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Abstract

The family of strongly additive vector measures is characterized in
this paper. Firstly, the sufficient and necessary condition of a vector
measure, which takes values in a completely Hausdorff topological vector
space, to be strongly addtive is established. Then BTB spaces are
discussed and a Diestel-Faires type result is obtained.
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1 Introduction

Vector measures have long been of interest to measure theorists, the general
theory can be found in [1-4]. In recent years extensive work has been done on
the additivity of vector measures ([5-14]). Olav Nygaard, Märt Põldvere ([11])
considered vector measures that take values in Banach spaces, they character-
ized families of vector measures of uniformly bounded variation and semivari-
ation in terms of additivity properties, and simplified the proof of Nikodyms
boundedness theorem.

Throughout this paper, F will be a field (i.e.,algebra) of subsets of a set
and G an abelian topological group with the family N (G) of neighborhoods
0 ∈ G. A net (xα)α∈(I,≤) in G is Cauchy if for every U ∈ N (G) there is an
α0 ∈ I such that xα − xβ ∈ U whenever α ≥ α0 and β ≥ α0. G is complete if
every Cauchy net in G is convergent.

For a finitely additive measure µ : F → G, the most important event is
the behavior of the sequence {µ(Aj)}

∞
j=1 where {Aj} is pairwise disjoint. In
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fact, µ : F → G is strongly additive if
∑∞

j=1 µ(Aj) converges whenever {Aj} is
pairwise disjoint ([3], P.7). For Banach space X with dual X ′, a result in [11]
says that µ : F → X is bounded variation if and only if

∑∞
j=1 ‖ µ(Aj) ‖< +∞

whenever {Aj} is pairwise disjoint ([11], Cor.2), and µ : F → X is bounded,
i.e., µ(F) is bounded ([3], P.4) if and only if whenever {Aj} is pairwise disjoint
in F , then

∑∞
j=1 |x

′(µ(Aj))| < +∞ for each continuous linear functional x′ ∈
X ′ ([11], Cor.4).

In this paper, we would like to characterize the family of strongly additive
vector measures in terms of additivity property. As an application, we will
show a Diestel-Faires type result ([3], P.20,Theorem 2; [2]) which is also an
important fact in analysis.

2 Strongly Additive Vector Measures

Definition 2.1 For {xj} ⊂ G and △ = {j1, j2, · · · } ⊆ N with j1 < j2 <
· · · , let

∑

j∈△

xj =
∞∑

k=1

xjk

and
∑

j∈△ xj = 0 if △ = φ.
Ronglu Li, Hao Guo and C. Swartz ([16]) showed that every abelian topo-

logical group contains many interesting sets which are both compact and se-
quentially compact, they also deduced some useful facts:

Theorem A ([16, Theorem 1]). Let Ω be a compact (resp., sequentially
compact) space and G an abelian topological group. If {fj} ⊂ C(Ω, G) is
such that

∑∞
j=1 fj(ωj) converges for each {ωj} ⊂ Ω, then {

∑∞
j=1 fj(ωj) : ωj ∈

Ω, ∀j ∈ N} is compact (resp., sequentially compact).
Theorem B ([16, Corollary 2]). Let G be an abelian topological group

and {xj} ⊂ G. If
∑

j xj is subseries convergent, i.e.,
∑

j∈△ xj converges for
each △ ⊂ N , then the set {

∑

j∈△ xj : △ ⊂ N} is both compact and sequentially
compact.

Theorem C ([16, Theorem 2]). Let G be an abelian topological group.
Then for every countably additive µ : 2N → G, the range µ(2N) = {µ(A) : A ⊂
N} is both compact and sequentially compact. Moreover, if

∑
is a σ -algebra

of subsets of a set Ω and µ :
∑

→ G is countably additive, then for every
pairwise disjoint {Aj} ⊂

∑
, the set {

∑

j∈△ µ(Aj) : △ ⊂ N} is both compact
and sequentially compact.

Similar to the case of Banach spaces, we have the following simple fact.
Lemma 1. Let G be a Hausdorff abelian topological group and µ : F → G

be a vector measure. If G is complete, then the following four results are
equivalent.

(1) µ is strongly additive;
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(2) If {Aj} is pairwise disjoint in F , then limj µ(Aj) = 0;
(3) If A1 ⊆ A2 ⊆ · · · in F , then limj µ(Aj) exists;
(4) If A1 ⊇ A2 ⊇ · · · in F , then limj µ(Aj) exists.
Theorem 1. Let X be a Hausdorff topological vector space and µ : F → X

be a vector measure. If X is complete, then µ is strongly additive if and only
if {

∑

j∈△ µ(Aj) : finite △ ⊂ N} is totally bounded (i.e., precompact, [15],
P.83) for every pairwise disjoint sequence {Aj} ⊂ F .

