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Abstract

An analytic function f is quasi-subordinate to an analytic function
g, in the open unit disk if there exist analytic functions ϕ and w, with
|ϕ(z)| ≤ 1, w(0) = 0 and |w(z)| < 1 such that f(z) = ϕ(z)g(w(z)).
Certain subclass of analytic univalent functions associated with quasi-
subordination are defined and the bounds for the Fekete-Szegö coeffi-
cient functional |a3 − µa2

2
| for functions belonging to these subclass is

derived.

Mathematics Subject Classification: 30C45

Keywords: Analytic functions, Univalent functions, Convex functions,
Quasi-Subordination, Fekete-Szegö problem.

1 Introduction and Motivation

Let A be the class of analytic function f in the open unit disk D = {z : |z| < 1}

normalized by f(0) = 0 and f ′(0) = 1 of the form f(z) = z +

∞
∑

n=2

anz
n. For
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two analytic functions f and g, the function f is subordinate to g, written as
follows:

f(z) ≺ g(z), (1)

if there exists an analytic function w, with w(0) = 0 and |w(z)| < 1 such
that f(z) = g(w(z)). In particular, if the function g is univalent in D, then
f(z) ≺ g(z) is equivalent to f(0) = g(0) and f(D) ⊂ g(D). For brief survey on
the concept of subordination, see [1].

Ma and Minda [2] introduced the following class

S∗(φ) =

{

f ∈ A :
zf ′(z)

f(z)
≺ φ(z)

}

, (2)

where φ is an analytic function with positive real part in D, φ(D) is symmetric
with respect to the real axis and starlike with respect to φ(0) = 1 and φ′(0) > 0.
A function f ∈ S∗(φ) is called Ma-Minda starlike (with respect to φ). The
class C(φ) is the class of functions f ∈ A for which 1 + zf ′′(z)/f ′(z) ≺ φ(z).
The class S∗(φ) and C(φ) include several well-known subclasses of starlike and
convex functions as special case.

In the year 1970, Robertson [3] introduced the concept of quasi-subordination.
For two analytic functions f and g, the function f is quasi-subordinate to g,
written as follows:

f(z) ≺q g(z), (3)

if there exists analytic functions ϕ and w, with |ϕ(z)| ≤ 1, w(0) = 0 and
|w(z)| < 1 such that f(z) = ϕ(z)g(w(z)). Observe that when ϕ(z) = 1, then
f(z) = g(w(z)), so that f(z) ≺ g(z) in D. Also notice that if w(z) = z, then
f(z) = ϕ(z)g(z) and it is said that f is majorized by g and written f(z) ≪
g(z) in D. Hence it is obvious that quasi-subordination is a generalization
of subordination as well as majorization. See [4, 5, 6] for works related to
quasi-subordination.

Throughout this paper it is assumed that φ is analytic in D with φ(0) = 1.
Motivated by [2, 3], we define the following class.

Definition 1.1. Let the class Lq(λ, φ), (0 ≤ λ ≤ 1), consists of functions
f ∈ A satisfying the quasi-subordination

λz3f ′′′ + (1 + 2λ)z2f ′′ + zf ′

λz2f ′′ + zf ′
− 1 ≺q φ(z)− 1. (4)

Example 1.2. The function f : D → C defined by the following:

λz3f ′′′ + (1 + 2λ)z2f ′′ + zf ′

λz2f ′′ + zf ′
− 1 = z(φ(z) − 1) (5)

belongs to the class Lq(λ, φ).
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It is well known (see [10]) that the n-th coefficient of a univalent func-
tion f ∈ A is bounded by n. The bounds for coefficient give information
about various geometric properties of the function. Many authors have also
investigated the bounds for the Fekete-Szegö coefficient for various classes
[11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25]. In this paper, we
obtain coefficient estimates for the functions in the above defined class.

Let Ω be the class of analytic functions w, normalized by w(0) = 0, and
satisfying the condition |w(z)| < 1. We need the following lemma to prove our
results.

Lemma 1.3. (see [26]). If w ∈ Ω, then for any complex number t

|w2 − tw2

1
| ≤ max{1; |t|}. (6)

The result is sharp for the functions w(z) = z2 or w(z) = z.

2 Main Results

Throughout, let f(z) = z+a2z
2+a3z

3+. . . , φ(z) = 1+B1z+B2z
2+B3z

3+· · · ,
ϕ(z) = c0 + c1z + c2z

2 + c3z
3 + . . . , B1 ∈ R and B1 > 0.

