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Abstract 

 

The Finite-Difference Time-Domain(FDTD) scattered field formulation for 

dispersive materials is developed and presented in this paper. A new model, 

referred to as the General Model is proposed for modeling of dispersive materials 

in visible wavelength range using the FDTD method with high efficiency.A 

parameter estimation method is introduced for the general model to fit material 

permittivity functions fast and accurately. The FDTD formulation is based on the 

Z transform method and models the frequency-dependent dispersive nature of 

permittivity as well. We introduce one frequency approximations design. These 

design techniques will be used to construct approximations to the general model. 

The implemented FDTD method is verified by the transient reflected and 

transmitted fields from a gold slab due to the incidence of a gaussian pulse. To 

validate our approach, we consider the light interaction with an infinite gold 

nanocylinder and compute the scattering cross section(SCS) and compare it with 

the analytical solution.  
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The Finite-Difference Time-Domain (FDTD) method is an efficient, robust and 

easy to implement technique which solves Maxwell's equations in time domain 

[1]. Dispersive materials, such as semiconductors and metals, are widely used in 

optical devices. Also FDTD method is one of the most common choices for 

simulating such devices in a wide frequency rang. One of the most important 

advantages of the FDTD method is that the broadband response can be accurately 

obtained in only one simulation run[2]. Several simple phenomenologicalmodels, 

such as Debye, Drude, and Lorentz models, have been widely adoptedfor 

modeling dispersive materials using the FDTD method [3-7].  

The General Model, referred in this paper for efficiently modeling of arbitrary 

linear dispersive materials. The proposed model is much more efficient than the 

conventional Drude, Lorentz and etc, models; because it offers more degrees of 

freedom in parameter estimation. In addition, a generally applicable parameter 

estimation method is proposed for this model to efficiently and accurately fit the 

permittivity function. The general model is implemented in the FDTD method.  

Material dispersion is modeled by the Z transformtechnique. One frequency 

approximations designis introduced in Section 2. These design techniques will be 

used to construct approximations to the general model. The implemented FDTD 

method is verified by the transient reflected and transmitted fields from a gold 

slab due to the incidence of a gaussian pulse. Also, the application of the proposed 

model to analyze optical properties of nanocylinder is demonstrated in section 3. 

 

2  The General  Dispersion Model 
 

Assuming the time harmonic dependence  expjt, the general model is proposed 

to describe the dispersive material’s relative permittivity expressed by the rational 

fraction form as 
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Where an and bn are real numbers and𝑗 =  −1 , the fraction form is the ratio of 

two polynomials  𝑎𝑘(𝑗𝜔)𝑘𝑛
𝑘=1 and   𝑏𝑘(𝑗𝜔)𝑘𝑛

𝑘=1 ,  where the highest order of the 

denominator is the same as that of the numerator. The parametersan and bn of the 

two polynomials can be estimated accurately and quickly by a frequency-

approximation design. 

 

2.1   FDTD Formulation Using  The Z Transform Technique 

 

The method, which uses the Z transforms in order to obtain FDTD updating 

equations, is namedthe “Z transform method” and was first introduced by Sullivan 
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[8].  It should be noted that the transform method is not the only option to model 

the kind of dispersion considered here. Other techniques such as Auxiliary 

Differential Equation(ADE) method [9], the Piecewise-Linear 

RecursiveConvolution (PLRC) technique [10] andRecursive Convolution(RC) 

method [11] may also be used. 

One of the most important methods of approximating a desired continuous-time 

system is frequency approximation [12]. There are four conventional frequency 

approximation design as, forward difference, backward difference, centered 

differenceand bilinear transform [13]. Using of this designs, value of “𝑗𝜔” with 

the Z Transform technique are calculated. Then, we obtain relative permittivity 

constant values in Z space. 

 
2.1.1 Backward Difference 

 

In going from the frequency to the Z domain, there are times when it is difficult to 

break the frequency domain function into separate terms. There are methods to 

directly go from ωto z, but they are approximations. 

