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1 Introduction

Let H be a separable Hilbert space. In the Hilbert space H1 = L2 ([0, π] ;H),
we consider the self-adjoint operators L0 and L generated by the differential
expressions

l0 (y) = −y′′ (x) ,

l (y) = −y′′ (x) +Q (x) y (x) (1)

and the boundary conditions

y (0) = 0, y′ (π) = 0 (2)

Suppose that the operator function Q (x) in the expression l (y) satisfies
the following conditions:



410 Gamidulla Aslanov and Kenul Badalova

1. For all x ∈ (0, π) , Q (x) : H → H is a self-adjoint nuclear operator.
Morever, Q (x) hasacontinuous derivative of fourth order with respect to the

norm in space σ1 (H) in the interval [0, π] and for x ∈ (0, π) , Q
(i)
(x) : H → H

are self-adjoint operators (i = 1, 2, 3, 4).
2. sup

0≤x≤π

‖Q (x)‖H < 1.

3. There is an orthonormal basis {ϕn}
∞
n=1 of the space H such that

∞
∑

n=1

‖Q (x)ϕn‖H1
<∞.

4.
∫ π

0
Q (x) dx = 0

5.Q
(2i−1)
(x) = Q(2i)−1 (π) = 0, (i = 1, 2)

Here σ1 (H) denotes the space of the nuclear operators from H to H.

The spectrum of the operator L0 is the set
{

(

m− 1
2

)2
}∞

m=1
, and every point

of this set is an eigenvalue of L0 with infinite multiplicity. The orthonormal
eigenfunctions corresponding to the eigenvalue have the form

ψ0
mn =

√

2

π
sin

(

m−
1

2

)

x · ϕn, n = 1, 2, ... (3)

In this work, we will fund a formula for the sum of the series

∑∞
m=1

[

∑∞
n=1

(

λ3mn −
(

m− 1
2

)6
)

−
3(m− 1

2)
2

4π

∫ π
0 trQ

2 (x) dx− 3
16π

×

∫ π
0 tr

[

QI (x)
]2
dx− 1

π

∫ π
0 g (x) dx+ h] = 3

64

[

trQ(IV ) (π)− trQ(IV ) (o)
]

−

3
8π

[

trQII (π)Q (π)− trQII (o)
]

+ 1
4π

[g (π)− g (o)]− h
2
,

where h = 15
8

∑∞
i=1

∑∞
j=1 |βij|,

βij =
1
π3

∑∞
n=1

∑∞
q=1

∑∞
s=1

∫ π
0 (Q (x)ϕn, ϕq)H cos ixdx

∫ π
0 (Q (x)ϕq, ϕS)H

cos (i− j) xdx×
∫ π
0 (Q (x)ϕS, ϕn) cos jxdx,

g (x) =
∞
∑

n=1

∞
∑

q=1

∞
∑

s=1

∫ π

0
(Q (x)ϕn, ϕq)H (Q (x)ϕq, ϕS)H (Q (x)ϕs, ϕn)

This formula is said to be the third regularized trace formula.
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The sequences {λmn}
∞
n=1 are the eigenvalues of the operator L for every

m=1,2,. . .which belong to the interval

[

(

m−
1

2

)2

− ‖Q‖H1
,
(

m−
1

2

)2

+ ‖Q‖H1

]

.

The trace formulas for the selfadjoint Sturm-Liouville differential operators
have been found by Gelfand and Levitan [10], Dikiy [7], Gasimov and Levitan
[9], Sadovnichiy and Podolskiy [14] and many others.

The trace formulas of the abstract self-adjoint operators with a continuous
spectrum were first analyzed by Krein [12], Faddeyev [8], Bayramoglu [5]. On
the other hand, trace formulas for the differential operators with operator
coefficient have been investigated by Abdukadirov [1], Maksudov et al. [13],
Adiguzelov and Baksi [2], Adiguzelov and Sezer [13], Albayrak et al. [4].

2 Investigating the spectrum of the operator

L some equalities about the resolvents

Let Ro
λ and Rλ be the resolvents of the operators L0 and L, respectively.