Proof. (⇒). Let {Aj} be pairwise disjoint in F and B = {
∑

j∈△ µ(Aj) :
finite △ ⊂ N}. For each △ = {j1, j2, · · · } ⊆ N with j1 < j2 < · · · , we can
easily get that {Ajk} is pairwise disjoint and

∑

j∈△ µ(Aj) =
∑∞

k=1 µ(Ajk) con-
verges by the strong additivity of µ. Thus,

∑∞
j=1 µ(Aj) is subseries convergent,

i.e.,
∑

j∈△ µ(Aj) converges for each △ ⊆ N .
Let S = {

∑

j∈△ µ(Aj) : △ ⊆ N}. By Theorem B, S is both compact and
sequentially compact in X. Then B is totally bounded since B ⊂ S.

(⇐). Let {Aj} be pairwise disjoint in F . If {
∑n

j=1 µ(Aj)}∞n=1 is not
Cauchy, then we have a balanced U ∈ N (X) and integer sequence m1 ≤ n1 <
m2 ≤ n2 < · · · such that

xk =

nk∑

j=mk

µ(Aj) /∈ U

for all k.
Then pick a balanced V ∈ N (X) such that V + V ⊂ U . Since B =

{
∑

j∈△ µ(Aj) : finite △ ⊂ N} is totally bounded, B ⊂ pV for some p ∈ N .
Then pick a balanced W ∈ N (X) for which

(p)
︷ ︸︸ ︷

W +W · · ·+W ⊂ V.

Since {xk} ⊂ B, then {xk : k ∈ N} is totally bounded, and there is a finite
△ ⊂ N such that {x1, x2, x3, · · · } ⊂ {xk : k ∈ △}+W ([15], P.86, Prob.6) and
so there is a k0 ∈ △ such that xk0+W contains infinite vectors in {xk : k ∈ N}.
Say that {xki}

∞
i=1 ⊂ xk0 +W . Then

p
∑

i=1

xki ∈

(p)
︷ ︸︸ ︷

(xk0 +W ) + (xk0 +W ) + · · ·+ (xk0 +W )

= pxk0 +

(p)
︷ ︸︸ ︷

W +W + · · ·+W

⊂ pxk0 + V.

Hence
∑p

i=1 xki = pxk0 + v for some v ∈ V . However, V = −V and

xk0 =
1

p
(

p
∑

i=1

xki − v) ∈
1

p
(

p
∑

i=1

xki − V )
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while

1

p
(

p
∑

i=1

xki − V ) =
1

p
(

p
∑

i=1

xki + V )

=
1

p
[

p
∑

i=1

nki∑

j=mki

µ(Aj) + V ]

⊂
1

p
(B + V )

⊂
1

p
(pV + V )

= V +
1

p
V

⊂ V + V ⊂ U.

This contradicts that xk /∈ U for all k and so {
∑n

j=1 µ(Aj)}∞n=1 is Cauchy in
X. Since X is complete then

∑∞
j=1 µ(Aj) = limn

∑n

j=1 µ(Aj) exists.

3 Diestel-Faires Type Result

A topological vector space X is called a BTB space if every bounded set in
X is totally bounded ([15], P.85). Many important spaces are BTB spaces,
e.g., Rn, Cn, RN , CN (= ω), the space D of test functions, semi-Montel spaces
([15], P.90), etc. In fact, we have many BTB spaces as follows.

Lemma 3.1 Let X be a complete Hausdorff BTB space and XΩ all the
mappings from Ω to X. For every Ω 6= φ, let σΩ be the topology for XΩ such
that fα → f in (XΩ, σΩ) if and only if fα(ω) → f(ω), ∀ω ∈ Ω. Then (XΩ, σΩ)
is a complete Hausdorff BTB space.

Proof. Each ω ∈ Ω gives a function ω : XΩ → X such that ω(f) = f(ω),
∀f ∈ XΩ. Letting ω−1(φ) = φ and denoting σω = {ω−1(G) : G is open in X}
be a topology for XΩ and σΩ = sup{σω : ω ∈ Ω} ([15], P.11).