It can be shown that if 

 

𝐹 𝑓(𝑡) = 𝐹(𝜔)                                                   (2) 

 

Then 

𝐹  
𝑑𝑓(𝑡)

𝑑𝑡
 = 𝑗𝜔𝐹(𝜔) 

 
A derivative can be approximated by 

 
𝑑𝑓(𝑡)

𝑑𝑡
≅

𝑓 𝑡 −𝑓(𝑡−∆𝑡)

∆𝑡
                                                         (3) 

 

As long as ∆𝑡is small compared to how fast 𝑓 𝑡 is changing. As these may be 

thought of as two discrete points, we can take the Z transform 

 

𝑍  
𝑓 𝑡 −𝑓(𝑡−∆𝑡)

∆𝑡
 =

𝐹 𝑧 −𝑧−1𝐹 𝑧 

∆𝑡
=

1−𝑧−1

∆𝑡
𝐹 𝑧                              (4) 

 

So at least as an approximation, we can say that 𝑗𝜔 in the frequency domain 

Becomes (1 − 𝑍−1)
∆𝑡

  in the Z domain. This is known as the backward difference 

approximation[8]. So 

 

𝑗𝜔 =
1−𝑍−1

∆𝑡
                                                         (5) 

 

From (1) and (5) equation, we obtain 
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where 
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2.1.2  Forward Difference 

 

Similarly, we have 
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where 
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2.1.3 Centered Difference 

 

The central difference is given by 
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2.1.4  Bilinear Transform 

 

The following transform is the equivalent of using a trapezoidal approximation 

(bilinear)to a derivative 
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Where, parameters of 𝛼𝑛𝑛  and  𝛽𝑛𝑛  are constant values. 

 

2.2 Minimal Storage  
 

The goal of a computationally efficient FDTD algorithm is to perform accurate 

field calculations with minimal computer time and data storage requirements. The 

permittivity Z-transform function 𝜀(𝑧) may be effectively modeled using a 

approximation in; that is given in 

 

 
 
 

D z
z

E z
 

(18) 

 

One major advantage to using a approximation in Z is that such a dispersion 

relation leads directly to a finite difference implementation.Consider the one-
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dimensional (1-D) case of a plane wave traveling in the x direction. The general 

model FDTD algorithm may be summarized as follows: 

 

0 1 2

0 1 2

1 1

1

1

1 p

p

n pn n n

n

n pn n

d D d D d D d D
E

c c E c E c E
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



    
 
     





(19) 

 

Where the electric field E and flux density D are evaluated. 

We illustrate minimum storage implementations of the 𝐸𝑛+1 dispersive 

algorithms. For (19) equation, we assume for demonstration a four-order 

permittivity model. Dropping the space dependence for notational convenience, 

(19) becomes 

 

𝐸𝑛+1 =
1

𝑐0
(𝑑0𝐷

𝑛+1 + 𝑑1𝐷
𝑛 + 𝑑2𝐷

𝑛−1 + 𝑑3𝐷
𝑛−2 + 𝑑4𝐷

𝑛−3 − 𝑐1𝐸
𝑛 − 𝑐2𝐸

𝑛−1 − 𝑐3𝐸
𝑛−2 −

𝑐4𝐸
𝑛−3)               (20) 

 

A direct implementation of (20) above would required nine storage arrays:𝑑0𝐷
𝑛+1, 

𝑑1𝐷
𝑛 , 𝑑2𝐷

𝑛−1, 𝑑3𝐷
𝑛−2,  𝑑4𝐷

𝑛−3, 𝑐1𝐸
𝑛 , 𝑐2𝐸

𝑛−1,𝑐3𝐸
𝑛−2 and  𝑐4𝐸

𝑛−3. Equation (20) above 

may be rewritten in the form of the following equations: 
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                  (21) 

 

the explicit update equations represented by (21). Note that (21) do not require 

previous time storage of the 𝐸𝑥  or𝐷𝑥  field, but do require storage of 𝑊1 to 𝑊4 and 

at time step n only, since 𝑊1 to 𝑊4 overwrite their own previous time values. 

