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Abstract

The aim of this paper is to build an exact formula for ruin probability of generalized risk
processes under interest force with assumption that claims and premiums are assumed to be
positive-valued random variables and interests are assumed to be non - negative- valued
random variables (claims, premiums and interests are assumed to be independent). This
situation is quite realistic for many situations. An exact formula for ruin (non-ruin)
probabilities is derived in this paper. A numerical example is given to illustrate results. Our
results is to extend models which is an exact formula derived by Claude Lefévre and Stéphane
Loisel [6].
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1. Introduction

For over a century, there has been a major interest in actuarial science. Since a large portion of
the surplus of insurance business from investment income, actuaries have been studying ruin
problems under risk models with rates of interest. For example, Teugels and Sundt [20], [21]
studied the effects of constant rate on the ruin probability under the compound Poisson risk
model. Yang [23] established both exponential and non — exponential upper bounds for ruin
probabilities in a risk model with constant interest force and independent premiums and claims.

Cai [3], [4] investigated the ruin probabilities in two risk models, with independent premiums
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and claims and used a first-order autoregressive process to model the rates of in interest. Cai
and Dickson [5] obtained Lundberg inequalities for ruin probabilities in two discrete-time risk
process with a Markov chain interest model and independent premiums and claims. However,
those results is only given upper bounds for finite-time probabilities and ultimate ruin
probability that they did not provide an exact formula for finite-time probabilities.

Claude Lefévre and Stéphane Loisel [6] studied the problem of ruin in the classical compound
binomial and compound Poisson risk models. Their primary purpose is to extend those models
which is an exact formula derived by Pircard and Lefévre [7] for the probability of (non-ruin)
ruin within finite time.

However, Claude Lefévre and Stéphane Loisel [6] did not provide an exact formula for ruin

probability of generalized risk processes under interest force with surplus process {Ut}

t>1

written as

U =U_Q+1)+ X, -Y;t=12,.. (1.1)
or

U =U,,+X)L+1,)-Y;t=12,.. (1.2)

where U, =u is initial surplus, u and t are positive integer numbers, X ={X;}_, and
Y = {Yi }J_Zl take values in a finite set of positive numbers; I ={1,}  take values in a finite set

of non — negative numbers. X , Y and | are assumed to be independent.

The aim of this paper is to build an exact formula for finte time ruin (non-ruin) probability of
model (1.1) and (1.2) with these asumptions. We establish an exact formula for ruin (non-ruin)
probability of model (1.1) and (1.2) whose exact formula for finite time ruin (non-ruin)
probability are derived.

The paper is organized as follows; in Section 2, we build an exact formula for ruin (non-ruin)

probability for model (1.1) and (1.2) with X ={X},and Y ={¥,}_ are independent and

identically distributed positive-valued random variables; I={Ik}kZl are independent

identically distributed non-negative-valued random variables, X,Y and | are assumed to be
independent. An extended result in Section 2 for X,Y and | being non identically distributed

random variables is given in Section 3. A numerical example is given to illustrate these results

in Section 4. Finally, we conclude our paper in Section 5.
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2. Finite — Time Ruin Probability in a Generalized Risk Processes under
Interest Force with sequences of independent and identically distributed

random variables

Let model (1.1). We assume that:
Assumption 2.1. u, t are possitive integer numbers.

Assumption 2.2. X ={X,}_, is a sequence of independent and identically distributed random

variables, X, take values in a finite set of positive numbers
. M
Ex ={X X0 Xy JO< X <X, <...< Xy )With p, =P(X, =%) (% €E,), 0<p, <1,> p, =1.
k=1

Assumption 2.3. Y = {Yn} is a sequence of independent and identically distributed random

n>1

variables, Y, take values in a finite set of positive numbers
N

E, ={¥0. Yoo Ya JO< Y, <Y, <.o< Y )With g, = P(Y, =y, ) (Y, €E,), 0<q, <L) q =1.
k=1

Assumption 2.4. | ={In}nZl is a sequence of independent and identically distributed random

variables, |, take values in a finite set of non - negative numbers
R

E, ={ii,,....1s } (0<i, <i, <...<ig)withr, =P(l, =i,) (i, €E}), 0<r, <1,> 1 =1.
k=1

Asumption 2.5. The sequences { X} _, {V

n

} ,and {1}  areassumed to be independent.