Lemma 2.1. If the operator function Q (x) satis fies the condition 3 and
λ ∈ ρ (L0), then QR

0
λ : H1 → H1 is a nuclear operator: QR0

λ ∈ σ1 (H1).
Proof. The eigenfunctions system {ψ0

mn}
∞
m,n=1 of the operator L0 is an

orthonormal basis of the space H1. As known from [6], to show that QR0
λ is a

nuclear operator, it is enough to prove that the series

∞
∑

m=1

∞
∑

n=1

∥

∥

∥QR0
λψ

0
mn

∥

∥

∥

H1

(4)

is convergent.

From (3) we obtain

∑∞
m=1

∑∞
n=1 ‖QR

o
λψ

o
mn‖H1

=
∑∞

m=1

∑∞
n=1

∣

∣

∣

∣

(

m− 1
2

)2
− λ

∣

∣

∣

∣

−1

‖Qψo
mn‖H1

=

=
∑∞

m=1

∑∞
n=1

∣

∣

∣

∣

(

m− 1
2

)2
− λ

∣

∣

∣

∣

−1 [
∫ π
0

2
π
sin2

(

m− 1
2

)

x ‖Q (x)ϕn‖
2
H dx

]1/2
≤

≤
√

2
π

∑∞
m=1

∑∞
n=1

∣

∣

∣

∣

(

m− 1
2

)2
− λ

∣

∣

∣

∣

−1

‖Q (x)ϕn‖H1
=
∑∞

m=1

∣

∣

∣

∣

(

m− 1
2

)2
− λ

∣

∣

∣

∣

−1

∑∞
n=1 ‖Q (x)ϕn‖H1

≤ Cλ

∑∞
m=1m

−2∑∞
n=1 ‖Q (x)ϕn‖H1

(5)
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Here Cλ is a positive constant related only to λ. By virtue of condition 3
from (5) we obtain

∞
∑

m=1

∞
∑

n=1

‖QRo
λψ

o
n‖H1

<∞.

Teorem 2.1. If the operator function Q (x) satisfies conditions 1-3, then
the spectrum of the operator L is a subset of the union of the disjoint intervals

Ωm =

[

(

m−
1

2

)2

− ‖Q‖H1
,
(

m−
1

2

)

+ ‖Q‖H1

]

, m = 1, 2, 3, ...

and the following conditions are satisfied:
a) Each point of the spectrum of the operator L which is different from

(

m− 1
2

)2
in Ωm is as isolated eigenvalue which has finite multiplicity.

b)
(

m− 1
2

)2
may be an eigenvalue of the operator L which has finite or

infinite multiplicity.

The equality lim
n→∞

λmn =
(

m− 1
2

)2
holds. Here {λmn}

∞
n=1 are the eigenval-

ues, belonging to the interval Ωm of the operator L, and each eigenvalue has
been repeated according to multiplicity.

Proof. The resolvent Rλ of the operator L satisfies the equation

Ro
λ − RλQR

o
λ = Rλ (6)

If λ ∈ R
∣

∣

∣

∣

∞
⋃

m=1

[

(

m− 1
2

)2
− ‖Q‖H1

,
(

m− 1
2

)2
+ ‖Q‖H1

]

, then we have

∣

∣

∣

∣

∣

λ−
(

m−
1

2

)2
∣

∣

∣

∣

∣

> ‖Q‖H1
, m = 1, 2, ..., (7)

For the self-adjoint operator Ro
λ = (L0 − λI)−1 ,

‖Ro
λ‖H1

= max
m

∣

∣

∣

∣

∣

λ−
(

m−
1

2

)2
∣

∣

∣

∣

∣

−1

holds . From here and (7), we obtain

‖Ro
λ‖H1

< ‖Q‖−1
H1
.

And so, we get
‖QRo

λ‖H1
≤ ‖Q‖H1

‖Ro
λ‖ < 1.

Thus, A (B) = Ro
λ−BQR

o
λ is a contraction operator from L (H1) to L (H1) .