Theorem 2.1. If f ∈ A belongs to Lq(λ, φ), (0 ≤ λ ≤ 1), then

|a2| ≤
B1

2(1 + λ)
,

|a3| ≤
1

6(1 + 2λ)
(B1 +max{B1, B

2

1
+ |B2|}), (7)

and, for any complex number µ,

|a3 − µa2
2
| ≤

1

6(1 + 2λ)

(

B1 +max

{

B1,

∣

∣

∣

∣

1−
3(1 + 2λ)

2(1 + λ)2
µ

∣

∣

∣

∣

B2

1
+ |B2|

})

. (8)

Proof. If f ∈ Lq(λ, φ), (0 ≤ λ ≤ 1), then there exist analytic functions ϕ and
w, with |ϕ(z)| ≤ 1, w(0) = 0 and |w(z)| < 1 such that

λz3f ′′′ + (1 + 2λ)z2f ′′ + zf ′

λz2f ′′ + zf ′
− 1 = ϕ(z)(φ(w(z))− 1). (9)

Since

λz3f ′′′ + (1 + 2λ)z2f ′′ + zf ′

λz2f ′′ + zf ′
− 1 = 2(1 + λ)a2z + (−4(1 + λ)2a2

2
+ 6(1 + 2λ)a3)z

2 + · · · ,

(10)

φ(w(z))− 1 = B1w1z + (B1w2 +B2w
2

1
)z2 + · · · ,
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ϕ(z)(φ(w(z))− 1) = B1c0w1z + (B1c1w1 + c0(B1w2 +B2w
2

1
))z2 + · · · , (11)

it follows from (9) that

a2 =
B1c0w1

2(1 + λ)
,

a3 =
1

6(1 + 2λ)
(B1c1w1 +B1c0w2 + c0(B2 +B2

1
c0)w

2

1
). (12)

Since ϕ(z) is analytic and bounded in D, we have [27, page 172]

|cn| ≤ 1− |c0|
2 ≤ 1 (n > 0). (13)

By using this fact and the well-known inequality, |w1| ≤ 1, we get

|a2| ≤
B1

2(1 + λ)
. (14)

Further,

a3 − µa2
2
=

1

6(1 + 2λ)

(

B1c1w1 + c0

(

B1w2 +

(

B2 +B2

1
c0 −

3(1 + 2λ)

2(1 + λ)2
µB2

1
c0

)

w2

1

))

.

(15)

Then

|a3 − µa2
2
| ≤

1

6(1 + 2λ)

(

|B1c1w1|+

∣

∣

∣

∣

B1c0

(

w2 −

(

3(1 + 2λ)

2(1 + λ)2
µB1c0 − B1c0 −

B2

B1

)

w2

1

)
∣

∣

∣

∣

)

.

(16)

Again applying |cn| ≤ 1 and |w1| ≤ 1, we have

|a3 − µa2
2
| ≤

B1

6(1 + 2λ)

(

1 +

∣

∣

∣

∣

w2 −

(

−

(

1−
3(1 + 2λ)

2(1 + λ)2
µ

)

B1c0 −
B2

B1

)

w2

1

∣

∣

∣

∣

)

.

(17)

Applying Lemma 1.3 to

∣

∣

∣

∣

w2 −

(

−

(

1−
3(1 + 2λ)

2(1 + λ)2
µ

)

B1c0 −
B2

B1

)

w2

1

∣

∣

∣

∣

(18)

yields

|a3 − µa2
2
| ≤

B1

6(1 + 2λ)

(

1 + max

{

1,

∣

∣

∣

∣

−

(

1−
3(1 + 2λ)

2(1 + λ)2
µ

)

B1c0 −
B2

B1

∣

∣

∣

∣

})

.

(19)
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Observe that
∣

∣

∣

∣

−

(

1−
3(1 + 2λ)

2(1 + λ)2
µ

)

B1c0 −
B2

B1

∣

∣

∣

∣

≤ B1|c0|

∣

∣

∣

∣

1−
3(1 + 2λ)

2(1 + λ)2
µ

∣

∣

∣

∣

+

∣

∣

∣

∣

B2

B1

∣

∣

∣

∣

, (20)

and hence we can conclude that

|a3 − µa2
2
| ≤

1

6(1 + 2λ)

(

B1 +max

{

B1,

∣

∣

∣

∣

1−
3(1 + 2λ)

2(1 + λ)2
µ

∣

∣

∣

∣

B2

1
+ |B2|

})

.

(21)

For µ = 0, the above will reduce to the estimate of |a3|.

Theorem 2.2. If f ∈ A satisfies

λz3f ′′′ + (1 + 2λ)z2f ′′ + zf ′

λz2f ′′ + zf ′
− 1 ≪ φ(z)− 1, (22)

then the following inequalities hold:

|a2| ≤
B1

2(1 + λ)
,

|a3| ≤
1

6(1 + 2λ)
(B1 +B2

1
+ |B2|), (23)

and, for any complex number µ,

|a3 − µa2
2
| ≤

1

6(1 + 2λ)

(

B1 +

∣

∣

∣

∣

1−
3(1 + 2λ)

2(1 + λ)2
µ

∣

∣

∣

∣

B2

1
+ |B2|

)

. (24)

Proof. The result follows by taking w(z) = z in the proof of Theorem 2.1.
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Szegö problem, Journal of the Mathematical Society of Japan, 59(3)
(2007), 707–727.

[17] M. Darus and N. Tuneski, On the Fekete-Szegö problem for general-
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lytic functions, Journal of the Korea Society of Mathematical Education
B, 10(4) (2003), 265–271.

[24] V. Ravichandran, M. Darus, M.H. Khan and K.G. Subramanian, Fekete-
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