If f, g ∈ XΩ, f 6= g, then f(ω0) 6= g(ω0) for some ω0 ∈ Ω and so [f(ω0) +
U ] ∩ [g(ω0) + U ] = φ for some open U ∈ N (X). Then ω−1

0 [f(ω0) + U ] ∩
ω−1
0 [g(ω0) + U ] = φ and so (XΩ, σΩ) is Hausdorff.
Let (fα)α∈(I,≤) be a Cauchy net in (XΩ, σΩ). Then (fα)α∈I is Cauchy in

(XΩ, σω) for each ω ∈ Ω ([15], P76, Prob.4). Fix an ω ∈ Ω. For every open
V ∈ N (X), ω−1(V ) = {f ∈ XΩ : f(ω) = ω(f) ∈ V } is an open neighborhood
of 0 ∈ (Xω, σω) and so there is α0 ∈ I such that fα − fβ ∈ ω−1(V ) for all
α, β ≥ α0, i.e., fα(ω) − fβ(ω) = (fα − fβ)(ω) = ω(fα − fβ) ∈ V for all
α, β ≥ α0. Then (fα(ω))α∈I is Cauchy in X and so limα fα(ω) = f(ω) exists.
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Thus, we have a f ∈ XΩ such that fα → f in (XΩ, σΩ), i.e., (XΩ, σΩ) is
complete.

Let S be a bounded set in (XΩ, σΩ) and S
σΩ

be the closure of S in (XΩ, σΩ)

which is also bounded. If {fn} ⊂ S
σΩ
, then 1

n
fn

σΩ
→ 0 and so 1

n
fn(ω) → 0 for

all ω ∈ Ω, i.e., {f(ω) : f ∈ S
σΩ
} is bounded in X for each ω ∈ Ω. Since X

is a complete BTB space, {f(ω) : f ∈ S
σΩ
} is totally bounded and complete

in X for each ω ∈ Ω, i.e., {f(ω) : f ∈ S
σΩ
} is compact for each ω ∈ Ω ([15],

P.88, Th.7). Then S
σΩ

is compact in (XΩ, σΩ) ([17], P218, Th.1) and so S
is totally bounded in (XΩ, σΩ).

A very nice Diestel-Faires theorem shows that a Banach space X contains
no copy of c0 if and only if every bounded measure µ : F → X is strongly
additive ([3], P.20, Th.2; [2]). But Lemma 2 shows that the family of BTB
spaces includes many of non-metrizable spaces and so we have a nice fact as
follows.

Theorem 3.2 Let X be a complete Hausdorff BTB space. If µ : F → X
is a bounded measure, i.e., µ(F) = {µ(A) : A ∈ F} is bounded in X , then
µ is strongly additive and for every pairwise disjoint sequence {Aj} ⊂ F ,
{
∑

j∈△ µ(Aj) : △ ⊆ N} is both compact and sequentially compact.
Proof. Let {Aj} be pairwise disjoint in F . Then

K = {
∑

j∈△

µ(Aj) : finite △ ⊆ N} = {µ(∪j∈△Aj) : finite △ ⊆ N} ⊂ µ(F)

is bounded in X and so K is totally bounded. By Theorem 1, µ is strongly
additive.

As in the proof of Theorem A and Theorem B implies that {
∑

j∈△ µ(Aj) :
△ ⊆ N} is both compact and sequentially compact whenever {Aj} is pairwise
disjoint in F . �

Theorem C says that if µ : 2N → G is countably additive, then the range
µ(2N ) = {µ(A) : A ⊆ N} is both compact and sequentially compact . For
strongly additive measures we also have a similar result as follows.

Corollary 3.3 Let X be a Hausdorff topological vector space.If X is com-
plete and µ : 2N → X is a strongly additive measure, then {

∑

j∈A µ(j) : A ⊆
N} is both compact and sequentially compact.

Proof. If i 6= j in N , then {i} ∩ {j} = φ and A = ∪j∈A{j} whenever
A ⊆ N . Then

∑

j∈A µ({j}) converges for each A ⊆ N . As in the proof of
Theorem 1, the desired result follows from Theorem B.
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µ : F → X , where X is a complete Hausdorff topological vector space, strongly
additive if and only if {

∑

j∈△ µ(Aj) : finite △ ⊂ N} is totally bounded for
every pairwise disjoint sequence {Aj} ⊂ F .

We also discussed the BTB space, and established a Diestel-Faires type
theorem: If X be a complete Hausdorff BTB space. and µ : F → X is a
bounded measure, then µ is strongly additive and for every pairwise disjoint
sequence {Aj} ⊂ F , {

∑

j∈△ µ(Aj) : △ ⊆ N} is both compact and sequentially
compact.
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