From (1.1), we have:

U, :u.ﬁ(1+lk)+i[(xk—Yk)ﬁ(1+Ij)j+ X, =Y. (2.1)

j=k+1

b b
where throughout this paper, we denote H X, =1 and Z x.=0ifa>b
t=a

t=a
and AZB if P(AAB)=0 with AAB=(A\B)U(B\A).
Supposing that the ruin time is defined by T, = inf {j U, < O}, where inf ¢=00.

We define the finite time ruin (non-ruin) probabilities of model (1.1) with assumption 2.1 to

assumption 2.4, respectively, by

wP(u)=P(T, <t)= P(U(uj <0)j, (2.2)
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gP(U)=1-y(u)=P(T, >t+1)= F{ﬁ(uj 20)} (2.3)

j=1
To establish a fomula for ® (u), ® (u) , we first proof the following Lemma.
Lemma 2.1. Let u, {x f_{y;}, be positive numbers,{i } _ benon - negative numbers.

If p is a positive integer number and 1< p <t-1 satisfies:

Y, <uH(l+| )+Z(x —yk)H @+i)+x,, (2.4)
j=k+1
then, we have
p+1 p+1
uH(1+| )+Z(xk yolT@+i)+x,,> (2.5)

j=k+1

Proof.
From (2.4), we have

yp<uH(1+| )+Z(x —yk)H(l+| )+ X,
j=k+1
The above inequality is equivalent to
X =Y, —uH(1+nk) Z(x Sy @iy,

j=k+1

This inequality imlpies that

p+1 p+1
uH(1+| )+Z(x -yo T @+i)+x,.,
j=k+1
p+1 p+1

- UH(1+I )+Z(Xk yk)H (l+| )+(X yp)(l+ip+1)+xp+1

j=k+1

>uﬁ(1+| )+Z(X yk)ﬁ(l-H )+ _uH(1+|) Z(X yk)ﬁ(l+ii) (A Tp2) X500
p+1>0

Hence (2.5) holds.

This completes the proof of the Lemma 2.1.0]

Now, we give an exact formula for finite time ruin (non-ruin) probability of model (1.1).
Theorem 2.1. If model (1.1) satisfies assumptions 2.1 to 2.5, then finite time non-ruin
probability of model (1.1) is defined by
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R M

o)=Y Y rqrcz---rqpnhpmz---meLZ Z---aniqnz---qnt)&zﬁ)

C1,Cp s =1my,My ..., M =1 1<n<g, 1<n,<g, 1<n,<g,
where

1
g, :max{nl Y, smin{ul_[(l+ick)+xml,yN }}

k=1

g, max{n Yo, Smm{uH(lﬂ )+Z(ka ynk)H(1+| )+, ,yNH

j=k+1

g, _max{n yWSmm{uH(lﬂ )+Z(ka_yn)H(l+l ) X, YNH

j=k+1

Proof.

Firstly, we have

A::h(sz
:(Ylguﬁ(1+lk)+xj (Y <uH(1+| )+Z(x Y)H(1+I )+ X, j

guf[ 1+1 )+Z(x Y)H(l+| )+ X, J

j=k+1

[Y <uH(1+I )+Z(x Y)H(1+I )+xj (2.7)

j=k+1

R
<

By assumption 2.4, we put I, =i, I, =i_,..., 1, =i, with i_,i_,...,i. being non - negative

numbers and statisfy condition: 0<i_, i ,...,i; <ig.

Let A, =(L=i,)n(l, =i, )n.n(l =i).

Since 1={1,} _ is a sequence of independent random variables then

P(A i) =P (1 =1 ) (1 =1, ) (1 =i, )]

=P(I,=i,)P(1,=i,).-P(l, =i, ) =11, .1, . (2.8)

By Assumption 2.2, we put X, =X, X, =X, ,..., X, =X, WithX _,X ..., X being positive

numbers and satisfy condition: 0 < Xiny 1 X, 10001 X <Xy
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Let Axmlxmz---xmt :(X1 = xml)m(x2 = xmz)m...m(xt = xm').

