H;)
for every A € p(L), then we get

1
n_>\ (m_l)Q_)\

2

r(Ry— R}) = ZZ

If we multiply both sides of this equality by and integrate this equality

over the circle |\| = bp = (p — %) +p, (p>1), then we find

27_” fl)‘l bp)\ tr (R)\ — RO) d)\ = ﬁ ‘ﬂ)\‘:bp )\3 anzl Z;O:l [Ami—A - (m_;)2_>\‘| d)\

+2m f|)\| bp)\ > =p+1 Yzt [)\mi—)\ o (m_%lf_kl dA

For m < p and p > 1 by condition 2, we can write

(= 2) 1@l < A (= 5) +1Q, < (r=2) +p=t0

There fore we get
Amn| <bp, m<p, p>1, n=12 . 9)

Moreover, for m > p,

1\2 1\2 1\2
A = (= 5) =@l = (p41-3) =@l > (p=5) +p=1b,

Thus we get
Amn >bp; m>p;, n=12 .. (10)



414 Gamidulla Aslanov and Kenul Badalova

Using (9), (10), from (8) we have

= Jixmpp At (o — RS) dA =

2mi

D g0 Lf A3d\ _ 1 A3dA
m=1 Zun=1 | 27; J|\|=bp A_(m_;f 27 JIA=bp A=Amn
2

(11)

o0 0o 1 A3dA 1 Adh |
+ Zm:p-i-l En:l [% flx\\:bp W T omi f\AI=bP m] -

6
=S [(m = 4) - A
Moreover from the formula Ry = R$ - R\QRS, we obtain the following
equality
al j J N+1 N+1
Ry— R =Y (-1 R} (QRY)" + (=)' Ry (QR)™M (12)

Jj=1

where N is any natural number.
From (11) and (12), we have

6 _1) i
e oy |(m = 3) = N = S0 G S, Mt [RQES) At

(N ; Nt (13)
s Sz AT [RA (QRY) } d\
Let »
_ (_1>] 3 o) o J
My =z [ N [R(QR3Y] dx (1)
— (_1)j+1 3 o o\ N+1
Moy =g [ Xt R (QA)™] ax (15)

Then from (13), (14) and (15) ve have

p o0 1 6 N
> 3 M= (m=5) | = 2 Moy 4 (16
j=1
2
Since the operator function ()R in the domain C' ‘{m — %} » is analytic

with respect to the norm in space o (Hy), one can show for Mp; the following

formula is true _

3(—=1)
2mig

Mp; = /Wsz A2tr [QRS] d) (17)
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3 The formula of the regularized trace of the
operator L

In this section we will find a formula for the regularized trace of the operator
L
According to formula (17)

o 3 2 1)
Mp; = - /A:bp)\tr[QRA] d\

21

Since the eigenfunctions {¢2,,}~_, _, on the operator Ly is an orthonormal
basis of the space Hy, then

MP 27” f|)\\ =bp Ntr [QRO] = 27” f\)\\ =bp A2 Zm 1 Zn 1 (QR mn’ mn)Hl dA =
=3 =1 Lot <2m fm =bp ﬁ) (Qiy, n>w5m)H1 =

=3 et Yot (m - %)4 (QUp s o) =
=3 an:l Zzozl (m — %)4 % foﬂ (Q ([l?) ©n, (pn) sin? (m — %) rdr =
=350 53 (m = 3) T (Q (@) pun o) g do—

—ayr 5 (m= 1) T (Q (@) o) cos (2m — 1) ad
(18)
If we take into account the inequality

2201 (Q (@) ony n) | < 3505 1(Q () @ny o)yl < N1Q ()5, )
152021 (Q () @n, on) cos (2m — 1) x| <3502, (@ (%) @ny o) | < 1@ (@)l (a1

and condition

Q@) sy o < o0

then by Leveque’s theorem we obtain

> [[@@enentr= [ 3 @@ engude= [[0QE)dr (19)

Z/ T) Pn, Pn) g dx cos (2m — 1):cd:c—/ tr@ (z) - cos (2m — 1) zdx
(20)
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From (18), (19) and (20) we have

3
Mpy ===
™

i (m - %)4/07T tr@ (z) - cos (2m — 1) zdx+

m=1

+; XP: (m — %)2 : /07r tr@Q (x) dx (21)

m=1

Then after the application of integration on parts in the first integral of
equality (21) for four times we achieve

3 &[T
PL= 7o mz::l/o trQ") (z) - cos (2m — 1) zdx+

+ Z <m— —> / trQ (x (22)

Let us calculate Mpy. According to formula (17)

Mp. = % /A|=bp Vir [(QRRY] dx = % /|>\|=bp g Li:lg:l (@A) i Zm] “
(23)
Moreover ) ,
QRO — [(m— %) - A] QU
NN
o

[ Sl ] e e e

From (23) and (24) we get

3 o0 o oo o A2d)\
Mmg—ZZZZ\mmme{ -
P\ —

— iiii’ m"’ ’/)\| bp[ _

P oo o0 00 A2d\
+fzzijmmuAby_ +
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47m %:H;z:l;‘(ngm @Do) /)\| —bp {)\_ (m— %)2] [)\— (r_ %)2]

e Y Y Y @) s x2d) i

m=p+1n=1r=p+1q=1

Here we use that in the case m,r <p
A2d\

n ) p-6-9T

/|A|=bp [A _ (

In the case m =r

2
/ A“dA _o
|Al=bp { .