Here L (H1) is the linear bounded operator space from H1 to H1. According to
this, A (Rλ)Rλ, that is, equation (6) has a unique solution Rλ ∈ L (H1). Thus,
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every point λ /∈
∞
⋃

m=1
Ωm is the regular point of the self-adjoint operator L. So,

the spectrum of operator L is σ (L) ⊂ U∞
m=1Ωm. From formula (6) and lemma

2.1, for every λ ∈ ρ (L)
⋂

ρ (L0) , Rλ−R
o
λ belongs to σ1 (H1), that is, Rλ−R

o
λ

is a nuclear operator. In this case, as it was proved in Kato [11, page244], the
continuous parts of the spectra of operators L0 and L coincide. According to
this, and since the spectrum of operator L0 is continuous, the continuous part

of the spectra operator L is the set
{

(

m− 1
2

)2
}∞

m=1
. This also means that

assertions (a), (b) and (c) of Theorem 2.1 are satisfied.
In the case when conditions (b) and (c) are satisfied, it can be proved that

the series
∞
∑

n=1

[

λmn −
(

m−
1

2

)2
]

, (m = 1, 2, ...)

are absolutely convergent. On the other hand, if we consider Rλ−R
o
λ ∈ σ1 (H1)

for every λ ∈ ρ (L) , then we get

tr (Rλ − Ro
λ) =

∞
∑

m=1

∞
∑

n=1







1

λmn − λ
−

1
(

m− 1
2

)2
− λ





 .

If we multiply both sides of this equality by λ3

2πi
and integrate this equality

over the circle |λ| = bp =
(

p− 1
2

)2
+ p, (p ≥ 1), then we find

1
2πi

∫

|λ|=bp λ
3tr (Rλ − R0

λ) dλ = 1
2πi

∫

|λ|=bP
λ3
∑p

m=1

∑∞
n=1

[

1
λmn−λ

− 1

(m− 1

2)
2
−λ

]

dλ

+ 1
2πi

∫

|λ|=bp λ
3∑∞

m=p+1

∑∞
n=1

[

1
λmn−λ

− 1

(m− 1

2)
2
−λ

]

dλ

(8)
For m ≤ p and p ≥ 1 by condition 2, we can write

(

m−
1

2

)2

− ‖Q‖H1
≤ λmn ≤

(

m−
1

2

)2

+ ‖Q‖H1
<
(

p−
1

2

)2

+ p = bP .

There fore we get

|λmn| < bp, m ≤ p, p ≥ 1, n = 1, 2, ... (9)

Moreover, for m > p,

λmn ≥
(

m−
1

2

)2

− ‖Q‖H1
≥
(

p+ 1−
1

2

)2

− ‖Q‖H1
>
(

p−
1

2

)2

+ p = bp

Thus we get
λmn > bp; m > p; n = 1, 2, ... (10)
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Using (9), (10), from (8) we have

1
2πi

∫

|λ|=bP
λ3tr (Rλ − Ro

λ) dλ =

∑p
m=1

∑∞
n=1

[

1
2πi

∫

|λ|=bp
λ3dλ

λ−(m− 1

2)
2 −

1
2πi

∫

|λ|=bP

λ3dλ
λ−λmn

]

+

+
∑∞

m=p+1

∑∞
n=1

[

1
2πi

∫

|λ|=bP
λ3dλ

λ−(m− 1

2)
2 −

1
2πi

∫

|λ|=bP
λ3dλ

λ−λmn

]

=

=
∑p

m=1

∑∞
n=1

[

(

m− 1
2

)6
− λ3mn

]

(11)

Moreover from the formula Rλ = Ro
λ · RλQR

o
λ, we obtain the following

equality

Rλ −Ro
λ =

N
∑

j=1

(−1)j Ro
λ

(

QR0
λ

)j
+ (−1)N+1Rλ (QR

o
λ)

N+1 (12)

where N is any natural number.
From (11) and (12), we have

∑p
m=1

∑∞
n=1

[

(

m− 1
2

)6
− λ3mn

]

=
∑N

j=1
(−1)j

2πi

∫

|λ|=bP
λ3tr [Ro

λQR
o
λ]

j dλ+

+ (−1)N+1

2πi

∫

|λ|=bP
λ3tr

[

Rλ (QR
o
λ)