Hence, (20) may be implemented using eight storage arrays instead of nine.   

 

2.3 Extraction of Drude Model From General Model 

 

At optical wavelengths, it may be important to treat electromagnetic wave 

interactions with metals using a dispersive formulation to properly account for the 

physics of internal electron motion. At the macroscopic scale, the Drude model 
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has become widely used for such modeling. The Drude model permittivity 

function is written as [1], 

 

𝜀𝐷 = 𝜀∞ +
𝜔𝐷

2

𝜔(𝑗𝛾 −𝜔)
                                                 (22) 

 

Where𝜔𝐷is the plasma frequency and𝛾 is the damping coefficient. 

It can be written  
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So, Drude  model is a special case of the general model.  

For the four-order General model, the permittivity function is of the form, 

 

𝜀 𝜔 =
𝑎0+𝑎1(𝑗𝜔 )+𝑎2(𝑗𝜔 )2+𝑎3(𝑗𝜔 )3+𝑎4(𝑗𝜔 )4

𝑎0+𝑎1(𝑗𝜔 )+𝑎2(𝑗𝜔 )2+𝑎3(𝑗𝜔 )3+𝑎4(𝑗𝜔 )4
                              (24)  

 

 

Where     

 
 
 

 
 

𝑎0 = (𝜔𝐷𝜔𝐿)2

𝑎1 = 𝛾 𝜀∞ + ∆𝜀 𝜔𝐿
2 + 2𝛿𝜔𝐷

2

𝑎2 = 𝜔𝐷
2 +  𝜀∞ + ∆𝜀 𝜔𝐿

2 + 2𝛿𝛾𝜀∞
𝑎3 = 𝜀∞ 𝛾 + 2𝛿 

𝑎4 = 𝜀∞

  ;           

 
 
 

 
 

𝑏0 = 0

𝑏1 = 𝛾𝜔𝐿
2

𝑏2 = 𝜔𝐿
2 + 2𝛿𝛾

𝑏3 =  𝛾 + 2𝛿 

𝑏4 = 1

  

 

Where 𝜔𝐿 is the resonant frequency and𝛿 is the damping coefficient in the 

Lorentz model[1]. 

 

3  Validation of the FDTD Method with the General Model 
 

In this section, FDTD formulation is used to calculate the transient reflected and 

transmitted fields from a gold slab due to the incidence of a gaussianpulse. The 

real and imaginary parts of the gold permittivity calculated with the Drude and 

general models, are, respectively, plotted. Furthermore, scattering from a finite 

nanocylinder has been calculated, and  results are compared with the Mie theory 

[14].  

 

3.1 Reflected and Transmitted Transient Fields From A Slab 
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The developed dispersive media FDTD formulation is used to obtain of 

Propagation of electric field in the time domain due to the scattering from a 100 

nm-thick  gold slab illuminated by an incident plane wave of gaussian waveform, 

as shown in Figure 1. The material parameters for the gold slab are obtained to be 

in table 1. values of Z Transform the parameters used for the Drude and the 

general models in table 2. We obtain values of table 2 using fromBackward 

Difference Approximation. 

 
Table 1. Values of the parameters used for the Drude and the General models in frequency 

domain. 

Model 𝑎0 𝑎1 𝑎2 𝑎3 𝑎4 𝑏0 𝑏1 𝑏2 𝑏3 𝑏4 

Drude 1.83
× 108 

1.04
× 1018  

9.07 0 0 0 1.15
× 1017  

1.00 0 0 

General 3.74
× 1063 

1.82
× 1047  

3.51
× 1032  

5.70
× 1015  

5.83 0 2.48
× 1045  

2.18
× 1031  

1.19
× 1015  

1.00 

 

 
Table 2. Values of the parameters used for the Drude and the General models in Z domain. 

Model 𝑐0 𝑐1 𝑐2 𝑐3 𝑐4 𝑑0 𝑑1 𝑑2 𝑑3 𝑑4 

Drude 10.80 -19.87 9.07 0 0 1.19 -2.19 1.00 0 0 

General 5.84 -23.35 35.01 -23.33 5.83 1.00 -4.00 6.00 -4.00 1.00 

.  
Figure1  gold slab and directions of the incident, reflected, and transmitted fields. 