Since X = {X,} , is a sequence of independent random variables then

P(A, )= P[( X, ) (X, =%y, ) (X, =me)}

=P(X, =%, )}-P(X, =%, )-P(X, =X )= Py, Py Py - (2.9)

Firsly, we consider 1, =i (c, =1,R) then (2.7) is given

LF_QJ(I1 = iq)r{(vl <uJa+i)+ lem

=1 o=1

as

A

Y, <u(+i )H(1+| )+2(x Y)H(1+I )+ X, ]

|
[

u(+i )H(1+| )+Z(x Y)H(1+I )+ X, J

j=k+1

[Y <u(l+i )H(1+| )+Z(x Y)H(1+I )+ X, D

j=k+1

Similarly, we consider I, =i_,...,I, =i, (C,,...¢, =LR), (2.7) can be written as

AZ ((1=i,)n(1=i,)nen(, :iq)}m([Ylsuﬁ(lﬂckH lem

€1.C =1 k=1

(nguH(lﬂ )+Z(x Y)H(1+| )+ X, j

j=k+1

(YSSUH(lﬂ )+Z(x Y)H(1+| )+x]

j=k+1

[Y <uH(1+| )+Z(X Y)H(1+| )+XD

j=k+1
Next, we consider X, =X, (M, =1,M), then

R

A= U ({(n=i)n(r=i)nen(i=i))n [U(X—x >m((v<uH<1+' x|

€1,Cp =1

(Y2SUH(1+| )+Z(x —Y)H(1+| )+x}

j=k+1



Finite - Time Ruin Probability In a Generalized Risk Processes 357

3

(Y3 < uli[(1+ick)+{(xml —Y1)+ZZ:(Xk —Yk)} 11 (L+i )+ X3Jm...

j=k+1

...m[Yt < uﬂ(1+ick)+[(xml —Y1)+tzil:(Xk —Yk)} f[ (1+icj)+ XID :

j=k+1

Similarly, we consider X, = X, 1+ X, = X (m,,....,m, :].,_M), (2.7) can be rearranged as

Ai 0 Ilzlq)m(lzzlcz)m m(ltzlq)}m[ CJ (Xy=%,) N (X; =%, )N m(Xt:xm)}m
€1,Cp G =1 My, My oM=L
(Y1£uli[(1+|c)+xmljm

j=k+1

2 1 2
Y, gul_[(1+ick)+2(xmk -YoI1 (1+icj)+xm2Jm
k=1 k=1

j=k+1

3 2 3
Yo <u] J@+i )+ (x, —YO ] @+ i, )+ Xmem
k=1 k=1

...m[Yt < u]j(1+ick)+§(xmk -Y,) ﬁ (1+ic,.)+ X DJ

j=k+1
z 0 [{(Ilziq)m(lz=icz)m...m(lt:iq)}m LMJ ({(Xlzxml)m(xz=xm2)m...m(Xt=xm)}mCi:";t:T?i;x“)j
€1y =lL My, My .,y =1
as R M
- o B C_X”_‘lme_"'th ’ 210
%CH[1&’&“1{'%1.%..,%{0 s, G }] (2.10)
where

as

1 2 1 2
Com {Yl <ulJa+ip)+ meﬁ[Yz <ul [@+i)+ 2,0 YT | (1+icj>+xmzj“
k=1 k=1 k=1

j=k+1
3 2 3
Yo <ul T@+ig)+ 2 0, ~YOTT @+i)+x,, |0
k=1 k=1

j=k+1

...m(Yt < uﬁ(l+ ick)+t§:(xmk -Y,) f[ (1+ig )+ erj' (2.11)

j=k+1

By assumption 2.3, we put Y, =y,,,Y, =¥, ... Yoy =Y, With Y, Y, ,..., ¥,  being positive

n
numbers and satisfy condition: 0<y,,y, ,.... ¥, S Vy-

Thus, (2.11) can be written as
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as 2 1 2
cin= U (h=v )f{(Yz <ulT@+ig)+2 0, =¥ ) [T @+ic)+x, j“
my fmg -l ' ! k=1 “ a ‘ j=k+1 J ’
Yo, sulj!(lﬂCk )Xy
3 2 3
(YS <ufJa+i,)+ {(xml — ¥ )+ D (X, — ynk)} ITa+ i, )+ me]m...
k=1 k=2 j=k+1
t ) -1 ! .
...m[Yt <u[Ja+ |ck)+{(xml —¥,)+ 2 (%, — ynk)} [Ta+ i )+ thj
k=1 k=2 j=k+1
as

- U M=y,)N U Y,=Y,)N

1 2 1 2 )
ynls[un(lﬂck )+xml) ynzs[un(mck )+ 3 O =Y ) L1 @iy )+xm2}
k=1 k=1 k=1 j=k+1

U (Y3:yn3)m...