N+1
]

dλ
(13)

Let

Mpj =
(−1)j+1

2πi

∫

|λ|=bP

λ3tr
[

Ro
λ (QR

o
λ)

j
]

dλ (14)

MPN =
(−1)j+1

2πi

∫

|λ|=bP

λ3tr
[

Ro
λ (QR

o
λ)

N+1
]

dλ (15)

Then from (13), (14) and (15) ve have

p
∑

m=1

∞
∑

n=1

[

λ3mn −
(

m−
1

2

)6
]

=
N
∑

j=1

MPj +MPN (16)

Since the operator function QRo
λ in the domain C

∣

∣

∣

∣

{

m− 1
2

}2

m=1
is analytic

with respect to the norm in space σ1 (H1), one can show for MPj the following
formula is true

MPj =
3 (−1)j

2πij

∫

|λ|=bP

λ2tr [QRo
λ] dλ (17)
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3 The formula of the regularized trace of the

operator L

In this section we will find a formula for the regularized trace of the operator
L

According to formula (17)

MPj =
3

2πi

∫

|λ|=bP

λ2tr [QRo
λ] dλ.

Since the eigenfunctions {ψo
mn}

∞
m=1,n=1 on the operator L0 is an orthonormal

basis of the space H1, then

MPj =
3

2πi

∫

|λ|=bp λ
2tr [QRo

λ] dλ = − 3
2πi

∫

|λ|=bP
λ2
∑∞

m=1

∑∞
n=1 (QR

o
λψ

o
mn, ψ

o
mn)H1

dλ =

= 3
∑p

m=1

∑∞
n=1

(

1
2πi

∫

|λ|=bP
λ2dλ

λ−(m− 1

2)
2

)

(Qψo
mn, ψ

o
mn)H1

=

= 3
∑p

m=1

∑∞
n=1

(

m− 1
2

)4
(Qψo

mn, ψ
o
mn) =

= 3
∑p

m=1

∑∞
n=1

(

m− 1
2

)4
2
π

∫ π
0 (Q (x)ϕn, ϕn) sin

2
(

m− 1
2

)

xdx =

= 3
π

∑p
m=1

∑∞
n=1

(

m− 1
2

)4 ∫ π
0 (Q (x)ϕn, ϕn)H dx−

− 3
π

∑p
m=1

∑∞
n=1

(

m− 1
2

)4 ∫ π
0 (Q (x)ϕn, ϕn) cos (2m− 1) xdx.

(18)
If we take into account the inequality

|
∑q

n=1 (Q (x)ϕn, ϕn)H | ≤
∑∞

n=1 |(Q (x)ϕn, ϕn)H | ≤ ‖Q (x)‖σ1(H) ,

|
∑q

n=1 (Q (x)ϕn, ϕn) cos (2m− 1) x| ≤
∑∞

n=1 |(Q (x)ϕn, ϕn)H | ≤ ‖Q (x)‖σ1(H)

and condition ∫ π

0
‖Q (x)‖σ1(H) dx <∞

then by Leveque’s theorem we obtain

∞
∑

n=1

∫ π

0
(Q (x)ϕn, ϕn)H dx =

∫ π

0

∞
∑

n=1

(Q (x)ϕn, ϕn)H dx =
∫ π

0
trQ (x) dx (19)

∞
∑

n=1

∫ π

0
(Q (x)ϕn, ϕn)H dx cos (2m− 1) xdx =

∫ π

0
trQ (x) · cos (2m− 1) xdx

(20)
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From (18), (19) and (20) we have

MP1 = −
3

π

P
∑

m=1

(

m−
1

2

)4 ∫ π

0
trQ (x) · cos (2m− 1)xdx+

+
3

π

P
∑

m=1

(

m−
1

2

)2

·
∫ π

0
trQ (x) dx (21)

Then after the application of integration on parts in the first integral of
equality (21) for four times we achieve

MP1 = −
3

16π

P
∑

m=1

∫ π

0
trQ(IV ) (x) · cos (2m− 1)xdx+

+
3

π

P
∑

m=1

(

m−
1

2

)2

·
∫ π

0
trQ (x) dx (22)