If in the expression
P o P 2
1 0 o |2
S Y Y (r=3) (@b vn)]
m=1n=1r=1q=1
to after the index m with r and n with ¢, then we obtain

mﬁ;ééi (r- %) (@ut ) =

- ZEE 5 (n-g) N )

hence

) (=3) (@0 us)| (28)
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Mark
A )} A
= :Z T 5 | (QUSn, 05, (29)
We present ap in the following form
Qp = ap; — Qpy + aps, (30)
where
L& (moy) (=) :
CWq-;gggrggl(T_%)QOH__%V | Q@) en00)yy cos (r = m) ada
2 2 (81)
P 1 1 -
Qap 2—;2 mZ:1 TZPZH ET_ ;))2 (7(7: ~ Z%z'Re [/0 (Q () ¥n, pq) g cos (1 — m) xdx x
X /07r (Q () n, ©q) y cos (r —m) xdx (32)
P o 1V, 1) 2
“P3;?§?Zréilgr f§2€Z§§2~4 (Q(2) Pus 90) 08 (r +m — 1) ade

(33)
From (28)-(33) we obtain

My =33 3 (m— —) 1000 P =353 (ap — aps +aps)  (34)

m=1n=1 n=1qg=1

Separately evaluating apq, apy and apz, we obtain

Mpy = i lfﬁ (m— —) / trQ? () do + 12’ i [Q ()] dat

3 [T 1 I 2

o [[0|Q" @ Q@) + [ (@)

where |O (p™!)| < const - p~!
Researching in detail Mps, after very complicated calculation we obtain.

cos (2m — 1) xdx + O (p_l) . (39)

P rm
Mpg—;/o g (x) x——Z/ )cos (20 — 1) xdx—

15 P P
T 2p+1)> > Bii+0(1) (36)
i=1j5=1
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where
()= - 323 Q) )y Q) 00y @) ) (30
- % i i i /0” (@) n: o) i cosixdm/oﬂ (Q () g, @s) g cos (i — j) xdxx

=1g9=1s=1

3

% [1(Q @) pur90)y cos e (38)

Thus, as [\ = bp = p* + i, there is such an stable ¢, where the following
inequality is true:

IQR oy (Hy) < €, [[RS[ < Cp™', Rl < Cp* (39)

From (14), (40) and condition 2 we obtain

o . b;2; o .
(M| < 5 fiaimy [Nt [QRSY dN| < % iy, (@B, 1A <

b2 0 ; -
<% ity HQBR v any - QB AN < S 3y, 1QI - IR |dA] <

J

CI b2 s . .
< Tpfwszpl TN < Cyb3 - p'~7 < Cop™™/

here C; and Cy are stable figures.
From the last inequality we obtain

lim M,; =0, j>8 (40)

p—00
with j = 4,5,6,7 we can also prove that
})1_:()1(1) M,; = 0. (41)

From (40) and (41) we obtain
lim M,; =0, j>4. (42)

From (15) and (40) we obtain
(M| < Sy Xt [Bx QB ] dA| < 0] - fiy oy | Bx (QB™| 1] <

< O Sy BNl (@B 1] <

Cy -7 iz IQBSN )™ - NQRS |, 1y ldA] <

< Cabyp™' =N < Cyp™N
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here C3 and C} are stable figure.
From the last inequality we obtain

The main result of this article is given by the following theorem.
Theorem 3.1. If the operator function ) (x) satisfies conditions 1.-5., then

5 r (A?’mn—(m—%)6> —?)(mT:%)Z/Owter(x)dx

_16% /07r tr (QI (1'))2dx—% /Owg (:L’) dr + h} = 634 [trQ(IV) (71‘) N trQ(IV) (0)} B

o [ M Q) ~ Q" (0) Q)] + -l (M) —g )]~ 5. (44)

47 2
here h = 237, 3% B;, By~ figure are defined by means of equality (38),
but the function ¢ (z) is defined from the equality (36).
The series on the left side of this equality is called the third regularized
trace of the operator L.

Proof. From formulas (16), (22), (36), (42) and (43), we obtain.

XP: i [)\im - (m - %)6] = ~T6x Z/ trQ"Y) () cos (2m — 1) zdx+

I AT .
Sma) (mh J | Q@ d:):+16% (@ @) dot

P 1 &
—I—; ; g(x)dz—%;/o g (x)cos (20 — 1) xdx—

]_5PPP 5PP

g Z ij 162251J+0 (45)

i=1j=1 i=1j=1

From the Fourier theory it is known that if the function f (z) is continuous
on the segment [0, 7|, then the following equality is true:

1 1
%z::/_ cos(Qm—l)xdeZ[f(O)—f(W)]- (46)
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From (45), (46) and condition 5. we obtain

[i ()\frm— (m—%>6—W/0ﬂtrQ2 (x)dx—%/oﬂtr [Qf(x)rdx_

— [(a( dx+—5§§/3w]— Q™) (7) ~ Q") (0)] -

i=17=1

1 B EE

_8% [trQH (m)Q (m) —tr@Q (m) Q (0)] + In g (m) — Z Z Bij-

11]1
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