3 . 2 3 .
Yig S[u k];[1 (L+g, )+k§1(xmk ~Yne )].:]11(1*&,- )+xm3J

...m(Yt SUIL[(1+iCk)+IZ_1:(xmk —ynk)ﬁ (1+ic,)+xmzj"] : (2.12)

j=k+1
Using by assumption 2.3, we put Y, =y, with y, being positive number and statisfy

condition0 <y, <y, then (2.11) can be rearranged as

as
e U U U
[N R

1 . 2 i 1 2 . 3 . 2 3 i
ynls[uk]‘:[l(lﬂck )+xmlJ Yy s(ugl(lﬂck )+k§1(xmk—ynk) ]‘[1(1+|c]. )+xm2j yn3§[uk1‘:[1(1+|ck )+k§1(><mk —ynk)j:1;[+l(1+|cj )+Xm3j

j=k+

U {(Y1=yn1)ﬂ---ﬁ(Yt =ynl)} vl (2.13)

t i t-1 t .
y”t S(U kl_:[1(1+lck )+k§1(xmk _ynk )j:lgﬂ(lﬂcj' )+th

1
By using Lemma 2.1, u] J(+i, ) +x,, ,
k=1
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uH(1+| )+Z(xmk yn)H(1+| )4y s e

j=k+1

uH(1+| )+Z(xmk Yo, )H (1+1; ) +x,, are positive numbers and

j=k+1

0<Yys Yo Yo S Yn then, we define

1
g, = max{n1 LY, < min{ul_[(l+ick)+xml,yN }}
k=1

9,

max{nz:yn mm{uH(lH )+Z(ka ynk)H(1+| )+, 1YNH

j=k+1

gtzmax{nt:yq mm{uH(lﬂ )+Z(ka_yn)H(1+' )+, yNH

j=k+1

Thus, (2.13) can be rearranged as

cen = U U U (Y=o ) (o=, ) (Y=, )l @19)

1<n<g, I<n,<g, 1<n;<g;

Because Y = {Yn }n>l is a sequence of independent independent random variables then

2% =1 ) =30 ) e (=3, )| =P =3} (Y =3, )P (Y =3, ) =600,
In the other hand, system of events {(Y1 = ynl)m(Y2 = ynz)m...m(Yt =Yn )}L (i in
n;<g; (j=

(2.14) be incompatible then

)= > > D 6,0,--4, - (2.15)

1<mj<g; I<my<g, 1<n<g

By X.,Y,I are assumed to be independent, with c;,c,,...,c, and m;,m,,...,m, hold then

A , ,C ' ™ are independent events.

C1'02 'Ct Ky Xy -+ Xomg loy ey 1oy

In addition, system of events {A i B, , NC™ e "“} o in (2.10) is
ceg my mp g a2 ¢j=L, ;mj:1|\/|(j: t)

incompatible.

Therefore, combining (2.8), (2.9) and (2.15), we have
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R M
pPU)=P(A) = ( > P{Aiq,cz mlxmz...xw“Ciffi‘i:?-zié{'x""}j

01.Cp G =1\ My, My sy =1

- 3 (5 Al el oo

_ z > P(Aqicz_,iq).P(melxmz..xmt)( PIEDIY qnlqnz---qnlj

1<m<g; 1<n,<g,  1<n,<g,

= > > rr.r pmlpmz...pmt[ DI qnlqnz...qntJ. (2.16)

€,Cp G =1my,my ..., m =1 1< <g, 1<n,<g, 1<n,<g,

This completes the proof of the Theorem 2.1.0J
Corollary 2.1. If model (1.1) satisfies assumptions 2.1 to 2.4, then finite time ruin probability
of model (1.1) is defined by

() =1-¢7 ()
=1- > > rr.r pmlpmz...pmt[ P IS qnlqnz...qnt]_ (2.17)
C,Cy G =1 my,my .., m =1 1<m<g, 1<n,<g, 1<n,<g,
Remark 2.1. Fomula (2.6) (or (2.17)) gives a method to compute axactly finite time non-ruin

(ruin) probability of model (1.1) which X ={X | and Y={Y } are sequences of

independent and identically distributed random variables, they take values in a finite set of

positive numbers and I={In}n21is a sequence of independent and identically distributed

random variables, and they take values in a finite set of non- negative numbers.

