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Abstract

In this paper we consider the minimum principle for vector valued
minimizers of some functionals

F(u; Ω) =

∫

Ω
f(x,Du(x))dx.

The main assumption on the density f(x, z)is a kind of ”monotonicity”
with respect to the N × n matrix z. We also consider the maximum
and minimum principle for weak solutions u of some elliptic systems

−
n
∑

i=1

Di(a
α
i (x, u(x)) = 0, x ∈ Ω, α = 1, . . . , N,

and the main assumption on aαi (x, z) is

0 <

n
∑

j=1

N
∑

α=1

aαi (x, z)(z
α
i − z̃αi ),

where z̃ is a N × n matrix with respect to z.
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1 Introduction

Let us consider vector valued mappings u:Ω ⊂ Rn → Rn; when x ∈ Ω, it turns
out that Du(x) is a n× n matrix. For i ∈ {1, . . . , n} we set Mi(Du) to be the
vector containing all the minors i× i taken from the n× n matrix Du. Thus
M1(Du) = Du and Mn(Du) = detDu. Let consider the variational integral

F(u; Ω) =
∫

Ω
f(x,Du(x))dx, (1.1)

where f(Du) = g1(M1(Du))+ g2(M2(Du))+ · · ·+ gn(Mn(Du)). For a suitable
choice of g′is, such an integral is a model functional in nonlinear elasticity.
We can refer to [1] for maximum principle for minimizers of some integral
function like (1.1). In this paper we select two conditions on f allowing for
minimum principle: the first one ensures that for every minimizers u of (1.1)
there exists another minimizer ũ enjoying the minimum principle; the second
one is stronger than the first one and it guarantees that every minimizer u of
(1.1) satisfies the minimum principle. Next section contains precise statements
and their proofs. In the last section we deal with the maximum and minimum
principle for weak solutions of some elliptic systems

−
n
∑

i=1

Di(a
α
i (x, u(x)) = 0, x ∈ Ω, α = 1, . . . , N, (1.2)

with a strict monotonicity condition which ensure the weak sub(super)-solution
to (1.2) satisfies the maximum(minimum) principle. We will also give the
precise statements and proofs.

2 Minimum principle for vector valued mini-

mizers

Let Ω be a bounded open subset of Rn, and u : Ω ⊂ Rn → RN ;n,N ≥ 2. We
consider the functional

F(u; Ω) =
∫

Ω
f(x,Du(x))dx, (2.1)

where f : Ω× RN×n → R is assumed to be measurable with respect to x ∈ Ω
and continuous with respect to z ∈ RN×n.We also require that

0 ≤ f(x, z) (2.2)

for every x ∈ Ω, for each z ∈ RN×n. When dealing with a matrix z ∈ RN×n,
we write z1, . . . , zN to denote the N rows; for each row zα it result that zα =
(zα1 , . . . , z

α
n) ∈ Rn. Now we write the main assumption :

f(x, z̃) ≤ f(x, z) (2.3)
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for every x ∈ Ω, for every couple of matrices z̃, z ∈ RN×n, such that there
exists β ∈ {1, . . . , N} for which z̃β = 0 6= zβ and z̃α = zα for α 6= β. We can
refer to [2] for ”monotonicity”.

A minimizers of functional (2.1) is a function u ∈ W 1,1(Ω, RN) such that
F(u) < +∞ and

F(u) ≤ F(v), (2.4)

for every v ∈ u+W 1,1
0 (Ω, RN).

For γ ∈ {1, . . . , N} and b ∈ R we define the truncation operator

T γ,b : RN → RN (2.5)

as follows. For every y = (y1, . . . , yN) ∈ RN we set T γ,b(y) = (y1, . . . , yγ ∨
b, . . . , yN).
The main result in this section is the following.

Theorem 2.1 Let u = (u1, . . . , uN) ∈ W 1,1(Ω, RN) be a minimizers of
functional (2.1) under (2.2) and (2.3). If there exist β ∈ {1, . . . , N} and
k ∈ R such that uβ ≥ k on ∂Ω, then T β,k(u) ∈ u +W 1,1

0 (Ω, RN) and T β,k(u)
minimizers (2.1) too.

In order to get the equality T β,k(u) = u we assume the ”strict monotonicity”:

f(x, z̃) < f(x, z), (2.6)

for every x ∈ Ω, for every couple of matrices z̃, z ∈ RN×n, such that there exists
β ∈ {1, . . . , N} for which z̃β = 0 6= zβ and z̃α = zα for α 6= β. Under (2.6) we
are able to prove that T β,k(u) = u in Theorem 2.1, that is, every minimizers
enjoys the minimum principle: that is the second result of this section.