Let us calculate MP2. According to formula (17)

MP2 =
3

4πi

∫

|λ|=bP

λ2tr
[

(QRo
λ)

2
]

dλ =
3

4πi

∫

|λ|=bP

λ2
[

∞
∑

m=1

∞
∑

n=1

(

(QRo
λ)

2 ψo
mn, ψ

o
mn

]

dλ

(23)
Moreover

QRo
λψ

o
mn =

[

(

m−
1

2

)2

− λ

]−1

Qψo
mn

QRo
λψ

o
mn =

[

(

m−
1

2

)2

− λ

]−1

QRo
λ







∞
∑

i=1

∞
∑

q=1

(

Qψo
mn, ψ

o
rq

)

ψrq







=

=

[

(

m−
1

2

)2

− λ

]−1 ∞
∑

i=1

∞
∑

q=1

[

(

r −
1

2

)2

− λ

]−1
(

Qψo
mn, ψ

o
rq

)

Qψo
mn (24)

From (23) and (24) we get

MP2 =
3

4πi

∞
∑

m=1

∞
∑

n=1

∞
∑

r=1

∞
∑

q=1

∣

∣

∣

(

Qψ0
mn, ψ

o
rq

)∣

∣

∣

2
∫

|λ|=bp

λ2dλ
[

λ−
(

m− 1
2

)2
] [

λ−
(

r − 1
2

)2
] =

=
3

4πi

P
∑

m=1

∞
∑

n=1

P
∑

r=1

∞
∑

q=1

∣

∣

∣

(

Qψ0
mn, ψ

o
rq

)∣

∣

∣

2
∫

|λ|=bp

λ2dλ
[

λ−
(

m− 1
2

)2
] [

λ−
(

r − 1
2

)2
]+

+
3

4πi

P
∑

m=1

∞
∑

n=1

∞
∑

r=p+1

∞
∑

q=1

∣

∣

∣

(

Qψ0
mn, ψ

o
rq

)∣

∣

∣

2
∫

|λ|=bp

λ2dλ
[

λ−
(

m− 1
2

)2
] [

λ−
(

r − 1
2

)2
]+
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+
3

4πi

∞
∑

m=p+1

∞
∑

n=1

P
∑

r=1

∞
∑

q=1

∣

∣

∣

(

Qψ0
mn, ψ

o
rq

)∣

∣

∣

2
∫

|λ|=bp

λ2dλ
[

λ−
(

m− 1
2

)2
] [

λ−
(

r − 1
2

)2
]+

+
3

4πi

∞
∑

m=p+1

∞
∑

n=1

∞
∑

r=p+1

∞
∑

q=1

∣

∣

∣

(

Qψ0
mn, ψ

o
rq

)∣

∣

∣

2
∫

|λ|=bp

λ2dλ
[

λ−
(

m− 1
2

)2
] [

λ−
(

r − 1
2

)2
] =

=
3

2

P
∑

m=1

∞
∑

n=1

P
∑

r=1

∞
∑

q=1

[

(

m−
1

2

)2

+
(

r −
1

2

)2
]

∣

∣

∣

(

Qψ0
mn, ψ

o
mn

)∣

∣

∣

2
+

+3
P
∑

m=1

∞
∑

n=1

∞
∑

r=p+1

∞
∑

q=1

(

m− 1
2

)4

(

m− 1
2

)2
−
(

r − 1
2

)2 ·
∣

∣

∣

(

Qψ0
mn, ψ

o
rq

)∣

∣

∣

2
(25)

Here we use that in the case m, r < p

∫

|λ|=bp

λ2dλ
[

λ−
(

m− 1
2

)2
] [

λ−
(

r − 1
2

)2
] = 0, (26)

In the case m = r

∫

|λ|=bp

λ2dλ
[

λ−
(

m− 1
2

)2
]2 = 0.