Let model (1.2) satisfy assumptions 2.1 to 2.5.

From (1.2), we have:

_uH(1+I )+Z[(x a+1,)- Y)H(1+I )j+x -Y,. (2.18)

j=k+1
Supposing that the ruin time of model (1.2) is defined by T, =inf {j U, < 0}, where inf ¢=oo.

We define the finite time ruin (non-ruin) probabilities of model (1.2) with ssumptions 2.1 to

2.5, respectively, by

2 =P, <0 -7, <0 (2.19)
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PP ) =1-yPU)=P(T, >t+1) = P(h(uk > 0)} : (2.20)

To establish an fomula for w? (u), ® (u) , we have the following Lemma.

Lemma 2.2. Letu, {x}',{y;}i, are positive numbers and {i,},  are non - negative numbers.

If p is a positive integer number and1< p <t -1 satisfies:

Y, <uH(1+| )+Z(xk(1+| )— yk)H (L+i;)+ X, (L+i,), (2.21)

j=k+1

then, we have

p+1

uH(1+| )+Z(xk(1+| )— yk)H (L+0;) + X,y (L+i,,,) > 0. (2.22)

j=k+1

Proof.

We proof similarly as Lemma 2.1. [

Next, we give an exact formula for finite time ruin (non ruin) probability of model (1.1).
Theorem 2.2. If model (1.2) satisfies assumptions 2.1 to 2.5, then finite time non-ruin

probability of model (1.2) is defined by

Z Z T Py P pm‘(Z D) 0,0, - q] (2.23)

€1,Cp G =L My My mt_l 1<nj<g, I<m,<g, 1< <

where

1
g, = max{n1 DYy, < min{uH(lJr I, )+ X, @+1.), Yy }}
k=1

9,

j=k+1

max {n Yo, gmln{uH(lH )+Z(ka(1+'ck) yn)H(l+| )+, (L+i )yNH

g, _max{n ymgmln{uH(lﬂ )+Z(x @+i, ) - yn)H(1+| )+, (L+i )yNH

j=k+1

Proof.

We proof similarly as Theorem 2.1.0]

Corollary 2.2. If model (1.2) satisfies assumptions 2.1 to 2.5, then finite time ruin probability
of model (1.2) is defined by

v (U) =1-¢{” (u)
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Z Z ) (P Py P)| D D ), 6,0, -0, | (2.24)

C1,C G =1 My, My, My =1 1<n<g; 1<n,<g,  I<n;<g
Remark 2.2. Fomula (2.23) (or (2.24)) give a method to compute exact finite time non-ruin

(ruin) probability of model (1.2) which X = { }n>1and Y = {Yn}nﬂare sequences of

independent and identically distributed random variables and they take values in a finite set of

positive numbers. In addition, | ={In}nﬂis also a sequence of independent and identically
distributed random variables, and they take values in a finite set of non- negative numbers.
3. Finite — Time Ruin Probability in a Generalized Risk Processes under

Interest Force with sequences of independent and non identically distributed

random variables

Let model (1.1). We assume that:
Assumption 3.1. u, t are positive integer numbers.

Assumption 3.2. X = {Xn}nZl is a sequence of independent and non identically distributed
random variables , X, takes values in a finite set of positive

numbers E, ={X,%,,..., Xy }(0<X <X, <..<X,)and X, has a distribution:
pM =P(X,=x%)(x €E,,neN"), 0< pi" <1, Z pM =1(neN").