Theorem 2.2 Let u = (u1, . . . , uN) ∈ W 1,1(Ω, RN) be a minimizers of
functional (2.1) under (2.2) and (2.6). If there exist β ∈ {1, . . . , N} and
k ∈ R such that

uβ ≥ k on ∂Ω,

then
uβ ≥ k in Ω.

We can refer to [1-3] for more details.
Now we prove the Theorems.
Proof of Theorem 2.1. Let β ∈ {1, . . . , N} and k ∈ R such that uβ ≥ k on
∂Ω. Set

ϕβ = −min{uβ − k, 0}.

Since uβ ≥ k on ∂Ω, it turns out that ϕβ ∈ W 1,1
0 (Ω). If α 6= β we simply set

ϕα = 0. Then we have ϕ ∈ W 1,1
0 (Ω, RN) and

ũ := u+ ϕ ∈ W 1,1
0 (Ω, RN ) (2.7)
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is a test function for the minimality condition (2.4). Set

Ω1 = {x ∈ Ω : uβ ≥ k} ∪ {x ∈ Ω : uβ < k, Duβ(x) = 0}

and

Ω2 = Ω \ Ω1.

Then
Dũ = Du on Ω1 (2.8)

and

Dũα =

{

Duα, if α 6= β,
0 6= Duβ, if α = β

on Ω2. (2.9)

Thus

f(x,Dũ(x)) = f(x,Du(x)) if x ∈ Ω1 (2.10)

and, using ”monotonicity” (2.3),

f(x,Dũ(x)) ≤ f(x,Du(x)) if x ∈ Ω2. (2.11)

The previous (2.10), (2.11) and the positivity (2.2) merge into

0 ≤ F(ũ) ≤ F(u). (2.12)

Since F(u) < +∞, it turns out that F(ũ) < +∞ too. Moreover, the minimal-
ity (2.4) of u gives

F(u) ≤ F(ũ)

thus

F(ũ) = F(u) = min
v∈u+W

1,1

0
(Ω,RN )

F(v) (2.13)

and ũ turns out to be a a minimizer too. Note that

ũ = T β,k(u).

This ends of the proof of Theorem 2.1.
Proof of Theorem 2.2. We argue as in the proof of Theorem 2.1 until we
reach (2.13). Because of (2.8), the equality (2.13) reads as

∫

Ω2

f(x,Du(x)) =
∫

Ω2

f(x,Dũ(x)). (2.14)

Now the ”strict monotonicity” (2.6) can be used with z̃ = Dũ(x) and z =
Du(x),because of (2.10):

f(x,Dũ(x)) < f(x,Du(x)) if x ∈ Ω2. (2.15)
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Comparing (2.13) with (2.14) gives that Ω2 has zero measure. This means
that Duβ(x) = 0 for almost every x ∈ {uβ < k}, thus Dϕβ(x) = 0 a.e. in
Ω. Since ϕβ ∈ W 1,1

0 (Ω), by Poincaré inequality it follows that ϕβ = 0 for a.e.
x ∈ Ω. Since ϕβ = −min{uβ − k, 0} > 0 on {uβ < k}, it turns out that
|{uβ < k}| = 0, then

uβ(x) ≥ k for a.e. x ∈ Ω.

This ends the proof of Theorem 2.2.
Now we deal with the maximum and minimum principle for weak solution to
some elliptic systems.

3 Extremum principle for the weak solutions

of elliptic systems

Let Ω be a bounged open subset of Rn, and u : Ω ⊂ Rn → RN ; n,N ≥ 2. We
consider the elliptic systems

−
n
∑

i=1

Di(a
α
i (x, u(x)) = 0, x ∈ Ω, α = 1, . . . , N, (3.1)

where aαi (x, z) : Ω × RN×n → R is assumed to be measurable with respect to
x ∈ Ω and continuous with respect to z ∈ RN×n. We assume that

0 <
n
∑

i=1

N
∑

α=1

aαi (x, z)(z
α
i − z̃αi ) (3.2)

for every x ∈ Ω, for every couple of matrices z̃, z ∈ RN×n, such that there
exists β ∈ {1, . . . , N} for which z̃β = 0 6= zβ and z̃α = zα for α 6= β.
A function u ∈ W 1,1(Ω, RN ) is a weak sub(super)-solution to (3.1) if

∫

Ω

n
∑

i=1

N
∑

α=1

aαi (x, u(x)Diφ
α(x)dx ≤ (≥)0, (3.3)

for every nonnegative φ ∈ W 1,1
0 (Ω, RN).