If in the expression

P
∑

m=1

∞
∑

n=1

P
∑

r=1

∞
∑

q=1

(

r −
1

2

)2
∣

∣

∣

(

Qψ0
mn, ψ

o
mn

)∣

∣

∣

2

to after the index m with r and n with q, then we obtain

P
∑

m=1

∞
∑

n=1

P
∑

r=1

∞
∑

q=1

(

r −
1

2

)2
∣

∣

∣

(

Qψ0
mn, ψ

o
mn

)∣

∣

∣

2
=

=
P
∑

m=1

∞
∑

n=1

P
∑

r=1

∞
∑

q=1

(

m−
1

2

)2
∣

∣

∣

(

Qψ0
rq, ψ

o
mn

)∣

∣

∣

2
(27)

hence

MP2 = 3
∑

m=1

∑

n=1

(

m−
1

2

)2
∥

∥

∥Qψ0
mn

∥

∥

∥

2
−

−3
P
∑

m=1

∞
∑

n=1

∞
∑

r=p+1

∞
∑

q=1

(

m− 1
2

)2 (

r − 1
2

)2

(

r − 1
2

)2 (

m− 1
2

)2

∣

∣

∣

(

Qψ0
mn, ψ

o
rq

)∣

∣

∣

2
(28)
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Mark

αP =
P
∑

m=1

∞
∑

r=p+1

(

m− 1
2

)2 (

r − 1
2

)2

(

r − 1
2

)2 (

m− 1
2

)2

∣

∣

∣

(

Qψ0
mn, ψ

o
rq

)∣

∣

∣

2
(29)

We present αP in the following form

αP = αP1 − αP2 + αP3, (30)

where

αP1 =
1

π2

P
∑

m=1

∞
∑

r=p+1

(

m− 1
2

)2 (

r − 1
2

)2

(

r − 1
2

)2 (

m− 1
2

)2

∣

∣

∣

∣

∫ π

0
(Q (x)ϕn, ϕq)H cos (r −m) xdx

∣

∣

∣

∣

2

(31)

αP2 =
1

2π2

P
∑

m=1

∞
∑

r=p+1

(

m− 1
2

)2 (

r − 1
2

)2

(

r − 1
2

)2 (

m− 1
2

)2 ·Re
[∫ π

0
(Q (x)ϕn, ϕq)H cos (r −m) xdx×

×
∫ π

0
(Q (x)ϕn, ϕq)H cos (r −m) xdx (32)

αP3 =
1

π2

P
∑

m=1

∞
∑

r=p+1

(

r − 1
2

)2 (

m− 1
2

)2

(

r − 1
2

)2 (

m− 1
2

)2

∣

∣

∣

∣

∫ π

0
(Q (x)ϕn, ϕq)H cos (r +m− 1) xdx

∣

∣

∣

∣

2

(33)
From (28)-(33) we obtain

MP2 = 3
P
∑

m=1

∞
∑

n=1

(

m−
1

2

)2

‖Qψo
mn‖

2 − 3
∞
∑

n=1

∞
∑

q=1

(αP1 − αP2 + αP3) (34)

Separately evaluating αP1, αP2 and αP3, we obtain

MP2 =
P
∑

m=1

[

3

4π

(

m−
1

2

)2 ∫ π

0
trQ2 (x) dx+

3

16π

∫ π

0
tr
[

QI (x)
]2
dx+

+
3

2π

∫ π

0
tr
[

QII (x)Q (x) +
[

QI (x)
]2
]

cos (2m− 1)xdx+O
(

p−1
)

, (35)

where |O (p−1)| < const · p−1.
Researching in detail MP3, after very complicated calculation we obtain.