Assumption 3.3. Y ={Y, | _, is a sequence of independent and non identically distributed
random variables, Y, takes values in a finite set of positive integer

numbers E, ={y,,Y,,... Yy} (0<y, <Y, <..<yy)and Y, has a distribution:

N
QIEH):P(Yn =yk)(yk €k, ,neN ), ogqé”)gl,Zqﬁ”):l(neN ).
k=1

Assumption 3.4. | :{In}nZl is a sequence of independent and non identically distributed
random variables, | takes values in a finite set of non-negative numbers

E, ={i,,i,,...ir } (0<i, <i, <...<i;)and | has a distribution:

=P, =r)(r. €E,neN),0<r" <1, Zr(“’—l(neN ).

k=1

Assumption 3.5. The sequences { X, } ., {Y,} and {I }  areassumed to be independent.
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Supposing that the ruin time of model (1.1) is defined by T, =inf {j U, < 0} where inf ¢=o00.

We define the finite time ruin (non-ruin) probabilities of model (1.1) with assumptions 3.1 to

3.5, respectively, by

wPU)=P(T, <t) = P[U(U <0)J (3.1)

PP W) =1-yPU)=P(T, >t+1) = P(ﬂ(u j (3.2)

Similar to Themrem 2.1, we have
Theorem 3.1. If model (1.1) satisfies assumptions 3.1 to 3.5, then finite time non-ruin

probability of model (1.1) is defined by

o (u) = Z Z (O, O pp@. (t)( S Y LY 9@, (t)j (3.3)
=1

C,Cp e G =1y, My ..., = 1<m<g; I<n,<g,  1<mi<g,

where, ¢ 9 »-»3is defined in the same way with Theorem 2.1.
Proof.
We proof similarly as Theorem 2.1, where
(2.8) substitued by

P(A, ) =Pl(L=k ) (L =i )wn(l =i )

=P(1,=i,)P(1,=i,)..P(1 =i, ) =rr®.10,
In addition (2.9) replaced by

P(B, ., ) = P[(X: =%, ) (Xz = x5, ) (X = %, )|
=P(X, =%, )-P(X, =%, )-.P(X =%, )= p¥p?...p,
and (2.15) substituted by
(1) (2) (t)
P( ke ) L;gl Lg;gz L%:gl i .
By using the same method to prove Theorem 2.1, we have formula (3.3).
This completes the proof of the Theorem 3.1.[J
Corollary 3.1. If model (1.1) satisfies assumptions 3.1 to 3.5, then finite time ruin probability
of model (1.1) is defined by

V) =1-9()
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=1- Z i rél)rciz)___rc(t) Q) ‘2). (t)( Z Z Z q(l) (2) (t)) (3.4)

1<n<g, l<n<g, l<m<g,
Remark 3.1. Fomula (3.3) (or (3.4)) gives a method to compute axactly finited time non-ruin
(ruin) probability of model (1.1) whichX ={X,}_, and Y ={Y,} are sequences of
independent and non identically distributed random variables, they take values in a finite set of

positive numbers. In addition, | ={In}nﬂis a sequence of independent and non identically

distributed random variables, and they take values in a finite set of non- negative numbers.

Similarly, we consider model (1.2) satisfy assumptions 3.1 to 3.5.

Supposing that the ruin time of model (1.2) is defined by T, =inf {j U, < 0} where inf ¢ =oo.

We define the finite time ruin (non-ruin) probabilities of model (1.2) with assumptions 3.1 to

3.5, respectively, by

wP(u)=P(T, <t)= P(U(Uk < 0)} (3.5)
PP ) =1-w P (U)=P(T, >t+1) = P[ﬁ(uk > 0)j. (3.6)

Similar to Theorem 2.2, we have
Theorem 3.2. If model (1.2) satisfies assumptions 3.1 to 3.5, then finite time non-ruin

probability of model (1.2) is defined by
0= 55 et 3 8T el e
C,C G =1 My, My ..,y =1 1<m<gy 1<n,<g,  1<ni<g,
where, 9,,0,,.., g, is defined in the same way with Theorem 2.2.

Proof.

We proof similarly as Theorem 3.1.17

Corollary 3.2. If model (1.2) satisfies assumptions 3.1 to 3.5, then finite time ruin probability
of model (1.2) is defined by

v =1-¢" W)

Z Z @) 0@ p) Y Y LY q%P.ql | 38)

C1,Cp G =L My My .y =1 1<n<g; 1<n,<g, 1< <g
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Remark 3.2. Fomula (3.7) (or (3.8)) gives a method to compute axactly finite time non-ruin

(ruin) probability of model (1.2) which X ={X,}_,andY ={Y,} are sequences of

nx1
independent and non identically distributed random variables, they take values in a finite set of

positive numbers. In addition, | ={In}nﬂis a sequence of independent and non identically

distributed random variables, and they take values in a finite set of non- negative numbers.