 

The reflected and transmitted fields due to the incidence of a plane wave of 

Gaussian waveform are calculated in the one-dimensional computation space. 

Figure2 shows how the field propagate. It can be seen that field is generated while 

the Gaussian wave propagates through the slab. The transient reflected and 

transmitted fields are calculated. The one-dimensional FDTD computation space 

consists of 2000 cells and has 1000 nm length. Thus, the time step value used is  

∆𝑡 =Δx/cand the 100 nm-thick slab is 200 cells wide. A cell size of 1/10 of the 

wavelength is recommended [8]: 
 

0

10
x


   
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Where 𝜆0is the free space wavelength in the simulation domain.The 

transmitted field is calculated at 300 nm away from the right boundary of the slab 

and the reflected fields are calculated at  600 nm away from the left boundary of 

the slab. 

 

 
Figure2  Propagation of  Pulse reflected and transmitted  from gold slab. 

 

We will calculate the coefficient of transmission in amplitude for the electric field 

using the formulas that appear in reference14, for a slab.In Figure 3, we present 

the results obtained considering a slab of  thickness 20 nm. The absolute values of 

the transmission coefficient, computed through the FDTD implementation of the 

General Model. It can be observed in Figure3 that the agreement between the 

General Model and the analytical one is quite good. 
 

 
Figure3 Coefficient of transmission through a layer of 20 nm of gold, 

respectively, calculated analytically, with the general model. 

 

The real and imaginary parts of the permittivity, calculated with the general 

model. In order to find the best set of parameters and the best fit of𝜀 we employ 

the same optimization scheme as we did for the Drude model. The new 

parameters are presented in the second row of Table I and II. Figures 4 and 5 
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compares the relative permittivity of gold obtained from Drude model with the 

general model. In the near infrared, Drude model gives an acceptable description 

of the permittivity of gold. However, it can not accurately describe the dispersion 

function of gold in the optical range. Although a good agreement is achieved for 

wavelengths above 700nm, there exists a strong discrepancy for shorter 

wavelengths. This can be explained by the fact that in Drude model, the inter-

band transitions are not considered. 

 

 

 

3.2 Light  Scattering  From  A Nanoparticle 

 

In order to validate our approach, we consider the scattering of a TE polarized 

plane wave by an infinite gold cylinder with circular cross section of radius 50 

nm(0.05 𝜇𝑚). We compute the scattering cross section (SCS) and compare it with 

the analytical solution calculated by Mie theory in reference14. To concentrate on 

the error related to the dispersion model, we choose very fine mesh (dx = 1 nm) to 

reduce the staircasing error. Figure 6 depicts the computed SCS for Drude, 

General and Mie theory using the permittivity obtained from General model and 

those published in reference 16. It is observed that the agreement between the 

Drude model and the analytical solution decreases for wavelength below 700 nm, 

while the general model shows quite good agreement with the analytical solution. 

This behavior can be visualized further by plotting the relative error on the SCS 

for Drude and general models. The logarithmic plot in Figure 7 illustrates that the 

General leads to a very small error on a wide spectrum, while the Drude 

modelaccuracy is out of discussion around the resonance which is the most 

important part ofthe spectrum. 

 

 

 

Figure 4 Real part of the permittivity of 

gold calculated with the Drude model and 

calculated with the general  model. 

Figure 5 Imaginary part of the 

permittivity of gold calculated with the 

Drude model and calculated with the 

general  model. 
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A new scattered FDTD formulation for dispersive materials are developed using 

the Z transform and frequency approximation methods. The General Model is 

proposed in this paper for simulation of dispersive materials in a visible 

wavelength range. It is shown that the quite good agreement between general 

model and the analytical solution in region of visible wavelengths. This behavior 

is illustrated further by plotting the relative error on the SCS for Drude and 

general model. 
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