For γ ∈ {1, . . . , N} and b ∈ R we define the truncation operator

Tγ,b : R
N → RN (3.4)

as follows. For every y = (y1, . . . , yN) ∈ RN we set Tγ,b(y) = (y1, . . . , yγ ∧
b, . . . , yN).
The main result in this section is the following.
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Theorem 3.1 Let u = (u1, . . . , uN) ∈ W 1,1(Ω, RN ) be a weak sub(super)-
solution to (3.1) under (3.2). If there exist β ∈ {1, . . . , N} and k ∈ R such
that

uβ ≤ (≥)k on ∂Ω,

then
uβ ≤ (≥)k in Ω.

Now we prove the Theorem.
Proof of Theorem 3.1. Let β ∈ {1, . . . , N} and k ∈ R such that uβ ≤ (≥)k
on ∂Ω. Set

ϕβ = −max(min){uβ − k, 0}.

Since uβ ≤ (≥)k on ∂Ω, it turns out that ϕβ ∈ W 1,1
0 (Ω). If α 6= β we simply

set ϕα = 0. Then we have ϕ ∈ W 1,1
0 (Ω, RN ) and

ũ := u+ ϕ ∈ W 1,1
0 (Ω, RN). (3.5)

Set

Ω1 = {x ∈ Ω : uβ ≤ (≥)k} ∪ {x ∈ Ω : uβ > (<)k, Duβ(x) = 0}

and
Ω2 = Ω \ Ω1.

Then
Dũ = Du on Ω1 (3.7)

Dũα =

{

Duα, if α 6= β,
0 6= Duβ, if α = β

on Ω2. (3.8)

thus
aαi (x, ũ(x)) = aαi (x, u(x)) if x ∈ Ω1, (3.9)

Using (3.8),(3.9) and ”monotonicity” (3.2) we have

0 <
∫

Ω2

n
∑

i=1

aβi (x,Du)(Diu
β −Diũ

β), (3.10)

and using (3.3), (3.8) and (3.9) we have

∫

Ω2

n
∑

i=1

aβi (x,Du)(Diu
β −Diũ

β) ≤ 0. (3.11)

Comparing (3.10) with (3.11) gives that Ω2 has zero measure. This means
that Duβ(x) = 0 for almost every x ∈ {uβ > (<)k}, thus Dϕβ(x) = 0 a.e. in
Ω. Since ϕβ ∈ W 1,1

0 (Ω), by Poincaré inequality it follows that ϕβ = 0 for a.e.
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x ∈ Ω. Since ϕβ = −max(min){uβ − k, 0} < (>)0 on {uβ > (<)k}, it turns
out that |{uβ > (<)k}| = 0, then

uβ(x) ≤ (≥)k for a.e. x ∈ Ω.

This ends the proof of Theorem 3.1.

Remark 3.2 In the proof of Theorem 3.1, we prove the weak sub-solution to
(3.1) satisfies the maximum principle with ũ = Tβ,k(u) and the test function in
(3.3) is φ = −ϕ. However, we prove the weak super-solution to (3.1) satisfies
the minimum principle with ũ = T β,k(u) and the test function in (3.3) is φ = ϕ.

Example 3.3 Assume that aαi (x, z) = zαi , it is easy to have that

n
∑

i=1

N
∑

α=1

aαi (x, z)(z
α
i − z̃αi ) =

n
∑

i=1

∑

α=1

(zαi )
2 > 0

and (3.2) holds true.

Example 3.4 Assume that aαi (x, z) = sign(zαi )|z|, we can obtain

n
∑

i=1

N
∑

α=1

aαi (x, z)(z
α
i − z̃αi ) =

n
∑

i=1

N
∑

α=1

|zαi ||z| > 0

and (3.2) holds true.

Example 3.5 Assume that aαi (x, z) = sign(zαi )g(x, |M1(Du)|, |M2(Du)|, . . . , |Ms(Du)|),
where s = min{n,N} and

pi → g(x, p1, . . . , ps)

is increasing on [0,+∞] for every i = 1, . . . , s, see [1,3]. Then (3.2) holds true
with g(x, p1, . . . , ps) > 0. A simple model is

aαi (x, z) = sign(zαi )(|z|
p − (detz)q)

where p, q > 0; see [2] for the case n = 2 = p = q.

Example 3.6 For a ≥ 1/2, n = N = 2, let us set

aαi (x, z) = sign(zαi )(a|z|
4 − (detz)2),

then (3.2) simply hold true ,see [1].
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