4. A numerical Illustration
4.1. A numerical Illustration for v (u)

Let X ={X,} ., be a sequence of independent and identically distributed random variables,
X, takes values in a finite set of positive integer numbers E, ={L 2,3,4} with X, having a

distribution:

X, 1 2 3 4

P 0,475112 | 0,176783 | 0,153448 | 0,194657

Let Y :{Y } , be a sequence of independent and identically distributed random variables, Y,

take values in a finite set of possitive integer numbersEY:{],2,3,4}WithYl having a

distribution:

Y 1 2 3 4

1

P 0,910703 | 0,009639 | 0,026892 | 0,052766

Let | ={In}nZl be a sequence of independent and identically distributed random variables, I,

take values in a finite set of possitive integer numbers E, ={O,];O,1J; 0,12; 0,13} with 1, having

a distribution:

I, 0,10 0,11 0,12 0,13

P 0,758171 | 0,228950 | 0,002498 | 0,010380

By using the C program, the l//t(l) (u) is calculated with the assumptions above of random

variables X,,Y,, 1, . Table 4.1 shows y"” (u)for a range of value of u

u t
t=3 t=4 t=5




366

Bui Khoi Dam and Phung Duy Quang

1,5 0,136250 0,207778 | 0,274130
2,5 0,037408 0,065189 | 0,099821
3,5 0,010500 0,020001 | 0,033349
4,5 0,001619 0,004698 | 0,009572
5,9 0,000279 0,000911 | 0,002280
6,5 0,000058 0,000201 | 0,000531
7,5 0,000001 0,000029 | 0,000109

Table 4.1.Ruin probabilities (1.1) with Assumption 2.1- Assumption 2.5.

4.2. A numerical Illustration for y” (u)

Let X = {Xn} be a sequence of independent and identically distributed random variables,

nx1

X, take values in a finite set of positive integer numbers E, ={L 2,3,4}With X, having a

distribution:

X 1 2 3 4

1

P 0,910367 | 0,042479 | 0,045050 | 0,002104

Let Y = {Yn}nZl be a sequence of independent and identically distributed random variables, Y,

take values in a finite set of positive integer numbersE, ={1,2,3 4} withY, having a

distribution:

Y, 1 2 3 4

P 0,326243 | 0,184154 | 0,115890 | 0,373713

Let | ={In}nZl be a sequence of independent and identically distributed random variables, I,
take values in a finite set of positive integer numbers E, = {0,];0,1]; 0,12; 0,13} with I, having a

distribution:

I, 0,1 0,11 0,12 0,13

P 0,481185 | 0,103107 | 0,261119 | 0,154588

By using the C program, the w? (u) is calculated with the assumptions above of random
variables X, Y, 1, .

Table 4.2 shows y” (u) for a range of value of u



Finite - Time Ruin Probability In a Generalized Risk Processes 367

u t

t=3 t=4 t=5
1,5 0,293167 0,327225 0,352079
2,5 0,155001 0,188188 0,213372
3,5 0,070132 0,097067 0,118840
4,5 0,032686 0,050891 0,067123
55 0,011821 0,023018 0,034128
6,5 0,003710 0,009619 0,016400
7,5 0,000996 0,003650 0,007374
Table 4.2.Ruin probabilities (1.2) with Assumption 2.1- Assumption 2.5.

5. Conclusion

Using technique of classical probability with u, t, claims, premiums which all are positive
numbers and interests are non — negative numbers, this paper constructed an exact formula for
ruin (non-ruin) probability for model (1.1) and model (1.2) where sequences of claims,
premiums and interests are independent (non) identically distributed random variables. Our
main results in this paper are not only Theorem 2.1, Theorem 2.2, Theorem 3.1 and Theorem
3.2. In addition, numerical examples are given to illustrate for Theorem 2.1 and Theorem 2.2.
These results proof for the suitability of theoretical result and practical examples. It also

means that:

- When initial u is increasing then " (u),y® (u) are decreasing,

- With u being unchanged, when t is increasing theny " (u),w? (u) are increasing.
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