MP3 =
P

π

∫ π

0
g (x) dx−

1

π

P
∑

ℓ=1

∫ π

0
g (x) cos (2ℓ− 1)xdx−

−
15

16
(2p+ 1)

P
∑

i=1

P
∑

j=1

βij + o (1) , (36)
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where

g (x) =
∞
∑

n=1

∞
∑

q=1

∞
∑

s=1

(Q (x)ϕn, ϕq)H (Q (x)ϕq, ϕs)H · (Q (x)ϕs, ϕn) (37)

βij =
1

π3

∞
∑

n=1

∞
∑

q=1

∞
∑

s=1

∫ π

0
(Q (x)ϕn, ϕq)H cos ixdx·

∫ π

0
(Q (x)ϕq, ϕs)H cos (i− j)xdx×

×
∫ π

0
(Q (x)ϕs, ϕn)H cos jxdx (38)

Thus, as |λ| = bp = p2 + 1
4
, there is such an stable c, where the following

inequality is true:

‖QRo
λ‖σ1 (H1) < C, ‖Ro

λ‖ < Cp−1, ‖Rλ‖ < Cp−1 (39)

From (14), (40) and condition 2 we obtain

|Mpj| ≤
1
j

∫

|λ|=bp

∣

∣

∣λ2tr [QRo
λ]

j dλ
∣

∣

∣ ≤
b2p
j

∫

|λ|=bp

∥

∥

∥(QRo
λ)

j
∥

∥

∥

σ1(H1)
|dλ| ≤

≤
b2p
j

∫

|λ|=bp
‖(QRo

λ)‖σ1(H1)
·
∥

∥

∥(QRo
λ)

j−1
∥

∥

∥ |dλ| ≤
Cb2p
j

∫

|λ|=bp
‖Q‖j · ‖Rλ‖

j−1 |dλ| <

<
Cjb2p
j

∫

|λ|=bp p
1−j |dλ| < C1b

3
p · p

1−j < C2p
7−j

here C1 and C2 are stable figures.
From the last inequality we obtain

lim
p→∞

Mpj = 0, j ≥ 8 (40)

with j = 4, 5, 6, 7 we can also prove that

lim
p→0

Mpj = 0. (41)

From (40) and (41) we obtain

lim
p→∞

Mpj = 0, j ≥ 4. (42)

From (15) and (40) we obtain

|MPN | ≤
∣

∣

∣

∫

|λ|=bp λ
3tr

[

Rλ (QR
o
λ)

N+1
]

dλ
∣

∣

∣ ≤ b3p ·
∫

|λ|=bp

∥

∥

∥Rλ (QR
o
λ)

N+1
∥

∥

∥

σ1(H1)
|dλ| ≤

≤ b3p ·
∫

|λ|=bp ‖Rλ‖ ·
∥

∥

∥(QRo
λ)

N+1
∥

∥

∥

σ1(H1)
|dλ| ≤

Cb3p · p
−1
∫

|λ|=bP
(‖QRo

λ‖H)
N · ‖QRo

λ‖σ1(H1)
|dλ| ≤

≤ C3b
4
pp

−1−N < C4p
7−N
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here C3 and C4 are stable figure.
From the last inequality we obtain

lim
p→∞

MPN = 0, N ≥ 8 (43)

The main result of this article is given by the following theorem.
Theorem 3.1. If the operator function Q (x) satisfies conditions 1.-5., then

∞
∑

m=1







∞
∑

n=1

(

λ3mn −
(

m−
1

2

)6
)

−
3
(

m− 1
2

)2

4π

∫ π

0
trQ2 (x) dx−

−
3

16π

∫ π

0
tr
(

QI (x)
)2
dx−

1

π

∫ π

0
g (x) dx+ h

]

=
3

64

[

trQ(IV ) (π)− trQ(IV ) (o)
]

−

−
3

8π

[

trQII (π)Q (π)− trQII (o) ·Q (o)
]

+
1

4π
[g (π)− g (o)]−

h

2
, (44)

here h = 15
8

∑∞
i=1

∑∞
j=1 βij , βij– figure are defined by means of equality (38),

but the function g (x) is defined from the equality (36).
The series on the left side of this equality is called the third regularized

trace of the operator L.
Proof. From formulas (16), (22), (36), (42) and (43), we obtain.

P
∑

m=1

∞
∑

n=1

[

λ3mn −
(

m−
1

2

)6
]

= −
3

16π

P
∑

m=1

∫ π

0
trQ(IV ) (x) cos (2m− 1)xdx+

+
P
∑

m=1







3
(

m− 1
2

)2

4π

∫ π

0
trQ2 (x) dx+

3

16π

∫ π

0
tr
(

QI (x)
)2
dx+

+
3

2π

∫ π

0
tr
[

QII (x)Q (x) +
[

QI (x)
]2
]

cos (2m− 1)xdx+

+
P

π

∫ π

0
g (x) dx−

1

π

P
∑

ℓ=1

∫ π

0
g (x) cos (2ℓ− 1)xdx−

−
15P

8

P
∑

i=1

P
∑

j=1

βij −
15

16

P
∑

i=1

P
∑

j=1

βij + o (1) (45)

From the Fourier theory it is known that if the function f (x) is continuous
on the segment [0, π], then the following equality is true:

1

π

∞
∑

n=1

∫ π

n=1
f (x) cos (2m− 1)xdx =

1

4
[f (o)− f (π)] . (46)
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From (45), (46) and condition 5. we obtain

∞
∑

m=1





∞
∑

n=1



λ3mn −
(

m−
1

2

)6

−
3
(

m− 1
2

)

4π

∫ π

0
trQ2 (x) dx−

3

16π

∫ π

0
tr
[

QI (x)
]2
dx−

−
1

π

∫ π

0
g (x) dx+

15

8

∞
∑

i=1

∞
∑

j=1

βij



 =
3

64

[

trQ(IV ) (π)− trQ(IV ) (o)
]

−

−
3

8π

[

trQII (π)Q (π)− trQ (π)Q (o)
]

+
1

4π
[g (π)− g (o)]−

15

16

∞
∑

i=1

∞
∑

j=1

βij.

References

[1] E.Abdukadirov. Regularized trace formula for the Dirak systems. Vest.
Mosk. un-ta, issue math. mech. (1967), No4, 17-24.

[2] E.E.Adiguzelov, O.Baksi. On the regularized trace of the differential oper-
ator equation given in a finite interval. J.Eng. Natur. Sei. Sigma 1 (2004),
47-55.

[3] E.E.Adiguzelov, Y.Sezer. The second regularized trace of a self adjoint
differential operator coefficient. Mathematical and Computer Modeling,
(2011), vol.53, 553-565.

[4] I.Albayrak, M.Bairamoglu, E.E.Adiguzelov. The second regularized trace
formula for the Sturm-Liouville problem with spectral parameter in
boundary condition. Methods Funet. Anal. Tomology, (2000), vol.6, No3,
1-8.

[5] M.Bayramoglu. The trace formula for the abstract Sturm-Liouville equa-
tion with continuous spectrum. Azerb.SSR, Inst. Fiz., Baku, Preprint 6
(1986), 34.

[6] I.S.Cohberg, M.G.Krein. Introduction to the theory of linear non-self
adjoint operators. in: Translation of Mathematical Monographs, vol.18.
AMS. Providence, RI, 1969.

[7] L.A.Dikiy. About a formula of Gelfand-Levitan. Usp. Met. Nauk. 8 (1953),
119-123.

[8] L.D.Faddeyev. On expression for trace of difference of the singular oper-
ators of Sturm-Liouville type, Dokl. SSSR 115 (1957), 878-881.

[9] M.G.Gasimov, B.M.Levitan. About the sum of difference of eigenvalues
the operators Sturm-Liouville. Dokl. SSSR, 150, No6 (1963), 1202-1205.



422 Gamidulla Aslanov and Kenul Badalova

[10] I.M.Gelfand, B.M.Levitan. On a formula for eigenvalues of a differential
operator of second order, Dokl. SSSR 88 (1953).

[11] T.Kato. Perturbation theory for linear operators, Springer-Verlag, Berlin,
1980.

[12] M.G.Krein. The trace formula in the perturbation theory, Matem. 56.33
(153), 597-626.

[13] F.G.Maksudov, M.Bayramoglu, E.E.Adiguzelov. On regularized trace of
Sturm-Liouville operator on a finite interval with the unbounded operator
coefficient. Dokl. Akad. Nauk SSSR, 30 (1984), 169-173.

[14] V.A.Sadovnichiy and V.E.Podolskiy. Trace of operators, Usp. Math.
Nauk. 61 (2006), 89-156.

Received: June, 2012


